Реферат по предмету "Производство"


Технология конструкционных материалов 4

--PAGE_BREAK--
Серые чугуны

Серые чугуны, как и углеродистые стали, также содержат постоянные примеси, но в больших количествах (3—3,5 % С; 1,5—3 % Si, около 0,5 % Мп, до 0,12 % S и 0,3—0,8 % Р).

Графит в сером чугуне выделяется в виде пластинок, хлопьев или шариков; основа чугуна может быть ферритной, феррито-перлитной или перлитной (рис. 11).



1. Чугуны с пластинчатым графитом называют обычными серыми (рис. 11, а). Наличие пластинчатых включений графита, представляющих по существу пустоты с острыми надрезами, обусловливает низкие механические свойства серого чугуна. Предел его прочности при растяжении 100—450 МПа, относительное удлинение δ = 0,2…0,8 %, ударная вязкость не превышает 0,1 МДж/м2.

Механические свойства чугунов обусловливаются их структурой, определяемой не только химическим составом, но и условиями затвердения. Поэтому стандарты регламентируют не химический состав чугунов, а их свойства. Эти свойства и указываются в марках. Например, марка серого чугуна СЧ15 обозначает обычный серый чугун (СЧ) с пределом прочности при растяжении 150 МПа.

2. Ковкие чугуны (рис. 11, б) получают из белых. Для этого отливки из белого чугуна подвергают длительному отжигу, в результате чего цементит распадается с выделением графита в виде хлопьев. Такие включения в меньшей мере разобщают основу, поэтому ковкий чугун прочнее и пластичнее обычного серого, имеет большую ударную вязкость. Предел прочности его составляет 300—630 МПа, относительное удлинение δ = 2…12 %. Это позволяет применять ковкий чугун для изготовления деталей, работающих при умеренных ударных нагрузках. Обозначают ковкие чугуны буквами КЧ, первое число в марке указывает предел прочности при растяжении, второе — относительное удлинение, например КЧ 33—8.

3. Высокопрочные чугуны (рис.11, в) получают при модифицировании серого чугуна магнием или церием. При этом образуется графит шаровидной формы, исключающий острые надрезы в металлической основе. Поэтому механические свойства этого чугуна значительно повышаются: предел прочности при растяжении достигает 1200 МПа, относительное удлинение составляет 2…17%, а ударная вязкость — 0,2— 0,6 МДж/м2. Такой чугун в ряде случаев является полноценным заменителем стали. Обозначают его буквами ВЧ и числами, имеющими то же значение, что и в марке ковкого чугуна, например ВЧ 80—3.

Медь и ее сплавы

Медь — металл красного цвета с плотностью 8,9 г/см3 и температурой плавления 1083 °С. В отожженном состоянии медь обладает прочностью σв ≈ 250 МПа, твердостью НВ ≈ 45, большой пластичностью (δ = 50 %), тепло- и электропроводимостью, хорошей коррозионной стойкостью.

Сплавы на основе меди подразделяют на латуни и бронзы.

1. Латунями называют сплавы меди с цинком. Цинк в количестве до 39 % образует с медью твердый раствор а — так называемую α-латунь. При большем содержании цинка в сплавах образуется вторая фаза — β — твердый раствор. Двухфазные латуни называют α + β латунями. Наличие в структуре более прочной и твердой β-фазы способствует повышению прочности латуни, однако резко снижает ее пластичность. Поэтому α-латуни используют для деталей, обрабатываемых давлением, прокаткой, штамповкой, а α + β-латуни — деталей, получаемых отливкой и обработкой резанием.

Для повышения прочности и коррозионной стойкости, улучшения некоторых технологических свойств в состав латуней вводят Ni, Pb, Sn, Si и другие элементы. Такие латуни называют сложными.

Латуни обозначают буквой Л и числом, указывающим содержание меди в сплаве (остальное — Zn). Например, латунь Л85 состоит из 85 % Си и 15 % Zn. В марке сложных латуней легирующие элементы обозначают начальными буквами их названий (А — алюминий, К — кремний, О — олово и т. д.), а цифрами — их содержание. Например, марка ЛАН 59-1-1 обозначает латунь, содержащую 59 % Си, 1 % Al, 1% Ni, остальное — Zn.

2. Бронзами называют сплавы меди с оловом, алюминием, бериллием и некоторыми другими элементами.

Бронзы, как и латуни, бывают простыми (БрА5, БрБ2) и сложными. В сложных бронзах, кроме основных, есть легирующие элементы (Ni, Fe, Mn и др.). Например, бронза марки БрА11Ж6Н6 содержит соответственно 11 % А1, 6 % Fe, 6 % Ni, остальное —Си.

Бронзы бывают однофазными, состоящими из одной фазы — твердого раствора, и двухфазными, в которых второй фазой обычно является химическое (металлическое) соединение.

Однофазные бронзы хорошо обрабатываются давлением, их поставляют в виде листов, прутков, труб; двухфазные обладают хорошими литейными свойствами.

Алюминий и его сплавы

Алюминий — серебристо-белый металл с плотностью 2,7 г/см3 и температурой плавления 660 °С. В отожженном состоянии он обладает прочностью σв = 80 … 100 МПа, большой пластичностью (δ = 45 %), невысокой твердостью (НВ ≈ 25—30), хорошей тепло- и электропроводностью и коррозионной стойкостью.

Для легирования алюминия применяют Си, Si, Mg, Mn, Zn, реже — Ni, Ti, Cr и некоторые другие элементы. Большинство из них в определенных количествах растворяются в алюминии, а затем образуют хрупкую эвтектику. Поэтому алюминиевые сплавы подразделяются на деформируемые (обрабатываемые давлением) и литейные.

1. Деформируемые алюминиевые сплавы, в свою очередь, подразделяют на неупрочняемые и упрочняемые термообработкой.

К неупрочняемым термообработкой сплавам относятся сплавы АМц, содержащие до 1,5 % Mn, и АМг, содержащие 1…7 % Mg, до 0,8 % Mn, и добавки Ti, V, Be. Эти сплавы обладают высокой пластичностью, хорошо свариваются. Из них изготовляют сварные изделия (трубы, баки и т. п).

Алюминиевые сплавы, упрочняемые термообработкой, получили название дуралюминов. Они содержат 3—5 % Cu и примерно по 1 % Mg, Mn, Fe, Si. Их обозначают буквой Д и цифрой — условным номером сплава (Д1, Д16 и др.). После термообработки эти сплавы обладают прочностью 450—650 МПа, что позволяет применять их для изготовления деталей, работающих при значительных нагрузках.

2. Литейные алюминиевые сплавы содержат повышенное количество Mg, Cu, Si или Zn. Наиболее широкое применение из них получили силумины — сплавы алюминия с 8…14 % кремния. В качестве литейных используют также алюминиево-медные (4—11 % Си), алюминиево-магниевые (8…11 % Mg), алюминиево-цинковые (10…14 % Zn) сплавы. Их обозначают буквами АЛ и условным номером, например АЛ2, АЛ4.

Магний и его сплавы

Магний — серебристо-белый металл с температурой плавления 651 °С и наименьшей среди конструкционных металлов плотностью — 1,74 г/см3.

В связи с небольшой прочностью σв = 100 МПа, пластичностью (δ = 8 %) и малой коррозионной стойкостью технически чистый магний в качестве конструкционного материала не применяется. В технике используют сплавы магния с Al, Mn, Zn, Zr и другими элементами.

1. Деформируемые магниевые сплавы применяют для изготовления поковок и штамповок. К этой группе сплавов, обозначаемых буквами МА и условным номером (MA1, MA8), относятся сплавы магния, содержащие по 9 % А1, 2,5 % Мn, 1,5 % Zn. Они обладают прочностью в пределах 200-350 МПа.

2. Литейные магниевые сплавы содержат до 10 % А1, 6 % Zn, (МЛ4, МЛ6 и др.). Они обладают хорошей жидкотекучестью и применяются для получения литых кронштейнов, корпусов приборов и других деталей, которые должны обладать небольшой массой. Предел прочности этих сплавов — 200—250 МПа.

Титан и его сплавы

Титан — стального цвета металл с температурой плавления 1665 °С и плотностью 4,5 г/см3., обладает прочностью σв = 250 МПа, относительным удлинением δ = 20…30 %, твердостью НВ = 100 … 140, высокой коррозионной стойкостью.

Улучшение механических свойств титана достигается легированием некоторыми элементами: Al, Cr, Mo, Nb, Sn и др. Легирование и термическая обработка позволяют получать сплавы на основе титана с пределом прочности при растяжении до 1300…1600 МПа.

Благодаря малой плотности, высокой прочности и коррозионной стойкости титан и его сплавы находят широкое применение в авиационной технике, судостроении, химической и пищевой промышленности.

ТЕРМИЧЕСКАЯ ОБРАБОТКА


Сущность термической обработки

Свойства металлов и сплавов определяются их внутренним строением — структурой. Одним из эффективных способов, позволяющих изменять в значительной степени структуру металлов и сплавов, является термическая обработка.

Термическая обработка заключается в нагреве металла (изделия) до определенной температуры, выдержке и последующем охлаждении с различной скоростью.

Термической обработке подвергают как черные, так и цветные металлы и их сплавы. Возможность применения термообработки и ее эффективность определяются характером превращений в металле в твердом состоянии.

Виды термической обработки

Различают следующие основные виды термической обработки: отжиг I рода, отжиг II рода, закалку и отпуск.

1. Отжиг
I рода не обусловлен фазовыми превращениями, поэтому может быть применен для любых металлов и сплавов. Скорость нагрева и охлаждения для этого вида отжига не имеет принципиального значения.



Рис. 12. Температуры нагрева стали при различных видах термообработки.

1 — отжиг для уменьшения напряжения, 2 — рекристаллизационныи отжиг, 3 — неполный отжиг, 4 — полный отжиг, 5 — диффузионный отжиг, 6 — нормализация

Различают следующие разновидности отжига I рода

Диффузионный отжиг устраняет химическую неоднородность в слитках и отливках. Для ускорения диффузионных процессов этот отжиг производится при температуре 0,8—0,9 Тпл сплава

Рекристаллизационный отжиг устраняет наклеп — упрочнение и увеличение хрупкости металла, которые возникают при холодной обработке давлением. Эту операцию производят при температуре 0,2…0,6 Тпл металла

Отжиг для уменьшения остаточных напряжений, возникающих в изделиях при обработке давлением или резанием, в сварных конструкциях, отливках и т. д., осуществляется при температуре несколько ниже температуры рекристаллизации данного металла и применяется с целью предотвращения коробления и стабилизации размеров изделия, снижения склонности его к хрупкому разрушению.

2. Отжиг
II рода применяют для сплавов, претерпевающих при нагреве и охлаждении фазовые превращения. Этот вид отжига в основном применяют для стальных изделий.

Отжиг стали подразделяют на полный и неполный; разновидностью отжига стали является нормализация (рис. 12).

3. Закалка, как и отжиг II рода, применяется для сплавов, претерпевающих при нагреве и охлаждении фазовые превращения. Принципиальным отличием между ними является большая скорость охлаждения при закалке, достаточная для предотвращения обратных фазовых превращений в сплаве при охлаждении. Закалке в основном подвергают сплавы железа — стали, чугуны Наряду с ними закаливают и сплавы на основе цветных металлов алюминия, меди, титана, никеля и др.

Углеродистую сталь нагревают для закалки доэвтектоидную до температуры на 30—50 °С выше точки Ас, (линии GS), а заэвтектоидную — на 30—50 0С выше точки Aс3 (линии SK).

Для обеспечения необходимой скорости охлаждения стали применяют различные охлаждающие среды воду, минеральное масло и др

В результате закалки в стали образуется так называемая мартенситная структура, обладающая наибольшей прочностью и твердостью (НВ ≈ 600), но низкой ударной вязкостью.

4. Отпуску подвергают закаленную сталь с целью повышения ее ударной вязкости и пластичности, уменьшения твердости и внутренних напряжений. Для отпуска сталь нагревают до температуры ниже точки Ас1 (линии PSK) и затем охлаждают обычно на воздухе.

Различают три вида отпуска:

Низкий отпуск (150—250 °С) применяют для изделий, которые должны обладать высокой твердостью (НВ ≈ 600), например режущие инструменты, не подвергающиеся ударным нагрузкам (напильники, плашки, метчики и т. д). Этот отпуск предназначен главным образом для уменьшения внутренних напряжений в изделиях.

Среднему отпуску (350—400 °С) подвергают изделия, которые должны обладать высокой упругостью и прочностью при достаточной вязкости, например пружины, рессоры. Твердость при этом снижается до НВ ≈ 450

Высокий отпуск (450—650 °С) обеспечивает получение наиболее вязкой структуры, обладающей достаточно высокой прочностью и твердостью (НВ ≈ 350). Такому отпуску подвергают обычно детали машин валы, шестерни и т. д.

ХИМИКО-ТЕРМИЧЕСКАЯ ОБРАБОТКА

Химико-термическая обработка — это процесс поверхностного насыщения стали химическими элементами (углеродом, азотом, алюминием, кремнием и др.) для повышения износостойкости, твердости, жаростойкости и других свойств.

К химико-термической обработке относят цементацию, азотирование, цианирование и диффузионную металлизацию.

Цементация — процесс поверхностного науглероживания стальных изделий для придания им высокой поверхностной твердости при сохранении вязкой сердцевины.

Цементации подвергают такие детали, как поршневые пальцы, зубчатые колеса, кулачки распределительных валиков и др. Для изготовления цементируемых деталей применяют низкоуглеродистые и легированные стали с содержанием углерода 0,15...0,35%.

Цементацию выполняют после окончательной механической обработки с небольшим припуском на шлифование

Глубина науглероженного слоя тем больше, чем выше температура цементации и чем больше время выдержки изделия в печи. Содержание углерода в цементованном слое уменьшается от поверхности к сердцевине.

Цементованный слой изделия приобретает требуемую высокую твердость и износостойкость только в результате термической обработки в виде закалки и низкого отпуска.

Азотирование — процесс насыщения поверхности стали азотом для повышения твердости, износостойкости и устойчивости против коррозии.

Азотируют детали машин, работающих при высоких температурах (гильзы цилиндров, клапаны), а также измерительный инструмент. Процесс азотирования проводят в специальных герметических печах при температуре 500...600°С. Через печь пропускают аммиак NH3. Образующийся азот в атомарном состоянии поглощается поверхностью стали и проникает в глубь детали, образуя твердые растворы и химические соединения, называемые нитридами.

Для изготовления деталей, подвергаемых азотированию, применяют легированные стали марок 35ХМЮА и 38ХМЮА. Результаты процесса зависят от температуры, состава стали, времени выдержки и степени диссоциации аммиака. Чем выше температура азотирования, тем глубже слой, но меньше его твердость. Продолжительность процесса зависит от требуемой глубины азотированного слоя. Например, для получения азотированного слоя 0,3… 0,6 мм выдержка составляет 30...60 ч.

Перед азотированием изделия обязательно подвергают термической обработке, которая сводится к закалке и последующему отпуску. Это придает сердцевине изделия высокие механические свойства.

Цианирование — процесс одновременного насыщения поверхности стали углеродом и азотом для повышения твердости и износостойкости, а также для увеличения сопротивляемости коррозии. Чем выше температура цианирования, тем сильнее поверхностный слой насыщается углеродом, чем ниже — азотом. Цианирование бывает высокотемпературным при 800...950°С и низкотемпературным при 500...600°С.

При высокотемпературном цианировании получают твердый поверхностный слой глубиной до 2 мм, обладающий высокой износостойкостью. После цианирования изделия непосредственно из ванны или печи закаливают, а затем отпускают. Данную обработку используют для увеличения срока службы шестерен и других деталей.

Низкотемпературное цианирование применяют для инструмента из быстрорежущей стали, прошедшей термообработку. Толщина слоя составляет 0,02...0,07 мм и зависит от режима цианирования.

Диффузионная металлизация — процесс насыщения поверхностного слоя различными металлами (алюминием, хромом, кремнием и др.) для придания окалиностойкости, жаростойкости, коррозионной стойкости, твердости и износостойкости.

Насыщение изделий из стали и чугуна алюминием (алитирование) придает им высокую жаростойкость. На практике процесс применяют для обработки газоотводных труб двигателей, колосников и других изделий, работающих при высоких температурах. Для устранения хрупкости алитированные изделия подвергают диффузионному отжигу.

Насыщение поверхностного слоя хромом (хромирование) приводит к увеличению коррозионной стойкости, окалиностойкости, твердости и износостойкости стальных и чугунных изделий. Данный метод применяют для обработки поршневых колец, режущего инструмента, деталей форсунок и насосов и др.

Насыщение стали кремнием (силицирование) придает ей коррозионную стойкость в некоторых агрессивных средах, несколько повышает ее износостойкость и жаростойкость.

Общая технологическая схема изготовления отливки

Суть литейного производства состоит в том, что фасонные детали (заготовки) получают заливкой жидкого металла в литейную форму, полость которой соответствует их размерам и форме. После кристаллизации металла литую деталь (заготовку), называемую отливкой, удаляют из литейной формы и в случае необходимости отправляют в механический цех для последующей обработки.

Технология изготовления отливки начинается с разработки ее чертежа и рабочих чертежей модельного комплекта (модели и стержневого ящика).

В состав литейного цеха входят отделения: модельное, землеприготовительное, стержневое, формовочное, плавильное, выбивное, обрубное, очистное. В модельном отделении по рабочим чертежам изготавливают модельный комплект; в землеприготовительном — формовочную и стержневую смеси; в формовочном — литейную форму, а в стержневом — стержни; в плавильном получают жидкий металл. Готовую литейную форму заливают жидким металлом и после его затвердевания в выбивном отделении удаляют из формы отливку; обрубывают литниковую систему и очищают отливку от пригара в очистном отделении. Заключительной операцией является контроль качества отливки.

СПОСОБЫ ИЗГОТОВЛЕНИЯ ОТЛИВОК

Классификация способов получения отливок и разновидности литейных форм

1. Классификация способов получения отливок. Современное литейное производство располагает следующими способами изготовления отливок: 1) в песчано-глинистых формах с ручной и машинной формовкой 2) в металлических формах; 3) под давлением; 4) по выплавляемым моделям; 5) в оболочковых формах; 6) центробежным литьем; 7) электрошлаковым литьем; 8) под низким давлением; 9) вакуумным всасыванием 10) выжиманием; 11) жидкой штамповкой.

Область применения этих способов определяется многими факторами: типом производства (единичное, серийное, массовое); массой отливок (мелкие — до 100, средние — до 1000, крупные — более 1000 кг); точностью и чистотой поверхности отливок; литейными свойствами сплавов; экономической целесообразностью использования того или иного способа.

2. Разновидности литейных форм. Для получения отливок используют различные литейные формы, отличающиеся: сроком службы (разовые, многократные); состоянием перед заливкой (сухие, подсушенные, сырые, химически твердеющие, самотвердеющие) и технологией изготовления (вручную, на машинах, по выплавляемым моделям и др.).

Разовые формы изготавливают из песчано-глинистых, песчано-смоляных формовочных смесей, и служат они для получения только одной отливки. Разовую форму изготавливают разъемной, состоящей из нижней и верхней полуформ. К разовым формам относят также неразъемные формы, изготовленные по выплавляемым моделям. После заливки разовую форму разрушают для освобождения затвердевшей отливки.

Многократные разъемные формы изготавливают из огнеупорных материалов. Такие формы выдерживают несколько десятков и сотен заливок. После заливки многократную форму раскрывают, не разрушая ее, извлекают готовую отливку и снова собирают для очередной заливки.

Многократные формы (кокили) изготавливают металлическими: из чугуна, стали и иногда из медных и алюминиевых сплавов. От температуры плавления сплава, из которого получают отливку, зависит срок службы кокиля. Из-за высокой стоимости кокили используют только в серийном и массовом производстве отливок.

СПЕЦИАЛЬНЫЕ МЕТОДЫ ПОЛУЧЕНИЯ ОТЛИВОК

Изготовление отливок в разовых песчано-глинистых формах имеет ряд существенных недостатков: невысокая точность и недостаточная чистота поверхности отливок; необходимость оставлять значительные припуски на механическую обработку; образование крупнозернистой литой структуры и др. Повышение точности и чистоты поверхности отливок достигают, используя специальные методы литья, к которым относят: кокильное, под давлением, под низким давлением, по выплавляемым (выжигаемым) моделям, в оболочковые формы, центробежное, электрошлаковое и некоторые другие.

Изготовление отливок в металлических формах

Сущность метода и область применения. Сущность заключается в том, что вместо разовой песчано-глинистой используют металлическую форму, называемую кокилем.

Обслуживание кокилей не требует рабочих высокой квалификации; значительно повышается производительность и уменьшаются необходимые производственные площади. Технологический процесс кокильного литья можно легко механизировать.

Наряду с преимуществами у кокильного литья есть и недостатки: высокая стоимость кокилей позволяет использовать их только в серийном и массовом производствах; опасность образования трещин в отливках из-за неподатливости металлического кокиля; чугунные отливки в кокиле получают отбеленными и требуют длительного отжига, что удорожает их производство.

Изготавливают кокили из серого чугуна, стали, а также из цветных сплавов литьем с последующей механической обработкой.

Изготовление отливок литьем под давлением

Сущность метода и область применения. Сущность состоит в том, что жидким металлом принудительно заполняют металлическую пресс-форму под давлением, которое поддерживают до полной кристаллизации отливки. Давление обеспечивает быстрое и хорошее заполнение формы, высокую точность и малую шероховатость поверхности отливки. Принудительное питание отливки жидким металлом исключает возможность образования усадочных раковин и пористости. Ускоренная кристаллизация металла в металлической пресс-форме под давлением обусловливает образование мелкозернистой структуры. Благодаря внешнему давлению растворенные в металле газы остаются в твердом растворе, что снижает газовую пористость металла. Отливки, полученные этим методом, как правило, не имеют припусков на механическую обработку и после удаления из формы являются готовыми деталями. Литьем под давлением можно получать отливки с толщиной стенки до 0,5 мм, сложной конфигурации и с отверстиями диаметром до 1 мм.

Высокая стоимость пресс-форм, имеющих сложную конфигурацию и требующих высокой точности изготовления, обусловливает целесообразность применения литья под давлением только в крупносерийном и массовом производствах тонкостенных отливок достаточно сложной конфигурации из сплавов цветных металлов массой до 50 кг.
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат X-man среди лягушек
Реферат Сущность и разновидности привязанности
Реферат Emily Dickinsons Life Experiences And Their Impact
Реферат Взаимосвязь и взаимозависимость плановой экономики и тоталитарного общества
Реферат Образ эмигранта в прозе Г. Газданова
Реферат Dream Interpatation Essay Research Paper DREAM INTERPRETATIONThere
Реферат Сущность терроризма в народническом движении 60-х 70-х годов XIX века
Реферат Econpric Essay Research Paper Economics Essay
Реферат Техника безопасности во время школьного похода
Реферат Причины крестьянской войны Пугачева
Реферат Атырау облыстық білім беру департаменті Атырау облыстық кадрлар біліктілігін арттыратын және қайта даярлайтын институт
Реферат Эволюция философских взглядов Л. Н. Толстого
Реферат Особенности прокурорского надзора за исполнением законов при рассмотрении уголовных дел
Реферат Построение графика функции различными методами самостоятельная работа учащихся
Реферат Macbeth Character Analysis Of Lady Macbeth Essay