Настоящая работа посвящена исследованию движений автоколебаний системы с одной степенью свободы под действием внешней периодической силы. Такие движения представляют интерес для радиотелеграфии (например, к исследованию таких движений сводится теория регенеративного приемника). Особенно замечательно здесь явления так называемого "захватывания". Это явление заключается в том, что, когда период внешней силы достаточно близок к периоду автоколебаний системы, биения пропадают; внешняя сила как бы "захватывает" автоколебания. Колебания системы начинают совершаться с периодом внешнего сигнала, хотя их амплитуда весьма сильно зависит от амплитуды "исчезнувших" автоколебаний. Интервал захватывания зависит от интенсивности сигнала и от автоколебательной системы.
Теоретически этот вопрос уже разбирался, однако методами математически недостаточно строгими; кроме того, бралась характеристика весьма частного вида - кубическая парабола. Поэтому мы будем рассматривать случай произвольной характеристики при колебаниях близких к синусоидальных.
В этой работе мы рассмотрим периодические решения с периодом, равным периоду внешней силы, и их устойчивость при малых отклонениях. Мы оставим в стороне другие стационарные движения, возможные в исследуемой системы, например периодические решения с периодом, кратным периоду внешней силе, или квазипериодические решения. Мы оставим в стороне важный вопрос об устойчивости при больших отклонениях
Для отыскания периодических решений воспользуемся методом Пуанкаре, которые позволяют быстро решить задачу для случая колебаний, достаточно близких к синусоидальным. С этой целью введем в наше уравнение параметр m таким образом, чтобы при m = 0 уравнение превращалось в линейное и колебания делались синусоидальными. Этот параметр m , который мы предполагать достаточно малым, может иметь различный смысл в зависимости от выбора системы.
Для решения вопроса об устойчивости найденного решения при малых отклонениях воспользуемся методами Ляпунова, требуя, чтобы искомые решения обладали "устойчивостью по Ляпунову".
В настоящей работе мы не будем вычислять радиусы сходимости тех рядов, с которыми нам придется иметь дело; грубая оценка может быть сделана по Пуанкаре.
В § 1 и 2 рассматривается область достаточно сильной расстройки; § 3 и 4 посвящены рассмотрению области резонанса; в § 5 показывается, как общие формулы для амплитуд и для устойчивости, полученные в § 1- 4, могут быть применены в конкретных случаях, причем в качестве примера рассматривается случай Ван дер Поля. Результаты применения общих формул совпадают с теми, которые получил нестрогим путем Ван дер Поль.
Уравнение, которое нас будет интересовать:
При m = 0 это уравнение имеет единственное периодическое решение
Рассмотрим случай, когда m бесконечно мало. Согласно Пуанкаре мы будем искать решение (1) в следующем виде:
Начальные условия выберем так:
F2 - степенной ряд по b 1 b 2, m начинающийся с членов второго порядка. Подставим (3) в (1):
Сравнивая коэффициенты при b 1 b 2, m получим уравнение для А, В, С. Начальные условия можно получить для них, подставив (4) в (3).
Решая задачи Коши, получим:
Для того, чтобы (3) представляли периодические решения необходимо и достаточно, чтобы
Введем обозначения
Тогда (6) запишется в виде:
Если в этой системе можно b 1 b 2 представить в виде функции m так, чтобы b 1 b 2, m исчезли из системы (7) , то (3) - периодическое решение уравнения (1). Иначе Х- не периодично. Достаточным условием существования периодического решения при малых m служит неравенство 0 Якобиана.
В нашем случае:
Т.е. мы всегда имеем периодические решения при малых m и любых f. Искомое периодическое решение может быть найдено в виде.
Составим уравнения первого приближения, порождаемое решением (8). Сделаем замену: x = Ф(t) + x ; в уравнении (1) при этом отбросим члены , содержащие квадраты и высшие степени x и x '.
Воспользуемся тем фактом, что Ф (t) - решение уравнения. Получим уравнение первого приближения:
Это линейное дифференциальное уравнение с периодическими коэффициентами. Его решение мы будем искать в виде
Представим правую часть уравнения в виде степенного ряда по m .
Подставим (12) в (10) и сравнивая коэффициенты при соответствующих степенях m , получим:
Для В'о и Во аналогично. Для остальных же как видно из уравнений условия будут нулевые. Итак:
Решение (13) можно найти при помощи квадратур:
Если вспомнить общую теорию линейных диффуров с периодическими коэффициентами, то общее решение (10) имеет вид:
S1, S2 - периодические функции с тем же периодом, что и Ф (t). a 1, a 2 - характеристические показатели.
Если все
Тогда определитель будет:
Вопрос об устойчивости, как сказано выше, решается знаком Re (a ), или что все равно ÷ l ÷ . Если ÷ l ÷ < 1 имеет место устойчивость ÷ l ÷ = 1 этот случай для нашей задачи не представляет интереса. ÷ l ÷ > 1 имеет место неустойчивость.
При рассмотрении (18) имеют место 2 случая q > р2; q < р2; В первом случае l -комплексные; ½ l 2 ½ =q; (20) если q<1; устойчивость q>1 - неустойчивость.
Случай второй - l
- действительные:
Если принять во внимание (15)
Мы видим, что при достаточно малом m и w ¹ n; n ' Z вопрос об устойчивости решается величиной q и следовательно знаком b, если b < 0- имеет место устойчивость, b > 0 - неустойчивость.
В нашем случае b имеет вид:
Тогда l = m l о; w 2 = 1+ aо m , (24) (aо , m - расстройка , реальный физический резонанс наступает при aо ¹ 0).
Тогда исследуемое уравнение имеет вид :
При m
= 0 периодическое решение будет иметь вид :
Следуя Пуанкаре, мы можем предположить периодическое решение в виде:
Начальные условия возьмем как и раньше:
Аналогично тому, как мы это делали в предыдущих параграфах. Подставляем (27) в (25) и, сравнивая коэффициенты при b 1 b 2, m и других интересующих нас величинах, получим уравнение, которым удовлетворяет A, B, C, D, E, F. Начальные условия для этих уравнений определим, если подставим (28) в (27).
Запишем условия периодичности для (27):
Делим на m :
Необходимым условием существования периодического решения является:
Эти уравнения определяют P и Q решения (26), в близости к которому устанавливается периодическое решение. Они могут быть записаны в раскрытой форме :
Для существования искомого периодического решения достаточно неравенство 0 детерминанта: (см. § 1).
D, Е и их производные найдутся из (29) при помощи формул аналогичных (15). Заметим, что (30) мы можем определить b 1, b 2, в виде рядов по степеням m . Таким образом, мы можем (27) как и в § 1 представить в виде ряда.
P,Q-определяются формулами (31) (32).
Аналогично тому, как мы это делали в § 2, составим уравнение первого приближения, порожденное решением (33).
Решение опять будем искать в виде
Из формул (22)
Тогда, зная функцию f, мы можем вычислить D в виде функции P, Q и aо.
Заметим, что равенство (23 а) в нашем случае имеет вид:
Опираясь на результаты исследования, полученных в § 2, нужно рассмотреть при исследовании устойчивости два случая: (при достаточно малых m )
1) p2 - q < 0
2) p2 - q > 0
В первом случае устойчивость характеризуется условием q<1 или, что то же самое b<0.
Во втором случае
Мы рассмотрим простой регенеративный приемник с колебательным контуром в цепи сетки, на который действует внешняя сила Ро sin w 1 t.
Дифференциальное уравнение колебаний данного контура следующее:
Считая, что анодный ток зависит только от сеточного напряжения, а также, что характеристикой является кубическая парабола:
S-крутизна характеристики, К - напряжение насыщения
Далее, вводя обозначения:
Получим дифференциальное уравнение для х:
А: (случай далекий от резонанса).
Для него применяем результаты § 1, полагая
Исходное решение в не посредственной близости, к которому устанавливается искомое решение следующее:
Если w > 1, т.е. w о > w 1, то разность фаз равна 0, если w < 1, то разность фаз равна p . В этом отношении все происходит в первом приближении также, как и при обычном линейном резонансе. Устойчивость определяется знаком b (b < 0).
Т.е. те решения, для которых выполняется это условие, устойчивы.
В: (область резонанса , § 3, 4).
В качестве исходного периодического решения, в непосредственной близости к которому устанавливается искомое, будет решение следующего вида: x = P sin t + Q cos t (P, Q - const).
Запишем уравнение, определяющее эти P и Q, т.е. соотношение (31) для нашего случая.
Или преобразовав их, получим следующее:
Полагая Р = R sin j ; Q = R cos j . Далее найдем для амплитуды R и фазы j для того исходного периодического решения, в близости к которому устанавливается рассматриваемое периодическое решение , соотношения связывающие их :
Первая формула дает "резонансную поверхность" для амплитуды. Вторая - для фазы. По (38) условия устойчивости имеют вид b < 0, D > 0. Считаем b и D через формулы (35-37).
Т.е. решение является устойчивым, если удовлетворяется условие (**). В заключение выпишем формулы для вычисления aо, соответствующего ширине захватывания для рассматриваемого случая.
1)
a0 - является общим корнем уравнений
2)
Сама ширина D w , отсчитанная от одной границы захватывания до другой выражается следующим образом: D w = aо w 2о (MS - c r). Можно дать простые формулы для вычисления ширины захватывания в следующих случаях:
а) l 2о << 1; D w = w о Ро/Vоg.
б) для очень сильных сигналов
Дата добавления: 06.04.2001
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |