Реферат по предмету "Разное"


2 Раздел общие вопросы теории бесколлекторных машин

2 РазделОБЩИЕ ВОПРОСЫ ТЕОРИИ БЕСКОЛЛЕКТОРНЫХ МАШИНПринцип действия бесколлекторных машин переменного токаПринцип выполнения обмоток статораОсновные типы обмоток статораМагнитодвижущая сила обмоток статораЭлектрические машины пере­менного тока составляют ос­нову современной электроэнергетики, как в сфере производства, так и в сфере потребления электрической энергии. За небольшим ис­ключением все эти машины являются бесколлекторными. Существует два вида бесколлекторных машин переменно­го тока: асинхронные и син­хронные машины. Отличаясь рабочими свойствами, эти машины имеют конструктив­ное сходство, и в основе их теории лежат некоторые об­щие вопросы, касающиеся процессов и явлений, связан­ных с рабочей обмоткой — обмоткой статора. Поэтому, прежде чем перейти к под­робному изучению асинхрон­ных и синхронных машин, це­лесообразно рассмотреть общие вопросы теории этих машин. Как асинхронные, так и синхронные машины обла­дают свойством обратимости (см. § В.2), т. е. каждая из них может работать как в режиме генератора, так и в режиме двигателя. Однако первона­чальное знакомство с этими машинами полезно начать с рассмотрения принципа дей­ствия синхронного генератора и принципа действия асин­хронного двигателя. Это даст возможность получить необ­ходимое на данном этапе изучения представление об устройстве этих машин и про­исходящих в них электромаг­нитных процессах. Данный раздел посвящен изучению принципа действия бескол­лекторных машин переменно­го тока в основных их режи­мах, устройства обмоток статоров этих машин и про­цесса наведения ЭДС и МДС в них.^ ГЛАВА 6 • Принцип действия бесколлекторных машин переменного тока§ 6.1. Принцип действия синхронного генератора Для изучения принципа действия синхронного генератора воспользуемся упрощенной моделью синхронной машины (рис. 6.1). Неподвижная часть машины, называемая статором, представляет собой полый шихтованный цилиндр 1 (сердечник статора) с двумя продольными пазами на внутренней поверх­ности. В этих пазах расположены стороны витка 2, являющегося обмоткой статора. Во внутренней полости сердечника статора расположена вращаю­щаяся часть машины — ротор, представляющий собой постоянный магнит 4 с полюсами N и S, за­крепленный на валу 3. Вал ротора посредством ре­менной передачи механически связан с приводным двигателем (на рисунке не показан). В реальном синхронном генераторе в качестве приводного дви­гателя может быть использован двигатель внутрен­него сгорания либо турбина. Под действием вра­щающего момента приводного двигателя ротор генератора вращается с частотой n1 против часовой стрелки. При этом в обмотке статора в соответствии с явлением электромагнитной индукции наводится ЭДС, направление которой показано на рисунке стрелками. Так как обмотка статора замкнута на на­грузку Z, то в цепи этой обмотки появится ток i. В процессе вращения ротора магнитное поле по­стоянного магнита также вращается с частотой n1, а поэтому каждый из проводников обмотки статора попеременно оказывается то в зоне северного (N) магнитного полюса, то в зоне южного (S) магнитно­го полюса. При этом каждая смена полюсов сопро­вождается изменением направления ЭДС в обмотке статора. Таким образом, в обмотке статора синхрон­ного генератора наводится переменная ЭДС, а по­этому ток i в этой обмотке и в нагрузке Z также пе­ременный.Мгновенное значение ЭДС обмотки статора в рассматриваемом синхронном генераторе (В)е = B2 l = B2 l π D1 n1 / 60 (6.1) где B — магнитная индукция в воздушном зазоре между сердеч­ником статора и полюсами ротора, Тл; l — активная длина одной пазовой стороны обмотки статора, м; = π D1n1 /60 — скорость движения полюсов ротора относительно статора, м/с; D1 — внут­ренний диаметр сердечника статора, м.^ Эта формула показывает, что при неизменной частоте вращения ротора форма кривой ^ Рис. 6.1. Упрощенная модель синхронного генератора переменной ЭДС обмотки якоря опреде­ляется исключительно законом распределения магнитной индукции B, в зазоре. Если бы график магнитной индукции в зазора представлял собой синусоиду (B = Вmax sin α), то ЭДС генератора была бы синусоидальной. Однако получить синусоидальное распределение индукции в зазоре практически невозможно. Так, если воздушный зазор постоянен (рис. 6.2), то магнитная индукция B, в воздушном зазоре распределяется по трапецеидальному закону (кривая 7), а, следовательно, и график ЭДС генератора представляет собой трапецеидальную кривую. Если края полюсов скосим так, чтобы зазор на краях полюсных наконечников был равен max (как это показано на рис. 6.2), то график распределения магнитной индукции в зазоре приблизится к синусоиде (кривая 2), а следовательно, и график ЭДС, наведенной в обмотке генератора, приблизится к синусоиде. Частота ЭДС синхронного генератора f1 (Гц) прямо пропорциональна частоте вращения ротора n1 (об/мин), которую принято называть синхронной частотой вращения: f1 = pn1/60 (6.2) Здесь р — число пар полюсов; в рассматриваемом генераторе два полюса, т. е. р = 1. Для получения промышленной частоты ЭДС (50 Гц) ротор та­кого генератора необходимо вращать с частотой n1 = 3000 об/мин, тогда f1 = 13000/60 = 50 Гц. Постоянные магниты на роторе применяются лишь в синхронных генераторах весьма малой мощности (см. § 23.1), в боль­шинстве же синхронных генераторов для получения возбуждающего магнитного поля применяют обмотку возбуждения, располагаемую на роторе. Эта обмотка подключается к источнику постоянного тока через скользящие контакты, осуществляемые посредством двух контактных колец, располагаемых на валу и Рис. 6.2. Графики распределения магнитной индукции в воздушном зазоре синхронного генератораизолированных от вала и друг от друга, и двух неподвижных щеток (рис. 6.3). Как уже отмечалось, привод - двигатель (ПД) приводит во вращение ротор синхронного генератора с синхронной частотой n1 при этом магнитное поле ротора также вращается с частотой n1 и индуцирует в трехфазной обмотке статора переменные ЭДС ЕА, ЕВ, ЕС, которые, будучи одинаковыми по значению и сдвинутыми фазе друг относительно друг друга на периода (120 эл. град), образуют трехфазную симметричную систему ЭДС. С подключением нагрузки в фазах обмотки статора появляются токи IА, IB, IC. При этомтрехфазная обмотка ста­тора создает вращаю­щееся магнитное поле. Частота вращения этого поля равна частоте вра­щения ротора генерато­ра (об/мин):n1 = f160/p. (6.3) Таким образом, в синхронном генераторе поле статора и ротор вращаются синхронно, отсюда и название — синхронные машины.^ Рис. 6.3. Электромагнитная схема син­хронного генератора § 6.2. Принцип действия асинхронного двигателяНеподвижная часть асинхронного двигателя — статор — имеет такую же конструкцию, что и статор синхронного генератора (рис. 6.3). В расточке статора расположена вращающаяся часть двигателя — ротор, состоящий из вала, сердечника и обмотки (рис. 6.4). Обмотка ротора представляет собой короткозамкнутую конструкцию (см. § 10.2), состоящую из восьмиалюминиевых стержней, расположенных в продольных пазах сердечника ротора, замкнутыхс двух сторон по торцам ротори алюминиевыми кольцами (на рисунке эти кольца не показаны). Ротор и статор разделены воздушным зазором. При включении обмотки статора в сеть трехфазного тока возникает вращающееся магнитное поле статора, частота вращения которого n1 определяется выражением (6.3). Вращающееся поле статора (полюсы N1 и S1) сцепляется как с обмоткой статора, так и с ^ Рис. 6.4. К принципу действия асинхронного двигателя обмоткой ротора и наводит в них ЭДС. При этом ЭДС обмотки статора, являясь ЭДС самоиндукции действует встречно приложенному к обмотке напряжению и ограничивает значение тока в обмотке. Обмотка ротора замкнута, поэтому ЭДС ротора создает в стержнях обмотки ротора токи. Взаимодействие этих токов с полем статора создает на роторе электромагнитные силы Fэм, направление которых определяется по правилу «левой руки». Из рис. 6.4 видно, что силы Fэм стремятся повернуть ротор в направлении вращения магнитного поля статора. Совокупность сил Fэм создает на роторе электромагнита момент М, приводящий его во вращение с частотой n2. Вращение ротора посредством вала передается исполнительному механизму. Таким образом, электрическая энергия, поступающая из сети в обмотку статора, преобразуется в механическую энергию вращения ротора двигателя. Направление вращения магнитного поля статора, а следовательно, и направление вращения ротора зависят от порядка следования фаз напряжения, подводимого к обмотке статора, вращения ротора n2, называемая асинхронной, всегда меныше частоты вращения поля n1, так как только в этом случае происходит наведение ЭДС в обмотке ротора асинхронного двигателя. Таким образом, статор синхронной машины не отличается от статора асинхронной машины, и выполняют они одинаковую функцию: при появлении в обмотке статора тока возникает вра­щающееся магнитное поле и в этой обмотке наводится ЭДС. Именно по этой причине изучение принципа выполнения и конст­рукции обмоток статора, а также изучение электромагнитных про­цессов, связанных с наведением в обмотке статора ЭДС и возник­новением вращающегося магнитного поля, должно предшествовать изучению специфических вопросов теории асинхронных и синхронных машин.^ Контрольные вопросы Объясните принцип действия генератора переменного тока. Чем определяется форма графика ЭДС синхронного генератора? 3. Каково назначение контактных колец и щеток в синхронном генераторе? 4. Объясните принцип действия асинхронного двигателя. 5. Может ли ротор асинхронного двигателя вращаться синхронно с вращаю­щимся полем? 6. Какие функции выполняет обмотка статора в синхронном генераторе и в асинхронном двигателе?ГЛАВА 7 • Принцип выполнения обмоток статора§ 7.1. Устройство статора бесколлекторной машины и основные понятия об обмотках статораСтатор бесколлекторной машины переменного тока (рис. 7.1) состоит из корпуса 1, сердеч-ника 2 и обмотки 3. Сердечник статора имеет шихтованную конструкцию, т. е. представляет собой пакет пла­стин, полученных методом штамповки из листовой электротехнической стали. Пластины предваритель­но покрывают с двух сторон тонкой изоляционной пленкой, например слоем лака. На внутренней по­верхности сердечника статора имеются продольные пазы, в которых располагаются проводники обмотки статора. Обмотка статора выполняется из медных обмоточных проводов круглого или прямоугольного сечения. Требования к обмотке статора в основном сво­дятся к следующему: а) наименьший расход обмо­точной меди; б) удобство и минимальные затраты н изготовлении — технологичность; в) форма кривой ЭДС, наводимой в обмотке статора, должна был. практически синусоидальной. Применительно к генераторам переменного тока это требование обусловлено тем, что при несинусоидальной ЭДС генератора в электрической цепи появляются высшие гармоники тока, оказывающие вредное влияние на работу всей энергосистемы: возрастают потери, возникают опасные перенапряжения, усиливается вредное влияние линий электропередачи на цепи связи. Применительно к двигателям переменного тока требование к синусоидальности ЭДС обмотки статора также весьма актуально, так как несинусоидальность ЭДС ведет к росту потерь и уменьшению полезной мощности двигателя. Многофазная обмотка статора состоит из m1 - фазных обмоток. Например, трехфазная обмотка (m1 = 3) состоит из трех фазных обмоток, каждая из которых занимает Z1\3 пазов, где Z1 - общее число пазов сердечника статора. Каждая фазная обмотка представляет собой разом- кнутую систему проводников. Элементом обмотки является катушка, состоящая из одного или нескольких витков. Элементы катушки, располагаемые в па­зах, называют пазовыми сторонами 1, а элементы, расположенные вне пазов и служащие для соединения пазовых сторон, называют лобовыми частями 2 (рис. 7.2). Часть дуги внутренней расточки статора, приходящаяся на один полюс, называется полюсным делением (м):τ = πD1 /(2р), (7.1)^ Рис. 7.1. Статор бесколлектор­ной машины переменного тока где D1 — внутренний диаметр статора, м; 2р — число полюсов. Расстояние между пазовыми сторонами катушки, измеренное но внутренней поверхности стато­ра, называется шагом обмотки по пазам у1. Шаг обмотки выражают в пазах. Шаг обмотки называется полным или диаметральным, если он равен полюсному делению:y1 = Z1/(2p) = τ . (7.2) В этом случае ЭДС витка определяется арифметической суммой ЭДС, наведенных в сторонах этого витка (рис. 7.3): е = е1 + е2. Если же шаг обмотки меньше полюсного деления (у1 Обмотка статора состоит, как правило, из большого чис­ла катушек, соединенных ме­жду собой определенным об­разом. Для удобного и наглядного изображения ка­тушек и их соединений поль­зуются развернутыми схема­ми обмоток. На такой схеме цилиндрическую поверхность статора вместе с обмоткой условно развертывают на плоскости, а все катушки изображают одновитковыми в виде прямых линий. Простейшая трехфазная обмотка статора двухполюсной машины состоит из трех катушек (А, В, С), оси которых смещены в пространстве относительно друг друга на 120 эл. град, т. е. на^ Рис 7.2. Расположение катушек в пазах сердечника статора полюсного деления (рис. 7.4). Такая обмотка называется сосре­доточенной. Каждая катушка здесь представляет собой фазную обмотку.^ Рис. 7.3. При диамет­ральном шаге ЭДС в пазовых сторонах ка­тушки направлены согласноВ соответствии с ГОСТом выводы трехфазных обмоток стато­ра обозначают следующим образом:Первая фаза......начало С1 — конец С4Вторая фаза..... » С2 — » С5 Третья фаза...... » СЗ — » С6 Конструкция обмотки статора в значи­тельной мере влияет на свойства машины переменного тока, в первую очередь на ее стоимость, КПД и рабочие характеристики.§ 7.2. Электродвижущая сила катушки Вращающееся магнитное поле, сце­пляясь с катушками обмотки статора, наводит в них ЭДС. Мгновенное значе­ние ЭДС (В) одной катушки с числом витков ωkek= Bδ2 l ν ωk , (7.3) где Вδ — магнитная индукция в воздушном зазоре между статором и ротором электрической машины, Тл;ν = πD1n1 /60 = τ2рn1 /60 = 2τ f1 (7.4) - линейная скорость движения магнитного поля относительно неподвижной катушки, м/с; πD1 = τ 2р — длина поверхности рас­точки статора. С учетом (7.4) мгновенное значение ЭДСкатушки ek = Вδ 4τ l f1 wk (7.5) Рис. 7.4. Сосредоточенная трехфазная обмотка: а — расположение катушек в пазах статора; б — развернутая схема обмоткиКак уже отмечалось, форма кривой ЭДС ек зависит исключи­тельно от графика распределения индукции Вδ в воздушном зазо­ре. Однако даже при неравномерном зазоре (см. рис. 6.2) график индукции остается несинусоидальным. Поэтому ЭДС катушки ек также несинусоидальна и наряду с первой (основной) синусои­дальной гармоникой ЭДС содержит ряд высших синусоидальных гармоник.^ Рис. 7.5. Разложение трапецеидальной кривой ЭДС в гар­монический ряд В связи с тем что кривая ЭДС симметрична относительно оси абсцисс, она содержит лишь нечетные гармоники (1, 3, 5 и т. д.). С некоторым приближением, приняв форму кривой ЭДС е трапецеидальной (рис. 7.5), можно записать следующее выражение гармо­нического ряда:e = (sinsin ω1t + 2 sin 3sin 3 ω1t +2 sin 5sin 5ω1t + … + 2 sinsinω1t), (7.6) где — номер гармоники; ω1, — угловая частота основной гармоники. Из (7.6) видим, что с ростом номера гармоники ее амплитуда уменьшается пропорционально величине sin/2 , а частота f = f1, т. е. растет пропорционально номеру гармоники. Поэтому прак- тическое влияние на форму кривой ЭДС оказывают гармоники не выше седьмой. Таким, образом задача получения в обмотке статора синусоидальной ЭДС сводится к устранению или мучительному ослаблению высших синусоидальных гармоник, в первую очередь третьей, пятой и седьмой. Из § 1.10 известно, что токи и ЭДС третьей гармоники во всех фазах трехфазной обмотки совпадают во времени (по фазе). Поэтому в линейной ЭДС (напряжении) при схемах соединения об­моток звездой или треугольником третья гармоника отсутствует. Все, что касается третьей гармоники, распространяется и на выс­шие гармоники ЭДС, номера которых кратны трем (9, 15 и т. д.). Рассмотрим вопрос о возможности устранения или значитель­ного ослабления гармоник выше третьей, главным образом пятой или седьмой. Допустим, что кривая распределения магнитной и наряду с первой гармоникой В1 содержит пятую В5 (рис. 7.6, а). Если при этом об­мотка выполнена с диаметральным шагом (у1 = τ ), то ЭДС первой и пятой гармоник (е1 и е5) в обеих сторонах катушки (витка) (рис 7.6, 6) складываются арифметически. В этом случае результирующая ЭДС катушки ек.л, а следовательно, и ЭДС всей обмотки наряду с пер- вой содержат и пятую гармонику. Если же шаг катушки укоротить на полюсного деления, т. е. принять его равным y1 = ()τ = 0,8τ,^ Рис. 7.6. Укорочение шага обмотки на 1/5τ то ЭДС пятой гармоники е5, хотя и наводятся в пазовых сторонах катушки, будут находиться в противофазе относительно друг друга. В итоге сумма этих ЭДС в катушке будет равна нулю (рис. 7.6, в ) и ЭДС катушки будет содержать лишь первую (основную) ЭДС е1 т. е. она станет практически синусоидальной. Аналогично, для уничтожения ЭДС седьмой гармоники тре­буется укорочение шага катушки на , полюсного деления τ, т. е. принимаем шаг катушки равным y1 = ()τ = 0,857τ. Отношение шага у1 к полюсному делению называют относи­тельным шагом обмотки = y1/ τ Обычно относительный шаг принимают Р = 0,80 ÷ 0,89, что обеспечивает значительное ослабле­ние ЭДС высших гармоник. Из построений, приведенных на рис. 7.6, видно, что уменьше­ние шага катушки на величину относительного укорочения ε = 1 - β вызывает ослабление не только ЭДС высших гармоник, но и ЭДС первой (основной) гармоники. Объясняется это тем, что при диаметральном шаге (у1 = τ) ЭДС первой гармоники Е1к.д (рис. 7.6, б) равна арифметической сумме ЭДС, наводимых в пазовых сторонах катушки (Е1к.д = 2Е1), а при укорочении шага на величину ε (рис. 7.6, в) ЭДС в пазовых сторонах катушки оказываются сдви­нутыми по фазе относительно друг друга на угол ε·180° и ЭДС катушки Е1к.у определяется геометрической суммой:Е1к.у = Е1 + Е1cos (ε·180°) Уменьшение ЭДС катушки при укорочении ее шага на вели­чину ε = 1 - β учитывается коэффициентом укорочения шага ky = Еку / Екд . Для первой гармоникиkyl = sin(β· 90°). (7.8) Для ЭДС любой гармоникиkyυ = sin(υβ · 90°). (7.9) Ниже приведены значения коэффициентов укорочения kyυ в зависимости от относительного шага β обмотки для различных гармоник ЭДС: Относительный шаг.............. 4/5 6/7 1 Коэффициент укорочения kyυ:1-я гармоника............... 5-я » ...............7-я » ............... 0,951 0,000 0,573 0,975 0,4330,000 1,0001,0001,000 В заключение следует отметить, что укорочение шага обмотки по пазам возможно лишь в двухслойных обмотках (см. § 7.1). Однослойные обмотки выполняются с диаметральным ша- гом, поэтому ЭДС, наводимые в них, содержат в значительной мере высшие гармоники 5-го и7-го порядка. Это ограничивает применение однослойных обмоток в асинхронных двигателях мощностью более 15 - 22 кВт.§ 7.3. Электродвижущая сила катушечной группы Обмотки статора разделяются на сосредоточенные и распре­деленные. При сосредоточенной обмотке все катушки одной фа­зы, приходящиеся на полюс и образующие катушечную группу, укладываются в двух пазах, т. е. сосредоточиваются вместе и об­разуют одну большую катушку. Примером такой обмотки может служить трехфазная обмотка, представленная на рис. 7.4. По ряду причин сосредоточенные обмотки не получили распространения. Одна из причин — необходимость вырубки в пластинах статора пазов большой площади, необходимой для размещения значитель­ного числа пазовых сторон. Это ведет к необходимости увеличе­ния наружного диаметра статора, а следовательно, к увеличению размеров машины. В распределенных обмотках все катушки равномерно рас­положены по периметру расточки статора. При этом катушки каждой фазы, приходящиеся на полюс, т. е. катушки каждой катушечной группы, занимают более двух пазов, например че­тыре, шесть и т. д. Весьма важным параметром обмотки статора является число пазов, приходящихся на полюс q1 =Z1/(2pm1), (7.10)где m1 — число фаз в обмотке (для трехфазной обмотки m1 = 3). В сосредоточенной обмотке, где на пару полюсов приходится два паза каждой фазы, а всего пазов Z1 = 2pm1, число пазов на по­люс и фазу q =1. В распределенной обмотке q > 1. В распреде­ленной двухслойной обмотке статора число катушечных групп в каждой фазе равно числу полюсов 2р, а общее число катушечных групп трехфазной обмотки А = 2pml. При этом число катушек в катушечной группе равно q1. Однако сосредоточенные и распре­деленные обмотки различаются не только конструкцией. Имеется также разница и в величине и форме графиков ЭДС, наведенных в сосредоточенной и распределенной обмотках. Для разъяснения обратимся к рис. 7.7, где показаны две одновитковые катушки фазной обмотки, сосредоточенные в двух пазах (а), и такие же две катушки, образующие катушечную группу и сосредоточенные в четырех пазах (б). В случае сосредоточенной обмотки (рис. 7.7, а) ЭДС, наведенные в двух катушках, совпадают по фазе; в этом случае ЭДС катушечной группы £r.с равна арифметической сумме ЭДС катушек:Еr.c = Ек1 + Ек2. (7.11) В случае распределенной обмотки обе катушки сдвину­ты в пространстве относительно друг друга на пазовый угол γ. По­этому ЭДС, наводимые в катушках катушечной группы, оказались сдвинутыми по фазе относительно друг друга на угол γ (рис. 7.7, б). Исходя из этого ЭДС катушечной группы распределенной обмот­ки Ег.р равна геометрической сумме ЭДС катушек, число которых равно q1 :г.р = Как видно из приведенных на рис. 7.7 векторных диаграмм, ЭДС катушечной группы сосредоточенной обмотки Еrс больше, чем ЭДС при распределенной обмотке Егр. Уменьшение ^ Рис. 7.7. К понятию о коэффициенте распределения ЭДС катушечной группы при переходе от сосредоточенной обмотки к распределенной распространяется на ЭДС не только первой, но и высших гармоник. Для количественной оценки этого уменьшения ЭДC пользуются коэффициентом распределения обмотки, представляющим собой отношение ЭДС: kp = (Eг.р/Eг.с) Коэффициент распределения обмотки для первой гармоникиkp = (7.12) где γ - угол сдвига по фазе между векторами пазовых ЭДС, т. е. ЭДС, наводимых в проводниках, лежащих в соседних пазах статора, эл. град:γ = 360p/Z1. (7.13) Так как угол сдвига по фазе между векторами пазовых ЭДС для ν-й гармоники в ν раз больше пазового угла γ, то коэффициент распределения обмотки для любой гармоники ЭДС равенkpv = (7.14) Ниже приведены значения коэффициента распределения для первой, третьей, пятой и седьмой гармоник ЭДС: Число пазов на полюс и фазуq1… 1 2 3 4 5 6 ∞ Коэффициентраспределения kp1-я гармоника3-я » .............5-я » .............7-я » ............. 1,0001,0001,000-1,000 0,9660,7070,259-0,259 0,9600,6670,217-0,178 0,9580,6540,204-0,157 0,9570,6460,200-0,149 0,9560,6440,197-0,145 0,9550,6360,191-0,136 Из приведенных данных видно, что увеличение q1 вызывает сравнительно небольшое уменьшение коэффициента распределе­ния для основной гармоники и значительное уменьшение его для высших гармоник.§ 7.4. Электродвижущая сила обмотки статора Мгновенное значение ЭДС катушки статора по (7.5)ek = Bδ 4 τ l f1 ωk. Eсли принять закон распределения магнитной индукции в воздушном зазоре синусоидальным (Bδ = Bmaxsin ω1 t), то макси­мальное значение ЭДС катушкиEkmax = Bmax4 τ l f1ωk (7.15)При синусоидальном законе распределения среднее значение магнитной индукции Вср = (2/π)Bmax, откудаBmax =(2/π)Bср (7.16)Тогда с учетом (7.15) и (7.16) получимEkmax= 2πВсрτ l f1 ωk (7.17)Переходя к действующему значению ЭДС, получимEk = Ekmax/ = (2π /) Bсрτ l f1ωk (7.18) Произведение полюсного деления т на длину l представляет собой площадь полюсного деления, т. е. площадь магнитного по­тока одного полюса. Тогда произведение Bср τ l = Ф , т. е. равно ос­новному магнитному потоку статора. Учитывая это, а также то, что 2π / = 4,44 , получим выражение действующего значения ЭДС катушки с диаметральным шагом (у1 = τ ):Eк = 4,44Фf1ωk (7.19) Для определения ЭДС обмотки фазы статора необходимо ЭДC катушки Ек умножить на число последовательно соединенных катушек в фазной обмотке статора. Так как число катушек в кату­шечной группе равно q1, а число катушечных групп в фазной об­мотке равно 2р, то фазная обмотка статора содержит 2pq1 катушек. Имея в виду, что число последовательно соединенных витков в фазной обмотке ω1 = 2p q1 ωк , получим ЭДС фазной обмотки ста­тора (В):Е1 = 4,44 Ф f1kоб1. (7.20) В этом выражении kоб1 — обмоточный коэффициент для ос­новной гармоники, учитывающий уменьшение ЭДС основной гармоники, наведенной в обмотке статора, обусловленное укоро­чением шага обмотки и ее распределением. Значение обмоточного коэффициента определяется произведением коэффициента укоро­чения kу1 и распределения kр1 :kоб1 = kу1kр1. (7.21) Для обмоток с диаметральным шагом kоб1 = kр1 Выражение (7.20) определяет значение фазной ЭДС об­мотки статора. Что же касается линейной ЭДС, то ее значение зависит от схемы соединения обмотки статора: при соединениизвездой Е1л = Е1, а при соединении треугольником Е1л = E1 .Пример 7.1. Статор трехфазного асинхронного двигателя (см. рис. 7.1) внутренним диаметром D1 = 435 мм, длиной l = 270 мм имеет число пазов Z1 = 60. Шаг обмотки статора по пазам y1 = 12, число витков в катушке обмотки статора ωk = 2. Определить ЭДС одной фазы обмотки если магнитная индукция в воздушном зазоре Bδ = 0,75 Тл, а частота переменного тока f1 = 50 Гц; 2р = 4.Решение. 1. Полюсное деление τ = πD1/ (2p) = π 435/ 4 = 341 мм,или в зубцовых делениях τ = Z1/(2p) = 60/4 = 15 .2. Относительный шаг обмоткиβ = y1/τ = 12/15 = 0,80.3. Коэффициент укорочения шага обмотки по (7.8)kyl = sin(β· 90) = sin(0,80-90°) = 0,951 .4. Число пазов на полюс и фазу по (7.10)q1 = Z1 / (2pm1) = 60 / (4·3) = 55. Пазовый угол по (7.13)γ = З60р /Z1 = 360 • 2/60 = 12 эл. град.6. Коэффициент распределения обмотки по (7.12) kp1 = = = 0,9577. Обмоточный коэффициент по (7.21)kоб1= ky1 kp1= 0,951 · 0,957 = 0,91.8. Основной магнитный потокФ = (2/π)Вδ l1 τ 10-6 = (2/π) 0,75 · 270 · 341· 10-6 =0,044 Вб.9. Число последовательно соединенных витков в обмотке фазыω1 = 2p q1 ωk =4·5·2 = 40.10. ЭДС обмотки фазы статора по (7.20)E1 = 4,44 Ф f1 и ω1 kо61 = 4,44 • 0,044 • 50 • 40 • 0,91 = 357 В. Значение линейной ЭДС этой обмотки зависит от схемы ее соединения: при соединении звездой Ел = Е1 = • 357 = 618 В, а при соединении треугольни­ком Ел = Е1 = 357 В.§ 7.5. Зубцовые гармоники ЭДС Наличие зубцов и пазов на по­верхности статора создает неравно­мерность воздушного Рис. 7.8 График магнитной индукции основной гармоники В1, искаженной зубцовой гармоникой Вzзазора. По этой причине все гармонические составляющие магнитного поля, обусловленные несинусоидально­стью кривой магнитной индукции (см. рис. 6.2), приобретают зубча­тую форму. Каждая из этих иска­женных гармоник индуцирует в обмотке статора две ЭДС: собст­венной частоты fv и зубцовую. Практическое влияние на работу машины может оказать зубцовая ЭДС поля основной гармоники (рис. 7.8). Мгновенное значение этой ЭДСez = Ezmaxsin ω1t cos 2Q ω1t (7.22) или, учитывая, что sin ω1 t cos 2Q ω1 t = 0,5sin(ω1 t + 2Q ω1 t) + 0,5sin(ω1 t -2Q ω1 t), получимez = 0,5 Ezmax [sin(2Q+1) ω1 t – sin (2Q - 1)ω1 t], (7.23) где Q = Z1 /(2p) — число пазов на полюс. Из (7.23) следует, что зубцовая ЭДС от основной гармони­ки поля может быть разложена на две составляющие с одинаковыми амплитудными значениями, но разными час­тотами:fz/ = (2Q+1)f1 (7.24)f z//= (2Q-1)f1Рис. 7.9. Скос пазов (а) и скос полюсного наконечника (б)Например, при 2р = 4, Z1 = 24 и f1 = 50 Гц основная гар­моника поля вызывает зубцовые ЭДС, частота которых: fz/ = (2 • 6 + 1)50 = 650 Гц (13-я гармоника); f'z// = (2 • 6 - 1)50 = 550 Гц (11 -я гармоника). Вредное действие зубцовых гармоник ЭДС выражается в том, что они вызывают дополнительные потери в машине и, имея по­вышенную частоту, оказывают мешающее влияние на линии связи. Так как сокращение шага обмотки по пазам у1 всегда кратно числу зубцов, то оно не позволяет уменьшить зубцовые гармоники ЭДС. Эффективное средство ослабления зубцовых гармоник ЭДС - скос пазов или скос полюсных наконечников (в синхронных машинах). Обычно этот скос составляет одно зубцовое деление (рис. 7.9). При скосе пазов или полюсных наконечников ЭДС, ин­дуцируемые в ряде последовательных точек по длине проводника, будут сдвинутыми по фазе относительно друг друга. Это ведет к уменьшению ЭДС проводника, учитываемой коэффициентом ско­са пазовkck = где τ и с — в зубцовых делениях. При скосе пазов на одно зубцовое деление t1 для первой гар­моники коэффициент kCKl ≈ 1 , а для гармоник зубцового порядка kckv kCKl = 0,995 , для зубцовой гармоники (v = 13) коэффициент kскl3 = 0,590 .^ Контрольные вопросы 1. Что такое шаг обмотки по пазам и какой должна быть его величина? 2. На какие гармонические составляющие можно разложить несинусоидальную кривую ЭДС, наведенной в обмотке статора? 3. Какие применяются средства подавления высших гармоник ЭДС в обмотке статора? 4. Каким образом можно ослабить зубцовые гармоники ЭДС в обмотке статора?ГЛАВА 8 • Основные типы обмоток статора§ 8.1. Трехфазные двухслойные обмотки с целым числом пазов на полюс и фазуОбмотки статора машин переменного тока по своей конструкции разделяются на двух- и одно­слойные. В двухслойной обмотке пазовая сторона катушки занимает половину паза по его высоте, а другую половину этого паза занимает пазовая сто­рона другой катушки (рис. 8.1, а). В однослойной обмотке статора пазовая сторона любой катушки занимает весь паз (рис. 8.1, б). Рассмотрим принцип выполнения трехфазной двухслойной обмотки с целым числом пазов на по­люс и фазу q1 равным 2; 3; 4 и т. д. В этом случае обмотка каждой фазы занимает q1 пазов в пределах каждого полюсного деления. Таким образом, для образования трехфазной обмотки зубцовый слой сердечника статора в пределах каждого полюсного деления следует разделить на три зоны по q1 пазов в каждой зоне. Рассмотрим порядок построения развернутой схемы трехфазной двухслойной обмотки статора на примере обмотки, имеющей следующие данные: число фаз m1 = 3, число полюсов 2р = 2, число пазов в сердечнике статора Z1 = 12, шаг обмотки по пазам диаметральный, т. е. y1 = τ. Шаг обмотки y1 = Z1 / (2p) = 12/2 = 6 пазов; число пазов на полюс и фазу q1 = Z1/ (m1 2p) = =12/ (32) = 2 паза; пазовый угол γ =360p/ Zl =3601/12 = 30 эл. град. Угол сдвига между осями фазных обмоток составляет 120 эл. град, поэтому сдвиг между на­чалами фазных обмоток А, В и С, выраженный в пазах, λ = 120/γ = 120/30 = 4 паза. На развернутой поверхности статора размечаем пазы (Z1 = 12) и полюсные деления (2р = 2), а затем размечаем зоны по q1 = 2 паза для всех фаз (рис. 8.2, а); при этом расстояние Рис. 8.1. Расположение пазовых сторон двухслойной (а) и однослойной (б) об­моток статорамежду зоной какой-либо фазы в одном полюсном делении и зоной этой же фазы в другом полюсном делении должно быть рав­но шагу обмотки у1= 6 пазов. Далее отмечаем расстояние между началами фазных обмоток λ = 4 паза. Изображаем на схеме (рис. 8.2, 5) верхние (сплошные линии) и нижние (пунктирные линии) пазовые стороны катушек фазы А (катушки 1,2, 7 и 8). Верхнюю сторону катушки 1 (паз 1) лобовой частью соединяем с нижней стороной этой же катушки (паз 7), которую, в свою очередь, присоединяем к верхней стороне катушки 2 (паз 2). Верхнюю сторону катушки 2 (рис. 8.2, б) также лобовой частью соединяем с нижней стороной этой же катушки (паз 8) и получаем первую катушечную груп­пу обмотки фазы А (H1А— K1А). Аналогично получаем вторую катушечную груп­пу фазы А, состоящую из последовательно соеди­ненных катушек 7 и 8 (Н2А— К2А). Катушечные группы соединяем последовательно встречно, для чего К1А присоединяем к К2А. Присоединив начало первой катушечной группы H1А к выводу обмотки С1, а начало второй катушечной группы Н2А — к выводу С4, получаем фазную обмотку А. Приступаем к соединению пазовых сторон катушек фазы В: к .пушек 5 я 6 (первая катушеч- ная группа) и катушек 11 и 12 (вто­рая катушечная группа). Проделав то же самое с катушками фаз­ной обмотки С и соединив катушечные группы этих фазных обмоток, так же как это было сделано в фазной обмотке А, получим фазные обмотки фазы В (С2—С5) и фазы С (СЗ—С6). В окончательном виде развернутая схема трехфазной обмотки представле­на на рис. 8.2, в. Двухслойные обмотки в электрических машинах переменного тока получили наибольшее распространение. Это объясняется рядом их достоинств, из которых главным является возможность любого укорочения шага обмотки, что дает, в свою очередь, возжность максимально приблизить форму кривой ЭДС к синусоиде(см. § 7.3). Однако двухслойные обмотки не лишены недостатков— это затруднения в применении станочной укладки обмотки, а также трудность ремонта обмотки при повреждении изоляции пазовых проводников нижнего слоя. Катушечной группой называют ряд последовательно соединенных между собой катушек, которые лежат в соседних пазах и принадлежат одной фазной обмотке. Каждая катушечная группа имеет q1 последовательно соединенных катушек. Колиичество катушечных групп в фазной обмотке равно числу полюсов. Общее количество катушечных групп в двухслойной обмотке равно 2рm1. Катушечные группы каждой фазы обмотки статора могут, быть соединены последовательно или параллельно, что влияет на число параллельных ветвей в обмотке. На рис. 8.2, б показано последовательное соединение двух ка­тушечных групп фазной обмотки, для чего необходимо нижний конец первой катушечной группы (К1А) соединить с нижним кон­цом второй катушечной группы (К2А), а верхние концы вывести к зажимам^ Рис. 8.2. Порядок построения развернутой схемы трехфазной двухслойной обмотки статора: Z1 = 12, 2р = 2, у1 = 6, q1 = 2фазной обмотки (С1—С4). При таком соединении кату­шечных групп ЭДС фазной обмотки представляет собой сумму ЭДС всех катушечных групп. На рис. 8.3, а показано последовательное соединение четырех катушечных групп. Первая и вторая группы соединены нижними концами, вторая и третья группы соединены верхними концами, третья и четвертая — нижними, а к выводам фазной обмотки при­соединены верхние концы первой и четвертой катушечных групп. При последовательном соединении катушечных групп каждая фазная обмотка независимо от числа полюсов машины содержит одну параллельную ветвь (a1 = 1). Двухслойная обмотка в каждой фазе имеет 2р катушечных групп, поэтому, соединив все группы параллельно, получим обмотку, состоящую из 2р параллельных ветвей (а1 = 2р). На рис. 8.3, б показано параллельное соединение четырех катушечных групп: к одному выводу обмотки (С1) подключены верхние концы нечетных групп (I и III) и нижние концы четных групп (II и IV), оставшиеся концы катушечных групп присоедине­ны


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Аннотацияк рабочей программе дисциплины
Реферат Экономическая и военная безопасность России
Реферат Розрахунок теплової частини ТЕЦ
Реферат Элементы состава преступления, их признаки и функции
Реферат Why Hamlet Is A Hero Essay Research
Реферат Структурная политика государства
Реферат Экономические преступления в мировой таможенной практике
Реферат Организация работы района управления в дорожном центре управления перевозками
Реферат Экономические объекты государственной собственности
Реферат Экстрадиция в международном уголовном праве
Реферат Предпринимательство его виды, формы и особенности на Украине
Реферат Гарантии и компенсации работникам связанные с расторжением трудового договора
Реферат The Metaphors Of Africa Essay Research Paper
Реферат Экологический паспорт
Реферат Показатели использования рабочего времени