МОУ СОШ № 75
реферат по астрономии
работу выполнила
Бабанова Оксана
ученица 11 класса Я
Черноголовка, 2008
ПЛАН
1 Вступление…………………………………………………………………
2 Происхождение комет……………………………………………………
3 Строение и состав…………………………………………………………
4 Кометные орбиты…………………………………………………………
7 Методы оценки блеска комет …………………………………………..
8 Известные кометы…………………………………………………………
10 Защита Земли от кометной опасности………………………………
11 Заключение……………………………………………………………….
12 Фотографии………………………………………………………………
13 Использованная литература…………………………………………..
Кометы являются одними из самых эффектных тел в Солнечной системе. Это своеобразные космические айсберги, состоящие из замороженных газов сложного химического состава, водяного льда и тугоплавкого минерального вещества в виде пыли и более крупных фрагментов. Ежегодно открывают 5-7 новых комет и довольно часто один раз в 2-3 года вблизи Земли и Солнца проходит яркая комета с большим хвостом. Кометы интересуют не только астрономов, но и многих других учёных: физиков, химиков, биологов, историков... Постоянно проводятся достаточно сложные и дорогостящие исследования. Чем же вызван такой живой интерес к этому явлению? Его можно объяснить тем, что кометы - ёмкий и ещё далеко не полностью исследованный источник полезной науке информации. Например, кометы «подсказали» учёным о существовании солнечного ветра, имеется гипотеза о том, что кометы являются причиной возникновения жизни на земле, они могут дать ценную информацию о возникновении галактик...
Кометы - тела Солнечной системы, имеющие вид туманных объектов, обычно со светлым сгустком-ядром в центре и хвостом. Вдали от Солнца у комет нет никаких атмосфер и они ничем не отличаются от обычных астероидов. При сближении с Солнцем на расстояния примерно 11 а.е. у них сначала появляется газовая оболочка неправильной формы (кома). Кома вместе с ядром (телом) называется головой кометы. В телескоп такая комета наблюдается как туманное пятнышко и ее можно отличить по виду от какого-нибудь удаленного звездного скопления только по заметному собственному движению. Затем, на расстояниях 3-4 а.е. от Солнца у кометы, под действием солнечного ветра, начинает развиваться хвост, который становится хорошо заметным на расстоянии менее2а.е.
Маленькое ядро кометы является единственной её твёрдой частью, в нём сосредоточена почти вся её масса. Поэтому ядро - первопричина всего остального комплекса кометных явлений. Ядра комет до сих пор всё ещё недоступны телескопическим наблюдениям, так как они вуалируются окружающей их светящейся материей, непрерывно истекающей из ядер. Применяя большие увеличения, можно заглянуть в более глубокие слои светящейся газопылевой оболочки, но и то, что останется, будет по своим размерам всё ещё значительно превышать истинные размеры ядра. Центральное сгущение, видимое в атмосфере кометы визуально и на фотографиях, называется фотометрическим ядром. Считается, что в центре его находится собственно ядро кометы, то есть располагается центр масс. Однако, как показал советский астроном Д. О. Мохнач, центр масс может не совпадать с наиболее яркой областью фотометрического ядра. Это явление носит название эффекта Мохнача.
Туманная атмосфера, окружающая фотометрическое ядро, называется комой. Кома вместе с ядром составляют голову кометы - газовую оболочку, которая образуется в результате прогревания ядра при приближении к Солнцу. Вдали от Солнца голова выглядит симметричной, но с приближением к нему она постепенно становится овальной, затем удлиняется ещё сильнее и в противоположной от Солнца стороне из неё развивается хвост, состоящий из газа и пыли, входящих в состав головы.
Ядро - самая главная часть кометы. Однако до сих пор нет единодушного мнения, что оно представляет собой на самом деле. Ещё во времена Лапласа существовало мнение, что ядро кометы - твёрдое тело, состоящее из легко испаряющихся веществ типа льда или снега, быстро превращающихся в газ под воздействием солнечного тепла. Эта классическая ледяная модель кометного ядра была существенно дополнена в последнее время. Наибольшим признанием пользуется разработанная Уиплом модель ядра - конгломерата из тугоплавких каменистых частиц и замороженной летучей компоненты (метана, углекислого газа, воды и др.). В таком ядре ледяные слои из замороженных газов чередуются с пылевыми слоями. По мере прогревания газы, испаряясь, увлекают за собой облака пыли. Это позволяет объяснить образование газовых и пылевых хвостов у комет, а также способность небольших ядер к газовыделению.
Согласно Уиплу механизм истечения вещества из ядра объясняется следующим образом. У комет, совершивших небольшое число прохождений через перигелий, - так называемых «молодых» комет - поверхностная защитная корка ещё не успела образоваться, и поверхность ядра покрыта льдами, поэтому газовыделение протекает интенсивно путём прямого испарения. В спектре такой кометы преобладает отражённый солнечный свет, что позволяет спектрально отличать «старые» кометы от «молодых». Обычно «молодыми» называются кометы, имеющие большие полуоси орбит, так как предполагается, что они впервые проникают во внутренние области Солнечной системы. «Старые» кометы - это кометы с коротким периодом обращения вокруг Солнца, многократно проходившие свой перигелий. У «старых» комет на поверхности образуется тугоплавкий экран, так как при повторных возвращениях к Солнцу поверхностный лед, подтаивая, «загрязняется». Этот экран хорошо защищает находящийся под ним лёд от воздействия солнечного света.
Модель Уипла объясняет многие кометные явления: обильное газовыделение из маленьких ядер, причину негравитационных сил, отклоняющих комету от расчётного пути. Потоки, истекающие из ядра, создают реактивные силы, которые и приводят к вековым ускорениям или замедлениям в движении короткопериодических комет.
Существует несколько методов оценки блеска комет: В-Бобровникова, S-Сидгвика, М-Морриса, Е-Бейера, G-оценка невооруженным глазом, К-модифицированный метод Сидгвика.
Метод Бобровникова.
В чем суть этого метода?
Попытайтесь вывести окуляр из фокуса до тех пор, пока внефокальное изображение звезды и кометы не станут одинакового размера. При этом вы должны добиться схожести в яркости этих объектов. Конечно, вы понимаете, что достичь одинаковых пропорций не совсем удастся, так как комета объект диффузный и имеет менее отчетливые границы, или точнее сказать перепад яркости от центра к краю, чем звезда, которая выглядит однородным по яркости объектом. Нужно пытаться, чисто умозрительно, распределить яркость кометы равномерно по всей поверхности. Усреднить его! Конечно, при оценке блеска нужно использовать не менее 3 звезд сравнения. B = VBM (Van Biesbroeck-Bobrovnikoff-Meisel) or simple Out-Out method [formerly noted in the ICQ as the Bobrovnikoff method]Данный метод обозначается, как вы поняли, английской буквой B, а ставится она в графе метода оценки блеска(MM).
Метод Сидгвика.
Как работает данный способ оценки блеска кометы? Вы должны наблюдать фокальную комету и сравнивать ее с внефокальным изображением звезды того же размера, что и комета в фокусе.Как и в любом другом методе, здесь необходимо держать в памяти блеск кометы и звезд сравнения! Используйте не менее 3 звезд сравнения! S = VSS (Vsekhsvyatskii-Steavenson-Sidgwick) or In-Out method [formerly called the Sidgwick method in the ICQ]Данный метод обозначается, как вы поняли, английской буквой S. Ставится она в графе для указания метода оценки блеска(MM).
Модифицированный метод Сигдвика.
Это фактически тот же метод, что и выше описанный, но только применяется в биноклях и бинокулярах. В одну половинку вы видите фокальную комету в другую расфокусированную звезду того же размера, что и комета. Сравнивайте и добивайтесь точной оценки! K = «Modified» VSS method, using binoculars with the comet one eyepiece and with the comparison stars out-of-focus in the other eyepiece]Данный метод обозначается, как вы поняли, английской буквой K. Она ставится в графе для указания метода оценки блеска(MM).
Метод Морриса.
Применяется этот метод для комет с различной степенью конденсации. Суть его заключается в следующем: вы создаете такое внефокальное изображение кометы, чтобы она имела однородную поверхностную яркость. Запоминаете ее. Тоже проделываете со звездой сравнения. При этом пытаетесь запомнить блеск кометы и подобрать соответствующую звезду сравнения. Стремитесь добиться того, чтобы расфокусированная звезда имела те же размеры и блеск, что и расфокусированная комета. M = Modified-Out method discussed by C. S. Morris (ICQ 2, 69)Данный метод обозначается как вы поняли английской буквой M и ставится она в графе для указания метода оценки блеска(MM).
Метод Бейера.
Этот метод очень прост и применим к кометам с любой степенью конденсации. Суть его сводится к следующему. Вы стоите перед телескопом, который уже наведен на бесконечность и готов к наблюдениям. На окулярном узле сделайте пометку 0. Найдите по каталогу звезду 4m. Выдвигайте окуляр до тех пор, пока звезда не растворится с общим фоном неба. Делаем отметку на окулярном узле, когда это произошло. Далее находим другую звезду, например 6m и повторяем туже процедуру. Делаем снова пометку на окулярном узле, когда звезда исчезнет на фоне неба. Так можно подобрать звезды вплоть до той величины, которую вы можете вытянуть на своем инструменте. Комету, которую вы наблюдаете надо также расфокусировать до того момента, пока та не сольется с общим фоном неба. Тогда сделайте пометку, когда это произойдет и обязательно получится так, что комета попадет в какой-то интервал, что и звезды сравнения или между ними. Тогда зная величину выдвижения окуляра в миллиметрах от отметки 0 до исчезновения звезд сравнения и кометы, используя миллиметровую бумагу, можно построить график зависимости: выдвижение (в мм) - звездная величина. Постройте на миллиметровке график с такой зависимостью. Блеск кометы у вас в кармане! Согласно моего опыта, этот метод хорош, но у него есть, как считаю я, один недостаток: он довольно чувствителен к фону неба, которое в момент наблюдений может быть подернуто едва уловимой дымкой, что в свою очередь может сказаться на оценке блеска кометы и т.д. E = Extrafocal-Extinction (or Beyer) method (cf. M. Beyer 1968, Astron.Nachr. 291, 257)Данный метод обозначается как вы поняли английской буквой E и ставится она в графе для указания метода оценки блеска(MM).
ИЗВЕСТНЫЕ КОМЕТЫ.
Название | Год открытия | Описание |
Комета Галлея | 1705 | Возвращается каждые 76 лет, начиная с 240 г. до н.э. |
Комета Лекселя | 1770 | Ближайшая к Земле комета, проходит от нее в 2,2 млн км. |
Комета Энке | 1786 | Очень короткий период обращения - всего 3,3 года |
Большая мартовская комета | 1843 | Имеет гигантский хвост длинной 320 млн км. |
Большая комета | 1861 | Эффектный веерообразный хвост |
Комета Свифта-Туттля | 1862 | Порождает метеорный поток Персеид |
Комета Аренда-Ролана | 1956 | Имеет хвост, повернутый к Солнцу |
Комета Икейя-Секи | 1965 | Яркая комета, пролетает близко от Солнца, период обращения 880 лет |
Комета Беннета | 1970 | Эффектно загнутый хвост и струи из ядра |
Комета Когоутека | 1973 | Сфотографирована АМС «Пионер» |
Комета Уэста | 1975 | Самая яркая после Икейя-Секи |
Комета Шумейкера-Леви | 1993 | Распалась на куски и упала на Юпитер (1994) |
Комета Хейла-Боппа | 1995 | Была видима невооруженным глазом в 1997 году |
Комета Якутаке | 1996 | Самая яркая после кометы Уэста |
Комета Тайбера | 1996 | Предполагается, что может быть яркой, но сейчас потускнела |
СОВРЕМЕННЫЕ ИССЛЕДОВАНИЯ КОМЕТ.
Проект «Вега».
Проект «Вега» («Венера - комета Галлея») был одним из самых сложных в истории космических исследований. Он состоял из трёх частей: изучение атмосферы и поверхности Венеры при помощи посадочных аппаратов, изучение динамики атмосферы Венеры при помощи аэростатных зондов, пролёт через кому и плазменную оболочку кометы Галлея.
Автоматическая станция «Вега-1» стартовала с космодрома Байконур 15 декабря 1984 года, через 6 дней за ней последовала «Вега-2». В июне 1985 года они друг за другом прошли вблизи Венеры, успешно проведя исследования, связанные с этой частью проекта.
Но самой интересной была третья часть проекта - исследования кометы Галлея. Космическим аппаратам впервые предстояло «увидеть» ядро кометы, неуловимое для наземных телескопов. Встреча «Веги-1» с кометой произошла 6 марта, а «Веги-2» - 9 марта 1986 года. Они прошли на расстоянии 8900 и 8000 километров от её ядра.
Самой важной задачей в проекте было исследование физических характеристик ядра кометы. Впервые ядро рассматривалось как пространственно разрешённый объект, были определены его строение, размеры, инфракрасная температура, получены оценки его состава и характеристик поверхностного слоя.
В то время ещё не представлялось технической возможности совершить посадку на ядро кометы, так как слишком велика была скорость встречи - в случае с кометой Галлея это 78 км/с. Опасно было даже пролетать на слишком близком расстоянии, так как кометная пыль могла разрушить космический аппарат. Расстояние пролёта было выбрано с учётом количественных характеристик кометы. Использовалось два подхода: дистанционные измерения с помощью оптических приборов и прямые измерения вещества (газа и пыли), покидающего ядро и пересекающего траекторию движения аппарата.
Оптические приборы были размещены на специальной платформе, разработанной и изготовленной совместно с чехословацкими специалистами, которая поворачивалась во время полёта и отслеживала траекторию движения кометы. С ёе помощью проводились три научных эксперимента: телевизионная съёмка ядра, измерение потока инфракрасного излучения от ядра (тем самым определялась температура его поверхности) и спектра инфракрасного излучения внутренних «околоядерных» частей комы на длинах волн от 2,5 до 12 микрометров с целью определения его состава. Исследования ИК излучения проводились при помощи инфракрасного спектрометра ИКС.
Итоги оптических исследований можно сформулировать следующим образом: ядро - вытянутое монолитное тело неправильной формы, размеры большой оси - 14 километров, в поперечнике - около 7 километров. Каждые сутки его покидают несколько миллионов тонн водяного пара. Расчёты показывают, что такое испарение может идти от ледяного тела. Но вместе с тем приборы установили, что поверхность ядра чёрная (отражательная способность менее 5%) и горячая (примерно 100 тысяч градусов Цельсия).
Измерения химического состава пыли, газа и плазмы вдоль траектории полёта показали наличие водяного пара, атомных (водород, кислород, углерод) и молекулярных (угарный газ, диоксид углерода, гидроксил, циан и др.) компонентов, а также металлов с примесью силикатов.
Проект был осуществлён при широкой международной кооперации и с участием научных организаций многих стран. В результате экспедиции «Вега» учёные впервые увидели кометное ядро, получили большой объём данных о его составе и физических характеристиках. Грубая схема была заменена картиной реального природного объекта, ранее никогда не наблюдавшегося.
В настоящее время NASA готовит три больших экспедиции. Первая из них называется «Stardust» («Звёздная пыль»). Она предполагает запуск в 1999 году космического аппарата, который пройдёт в 150 километрах от ядра кометы Wild 2 в январе 2004 года. Основная его задача: собрать для дальнейших исследований кометную пыль с помощью уникальной субстанции, называемой «аэрогель». Второй проект носит название «Contour» («COmet Nucleus TOUR»). Аппарат будет запущен в июле 2002 года. В ноябре 2003 года он встретится с кометой Энке, в январе 2006 года - с кометой Швассмана-Вахмана-3, и, наконец, в августе 2008 года - с кометой d'Arrest. Он будет оснащён совершенным техническим оборудованием, которое позволит получить высококачественные фотографии ядра в различных спектрах, а также собрать кометные газ и пыль. Проект также интересен тем, что космический аппарат при помощи гравитационного поля Земли может быть переориентирован в 2004-2008 году на новую комету. Третий проект - самый интересный и сложный. Он называется «Deep Space 4» и входит в программу исследований под названием « NASA New Millennium Program». В его ходе предполагается посадка на ядро кометы Tempel 1 в декабре 2005 года и возвращение на Землю в 2010 году. Космический аппарат исследует ядро кометы, соберёт и доставит на Землю образцы грунта.
Наиболее интересными событиями за последние несколько лет стали: появление кометы Хейла-Боппа и падение кометы Шумахера-Леви 9 на Юпитер.
Комета Хейла-Боппа появилась на небе весной 1997 года. Её период составляет 5900 лет. С этой кометой связаны некоторые интересные факты. Осенью 1996 года американский астроном-любитель Чак Шрамек передал во всемирную сеть Интернет фотографию кометы, на которой отчётливо был виден яркий белый объект неизвестного происхождения, слегка сплюснутый по горизонтали. Шрамек назвал его «Saturn-like object» (сатурнообразный объект, сокращённо - «SLO»). Размеры объекта в несколько раз превосходили размеры Земли.
Реакция официальных научных представителей была странной. Снимок Шрамека был объявлен подделкой, а сам астроном - мистификатором, но вразумительного объяснения характера SLO не было предложено. Снимок, опубликованный в Интернет, вызвал взрыв оккультизма, распространялось огромное количество рассказов о грядущем конце света, «мёртвой планете древней цивилизации», злобных пришельцах, готовящихся к захвату Земли с помощью кометы, даже выражение: «What the hell is going on?» («Что за чертовщина происходит?») перефразировали в «What the Hale is going on?»... До сих пор не ясно, что это был за объект, какова его природа.
23 июля появилось сообщение о том, что ядро кометы разделилось пополам.
Предварительный анализ показал, что второе «ядро» - звезда на заднем плане, но последующие снимки опровергли это предположение. С течением времени «глаза» опять соединились, и комета приняла первоначальный вид. Этот феномен также не был объяснён ни одним учёным.
Таким образом, комета Хейла-Боппа была не стандартным явлением, она дала учёным новый повод для размышлений.
Другим нашумевшим событием стало падение в июле 1994 года короткопериодической кометы Шумахера-Леви 9 на Юпитер. Ядро кометы в июле 1992 года в результате сближения с Юпитером разделилось на фрагменты, которые впоследствии столкнулись с планетой-гигантом. В связи с тем, что столкновения происходили на ночной стороне Юпитера, земные исследователи могли наблюдать лишь вспышки, отражённые спутниками планеты. Анализ показал, что диаметр фрагментов от одного до нескольких километров. На Юпитер упали 20 кометных осколков.
Учёные утверждают, что распад кометы на части - редкое событие, захват кометы Юпитером - ещё более редкое происшествие, а столкновение большой кометы с планетой - экстраординарное космическое событие.
Недавно в американской лаборатории на одном из самых мощных компьютеров Intel Teraflop с производительностью 1 триллион операций в секунду была просчитана модель падения кометы радиусом 1 километр на Землю. Вычисления заняли 48 часов. Они показали, что такой катаклизм станет смертельным для человечества: в воздух поднимутся сотни тонн пыли, закрыв доступ солнечному свету и теплу, при падении в океан образуется гигантское цунами, произойдут разрушительные землетрясения... По одной из гипотез, динозавры вымерли в результате падения большой кометы или астероида. В штате Аризона существует кратер диаметром 1219 метров, образовавшийся после падения метеорита 60 метров в диаметре. Взрыв был эквивалентен взрыву 15 миллионов тонн тринитротолуола. Предполагается, что знаменитый Тунгусский метеорит 1908 года имел диаметр около 100 метров. Поэтому учёные работают сейчас над созданием системы раннего обнаружения, уничтожения или отклонения крупных космических тел, пролетающих недалеко от нашей планеты.
ЗАЩИТА ЗЕМЛИ ОТ КОМЕТНОЙ ОПАСНОСТИ.
Проблема кометной опасности детально проанализирована во множестве публикаций. Следует отметить, что наибольшую опасность представляют собой массивные долгопериодические кометы, их появление чаще всего бывает неожиданным из-за произвольной ориентации плоскостей орбит и больших или очень больших периодов обращения. Более того, многие из этих комет - апериодические, то есть движутся по незамкнутым траекториям (параболическим или гиперболическим) и поэтому действительно являются новыми. У этих комет возможна более высокая скорость столкновения с Землей - до 72 км/с (на встречных траекториях), что может привести к глобальным катастрофическим последствиям. Возможность подобных катастрофических событий подтверждается многими фактами. Во-первых, к настоящему времени на поверхности Земли обнаружено свыше 230 больших ударных кратеров
Конечно, большинство этих кратеров, скорее всего, были образованы при падении на земную поверхность каменистых тел, которые могут пронизывать земную атмосферу практически не разрушаясь. Вполне вероятно, что какая-то часть кратеров была образована и крупными кометными ядрами или телами промежуточного состава. Но столкновения с кометами могут приводить не только к катастрофическим последствиям. Ряд ученых считает, что сразу после своего формирования при высоких температурах и охлаждения земная поверхность была очень сухая (например, как сейчас лунная), и что практически вся вода и другие летучие соединения были доставлены потоком комет, обрушившимся в то время на Землю. Кстати, кометы могли доставить не только воду, но и сложные органические соединения, возникновение которых в земных условиях, как некоторые полагают, было маловероятным, и таким образом создали основу для зарождения простейших организмов. Хотя это пока и гипотезы, но кроме Тунгусского явления, есть и другие факты, подтверждающие падения ядер комет в прошлом на Землю. Например, одно из наиболее массовых вымираний флоры и фауны за последние 230 млн. лет произошло 65 млн. лет назад (между мезозойской и кайнозойской биологическими эрами или на рубеже мелового и третичного геологических периодов), когда исчезло около 2/3 всех живых организмов, включая динозавров. С этим же моментом в геологических отложениях земной поверхности связан слой с повышенным содержанием чрезвычайно редкого на Земле элемента иридия.
Ученые Л. Альварес и С. Ванденберг показали, что содержание этого элемента в тот период на земной поверхности могло резко увеличиться в результате падения крупного кометного ядра (с поперечником около 10 км), имевшего повышенное содержание иридия. Был даже найден кратер с подходящим возрастом и соответствующими морфологическими особенностями, который мог возникнуть при таком событии. Этот кратер, по имени Чиксулуб, имеет диаметр 180 км и находится на полуострове Юкатан в Мексике. Но причиной вымирания живых организмов тогда могла быть не повышенная концентрация иридия, а сильнейший взрыв, вызванный столкновением кометного ядра с земной поверхностью, который привел к выбросу в атмосферу (в том числе в ее верхние слои) огромного количества пыли. Глобальное запыление атмосферы неизбежно приводит к резкому падению температуры ее нижних слоев (на 10 и более градусов), так как пыль экранирует поток солнечного излучения. Такое изменение средней температуры может сохраняться до 1 года - так называемый эффект «ядерной зимы» (он также неизбежен при массовом применении ядерного оружия, откуда и появилось соответствующее название). Вполне вероятно, что такой эффект, вызванный падением крупного кометного ядра (но это мог быть и астероид) на земную поверхность 65 млн. лет назад, и привел к катастрофической гибели живых организмов.
Еще одно подтверждение реальности столкновений кометных ядер с планетами - уникальное событие, которое произошло «на глазах» у всего современного человечества. Имеется ввиду падение фрагментов кометы Шумейкера-Леви 9 на Юпитер в июле 1994 г. Эта комета была обнаружена в окрестностях Юпитера в начале 1993 г. уже после того, как распалась на 20 фрагментов, которые распределились вдоль ее орбиты в виде светящегося «небесного ожерелья». Как показало моделирование движения этой кометы «назад», она была либо сорванным «с места» удаленным ледяным спутником Юпитера, либо ранее захваченной планетой-гигантом обычной кометой. Скорее всего, кометное ядро было разорвано на части приливными силами при близком прохождении к Юпитеру. Падение обломков ядра кометы с размерами от 1 до 10 км со скоростью около 60 км/с происходило с 16 по 22 июля 1994 г. на обратную сторону южного полушария Юпитера. Это не позволило непосредственно наблюдать эффекты столкновений. Но последствия падений становились наблюдаемыми на видимом полушарии Юпитера уже через 40-50 мин. по причине его быстрого вращения. Они были грандиозными. Следы взрывов в виде огромных темных пятен и расходящихся от них кольцевых ударных волн (по диаметру сравнимых с Землей) на фоне юпитерианской атмосферы наблюдались во всех обсерваториях мира. Но лучшие по качеству снимки были получены с помощью орбитального телескопа «Хаббл» работающего за пределами земной атмосферы
Но прежде, чем приступить к обсуждению вопроса о защите Земли от крупных комет и астероидов, остановимся кратко на обсуждении более « простой» проблемы - а так ли уж велика опасность столкновения Земли с кометами?
Говоря языком математики, речь идет о нахождении вероятности пересечения орбит Земли и кометы практически в одной точке. Интуитивно кажется, что эта вероятность должна быть исключительно мала, но какова количественная оценка этой малости? Для ответа на вопрос достаточно учесть, что из наблюдений около 200 долгопериодических комет известно, что около 5 комет в год пересекают плоскость орбиты Земли (напомним, что речь идет только уже об известных кометах типа кометы Карла V или кометы Галлея).
Для столкновения необходимо, чтобы траектория хотя бы одной из таких комет пересеклась с положением Земли, точнее прошла бы через окружность площадью в ¼ площади земной поверхности. Расчеты показывают, что вероятность такого события, как и ожидалось, экстремально мала - примерно одно событие в 50-100 млн. лет. Но геологический возраст Земли близок к 4,5 млрд.лет. Значит, за это время нас «посетили», как минимум, несколько десятков комет? А если учесть, что каждый год астрономы открывают еще 3-5 новых комет, то кометный фактор становится одним из важнейших элементов земной истории! Этот вывод подтверждается и данными наблюдений кратеров Луны, значительная часть которых сформировалась под воздействием комет, астероидов и метеоритов.
Соединяя «оптимистическую» и «пессимистическую» точки зрения на кометную угрозу для Земли, можно указать наиболее надежный интервал для таких событий - примерно один раз в 10-20 млн.лет. Много это или мало? Стоит ли принимать во внимание кометную опасность и предпринимать какие-то превентивные меры? Для тех, кто настроен «оптимистически» (по принципу - на мой век хватит), заметим, что приведенные выше оценки характеризуют лишь частоту событий, но в принципе не могут дать ответа на вопрос, когда же это событие произойдет. Следует пояснить, что и в повседневной жизни мы интуитивно оцениваем опасность того или иного фактора. Даже без специальных пояснений, каждый из нас осознает, что опасность от движущегося автомобиля намного превышает опасность от упавшего с крыши кирпича или аварии самолета. Следовательно, в первую очередь нужно «страховаться» от потенциально наиболее вероятного события. Но что до этой логики человеку, на которого кирпич все-таки упал! Мы прекрасно понимаем, что вероятность аварии на атомной станции чрезвычайно мала. И, несмотря на это, мы стали свидетелями ужаса Чернобыля. Следовательно - сама про себе вероятность того или иного события хотя и важна, но недостаточна для характеристики степени опасности явления.
Ученые уже давно понимали этот факт при разработке и проектировании сложных систем. Для сравнения разных по своим вероятностным свойствам и воздействию на человека событий было предложено использовать понятие «фактор опасности», равный произведению вероятности события на число потенциальных жертв. Так например, ежегодно на земном шаре в авиационных катастрофах погибает около тысячи человек. Статистические данные показывают, что вероятность одной такой катастрофы примерно составляет одно событие в месяц. В этом случае фактор опасности авиационных катастроф для человечества составляет около 80-90. Если учесть, что столкновение крупной кометы с Землей будет сопровождаться гибелью всего живого, то рейтинг этой угрозы превышает авиационный почти в 5-7 раз! Вероятность эффекта мала, но зато последствия глобальны!
Кометы падали на землю
Комета 73P/Schwassmann-Wachmann 3 вновь обратила взоры даже несведущих в астрономии людей к небу. Но красивая хвостатая гостья таит в себе не только тайны зарождения Солнечной системы, но и представляет серьезную опасность для землян. Особенно это проявляется теперь, когда небесная странница разрушается прямо на глазах. Одна из таких разрушающихся комет (Шумейкеров-Леви, состоящая из 23 фрагментов) столкнулась с Юпитером более 10 лет назад, и вот новая катастрофа. Может ли комета врезаться в Землю? Изучение древних метеоритных кратеров не исключает такой возможности, хотя есть всего несколько примеров таких падений на Землю. К сожалению, природные и климатические влияния сгладили места падений, чтобы достоверно выявить кометную причину появления таких кратеров. Тем не менее, знаменитая Тунгусская катастрофа могла быть вызвана именно кометой.
Комета в инфакрасном свете
Комета 73P/Schwassman-Wachmann 3 разваливается на наших глазах, а астрономы всего мира изучают процесс ее разрушения. Процесс распада кометы хорошо виден на фотографиях. Последняя фотография в инфракрасном диапазоне, полученная космическим телескопом "Спитцер", показывает 45 фрагментов кометы из 58-и известных на данное время ее "кусков". Инфракрасный телескоп имеет большое преимущество перед оптическими, т.к. показывает те детали, которые нельзя обнаружить в видимом диапазоне. Например, здесь видны полосы частиц пыли, которые связывают отдельные фрагменты кометы.
Комета Хейла-Боппа в ночном
Фотография Юпитера в ИК-диапазоне после падения кометы
Самая яркая в истории Земли комета движется к Солнцу
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |