--PAGE_BREAK--
Рис. 4-1 Общий вид ГРС в блочно-комплектном исполнении
Благодаря принятым в проекте мультициклонным пылеуловителям сокращаются металловложения в блок очистки. Степень очистки газа высокая.
Регуляторы прямого действия обеспечивают автоматическое регулирование давления при колебаниях расхода газа в пределах 1:100 и более.
В зависимости от конкретных условий ГРС можно компоновать из различных узлов, собранных в блоки отключения, очистки, редуцирования первого потребителя и редуцирования второго потребителя.
ГРС в блочно-комплектном исполнении выпускают шести типоразмеров, три из них — для одного потребителя и три — для двух потребителей. Такие ГРС отличаются простотой схемы, надежностью в эксплуатации, низкой стоимостью строительства и малой металлоемкостью. Как указывалось, максимальная производительность ГРС этих типов при давлении газа на выходе 20 кгс/см2 составляет 100 — 150 тыс. м3/ч, при повышении давления производительность может быть доведена до 200 —тыс. м3/ч. Транспортабельные блоки имеют ширину до 3350 мм, высоту до 2800 мм.
Схема работы ГРС в блочно-комплектном исполнении заключается в следующем (рис. 4-2). Через узел подключения газ поступает в установку очистки, затем — на редуцирование и после этого — в расходомерные нитки. Пройдя через отключающую арматуру, газ по мере необходимости одорируется и поступает в газопровод потребителя. В случае надобности к входной нитке после очистки газа подключаются блоки подогрева.
Системы КИП и автоматики ГРС обеспечивают сжижение давления газа, автоматическое поддержание его на выходе в заданных пределах при широком колебании газопотребления, автоматическую защиту и бесперебойное
газоснабжение потребителей.
Рис. 4 — 2 Технологическая схема автоматизированной ГРС в блочно-комплектном исполнении для двух по
требителей:
1 — Блок отключающих устройств в комплекте с расходомерной ниткой и свечой; 2 — блок очистки в комплекте с входной ниткой; 3-блок редуцирования первого потребителя: 4-блок редуцирования второго потребителя; 5 — строительный блок, 6 — одоризационная установка
Очистка газа производится в батарейных циклонных пылеуловителях конструкции института «Гипрогаз», редуцирование— регуляторами прямого действия РД. Здание ГРС монтируют из комплектных блоков, в составкоторых входят строительный блок КИП и А, а также комплект строительных элементов, позволяющих собирать блоки редуцирования и отключающих устройств, фундаменты — щебеночная подготовка под опорные плиты, стены и покрытия из панелей ВНИИСТ со стальным каркасом.
Отопление помещений только строительного блока КИП и А—водяное от установки АГВ-120, а в варианте с обогревом редуцирующих клапанов — водяное от газифицированного котла ВНИИСТО-М.
Вентиляция помещений ГРС — приточно-вытяжная с естественным побуждением. Электроснабжение — от сетей напряжением 380/220 с кабельным вводом.
На ГРС, как правило, устанавливают промежуточный пункт диспетчерской избирательной связи с тональным вызовом. Генеральный план ГРС в блочно-комплектном исполнении приводится на рис. 4-3
Для редуцирования газа при газоснабжении набольших промышленных, бытовых и сельскохозяйственных объектов применяют автоматические газораспределительные станции АГРС в шкафном исполнении, изготавливаемые полностью в заводских условиях. АГРС обеспечивают подачу газа от магистрального газопровода потребителю под заданным давлением и с нормальной одоризацией. Они оборудованы контролирующими датчиками с электрическим выводом, позволяющими осуществлять дистанционный контроль за их работой с диспетчерского пункта. Масса шкафной АГРС 1/3 немногим более 2 т.
Промышленностью разработано несколько типоразмеров блочных АГРС, выпускаемых с комплектными заготовками узлов оборудования, опорными конструкциями, системами отопления, вентиляции, КИП и автоматики. Так, например, АГРС-3 и АГРС-10 (институт ВНИПИГаздобыча») отличаются транспортабельностьюпростотой установки на железобетонных
Рис. 4-3. Генеральный план блочной ГРС:
1 — емкость для конденсата; 2 — бензораздаточная колонка; 3 — емкость для
одоранта; 4 — молниеприемник; 5 — строительный блок ГРС; 6 — опоры под
трубопроводы, 7 — блок очистки; 5 — строительный блок отключающих устройств; 9 — ограждение; 10 — свеча
плитах, надежностью в работе.
Для снабжения газом мелких попутных бытовых и технологических потребителей, в частности термоэлектронагревателей радиорелейных пунктов и станций катодной защиты, применяют шкафные автоматические редуцирующие пункты РП, разработанные институтом «ВНИПИГаздобыча».
При редуцировании влажного газа на ГРС могут происходить гидратообразование и обмерзание регуляторов и регулирующих клапанов. Чтобы предупредить эти нежелательные явления, в настоящее время широко применяют общий подогрев газа перед узлами редуцирования на ГРС с помощью кожухотрубных теплообменников.
По форме обслуживания ГРС подразделяются:
1) с вахтовым обслуживанием — ГРС производительностью более 250 тыс. м3/ч и ГРС, снабжающие предприятия, на которых газ является технологическим сырьем;
2) с надомным и кустовым обслуживанием операторами — ГРС производительностью до 250 тыс. м3/ч.
Вахтовое обслуживание, применяемое на практике весьма редко, предусматривает постоянное нахождение на ГРС дежурного персонала численностью 5—9 человек. В обязанности обслуживающего персонала, помимо обеспечения заданного режима подачи газа потребителям, входит производство текущего ремонта технологического оборудования, непосредственное участие в производстве средних и капитальных ремонтов оборудования и коммуникаций ГРС, а также обслуживание контрольно-измерительных и регулирующих приборов и установок по очитке и одоризации газа.
Безвахтовое, или, как принято называть, надомное, обслуживаниепредусматривается на автоматизированных ГРС,обеспечивающих без постоянного присутствия персоналабесперебойное снабжение потребителей газом при заданных параметрах давления и с необходимой степенью одоризации. Такие ГРС обслуживают два оператора с дежурством на дому. В квартиры операторов в случае неисправности передаются световой и звуковой нерасшифрованныесигналы, при получении которых дежурныйоператор должен явиться на ГРС и устранить неполадки.В последние годы получило распространение кустовоеобслуживание, при котором два оператора обслуживают 5—6 близлежащих ГРС.
5. Блок очистки газа
Блок очистки газа на ГРС позволяет предотвратить попадание механических примесей и конденсата в оборудование, в технологические трубопроводы, в приборы контроля и автоматики станции и потребителей газа. Импульсный и командный газ автоматического регулирования и управления должен быть осушен и дополнительно очищен в соответствии с ОСТ 51.40—83.
Для очистки газа на ГРС применяют пылевлагоулавливающие устройства различной конструкции, обеспечивающие подготовку газа в соответствии с действующими нормативными документами по эксплуатации. Главное требование к блоку очистки газа — автоматическое удаление конденсата в сборные емкости, откуда он по мере накопления вывозится с территории ГРС
Этот блок должен обеспечить такуюстепень очистки газа, когда концентрация примеси твердых частиц размером 10 мкм не должна превышать 0,3 мг/кг, а содержание влаги должно быть не больше величин, соответствующих состоянию насыщения газа.
Наибольшая трудность приочистке газа — образование гидратов углеводородных газов: белых кристаллов, напоминающих снегообразную кристаллическую массу. Твердые гидраты образуют метан (их формула 8СН4•46Н2О или СН2•5,75Н2О) и этан (8С2Н6•46Н2О) или С2Н6•5,75Н2О); пропан образует жидкие гидраты (8C3H8•136H2OилиС3Н817Н2О). При наличии в газе сероводорода формируются как твердые, так и жидкие гидраты.
Гидраты — нестабильные соединения, которые при понижении давления и повышении температуры легко разлагаются на газ и воду. Они выпадают при редуцировании газа, обволакивая клапаны регуляторов давления газа и нарушая их работу. Кристаллогидраты откладываются и на стенках измерительных трубопроводов, особенно в местах сужающих устройств, приводя тем самым к погрешности измерения расхода газа. Кроме того, они забивают импульсные трубки, выводя из строя контрольно-измерительные приборы (КИП).
На ГРС предусмотрена одноступенчатая очистка газа. От механических примесей и конденсата природный газ очищают с помощью газосепараторов по ОСТ 26—02645—72 (с полыми скрубберами или с насадками) типа ГС-11-64, ГСР-64, ГЖ-64. Насадки в скрубберах применяют сетчатые, жалюзийные и из колец Рашига. На монтажной площадке ГРС устанавливают не менее двух газосепараторов, работающих параллельно. Скорость движения газа в них не должна быть более 0,5—0.6 м/с. Газосепараторы подбирают с таким расчетом, чтобы при остановке одного из них, скорость газа в работающем не превышала 1 м/с. Газосепараторы должны быть теплоизолированы и установлены на отдельных фундаментах. Расстояние между ними — не менее их диаметра с теплоизоляцией.
Очистка газа от механических примесей и конденсата в газосепараторе происходит за счет:
1) изменениянаправления движения газа на 180°;
2) снижения скорости движения газа до 0,5—0,6 м/с. В этом случае
VB
(где VB— скорость витания механических частиц в газосепараторе; V— скорость оседания механических частиц в газосепараторе);
3) движения газа в насадке, где отбиваются (выделяются) механические примеси и капли конденсата, которые падают на коническое дно газосепаратора. Как показывает практика, наименьший каплеунос конденсата происходит в газосепараторах с сетчатыми насадками.
Газовый конденсат и механические примеси скапливаются на дне газосепаратора. По мере накопления происходит автоматический сброс конденсата в подземную емкость при помощи дифференциального уровнемера жидкостного пневматического (ДУЖП), установленного на газосепараторе, и регулирующего клапана непрямого действия типа Кр-50-64-ВО, где Кр — тип клапана, 50 — условный диаметр клапана, мм; 64 — условное давление, кгс/см; ВО — газ (воздух) открывает. В отапливаемом помещении устанавливают два регулирующих клапана типа Кр, один из которых является рабочим, а другой — резервным.
Основные узлы клапана — мембранно-пружинный привод и двухседельное дроссельное устройство. Мембранно-пружинный привод клапана питает газ давлением 1 — 1.2 кгс/см, расход газа 0,5 — 0,6 м /ч. Когда уровень газового конденсата в газосепараторе поднимается до верхнего допустимого уровня, срабатывает ДУЖП и через реле мембранно-пружинный привод под действием давления газа перемещается вниз, открывая клапан для прохода конденсата и подземную емкость. Уровень газового конденсата в газосепараторе опускается до нижнего допустимого. При этом через реле подается сигнал на прекращение подачи газа на клапан Кр-50-64-ВО и мембранно-пружинный привод под действием пружины перемещается вверх, закрывая клапан для пропуска конденсата из газосе-паратора в подземную емкость.
По мере накопления конденсата в подземной емкости он перекачивается насосом топливозаправочной колонки в автомобильную цистерну и вывозится для дальнейшего использования.
Кроме газосепараторов ОСТ 26—02645—72 для очистки газа применяют пылеуловители мультициклонные (рис. 5-1 и 5-2) Эффективность очистки в них зависит от дисперсного состава механических примесей в газе, скорости газа в циклонах, прилипаемости и влажности механических частиц и ряда других величин.
Мультициклонный пылеуловитель представляет собой сосуд, внутренняя полость которого разделена на три части: верхнюю, свободную от каких-либо устройств; среднюю, где находятся циклонные элементы; и нижнюю, где собираются конденсат и механические примеси.
Рис. 5-
I
. Пылеуловитель мультициклонный.
1-муфта; 2- люк для чистки: 3. 4 — дренажи: 5 — штуцер автоматического сброса конденсата; 6 — штуцер датчика уровня жидкости: 7 — циклонный элемент: 8 — переливная
труба Ø18x2.
Очищаемый газ поступает в среднюю частьмультициклона. Через вихревые устройства циклонов газ поступает в нижнюю часть мультициклона, где происходит оседание всех примесей.
Газ, освобожденный от частиц пыли и жидкости, проходит по внутренним трубкам циклонов, попадает в верхнюю часть и далее направляется в газопроводы.
Мультициклоны можно оборудовать установкой автоматического сброса конденсата в подземную сборную емкость.
Мультициклоны эффективно очищают газы, содержащие сухие механические примеси. Очистка в мультициклонах природных газов от механических примесей и конденсата малоэффективна, так как они быстро забивают конусную часть циклонных элементов, при этом образуя наросты и даже пробки. Циклонные элементы выходят из строя, нарушая аэродинамику мультициклона. Поэтому мультициклоны приходится часто останавливать для чистки и промывки циклонных элементов. Эта работа трудоемкая и требует больших эксплуатационных затрат.
На ГРС малой пропускной способности для очистки газа от механических примесей применяют висциновые фильтры (рис. 5-3).Такой фильтр состоит из корпуса, внутри которого смонтирована кассета (насадка), заполненная кольцами Рашига. Эти кольца бывают металлические и керамические. В основном применяют металлические размером 15x15x0,5 мм. Кольца Рашига смазывают висциновым маслом по ГОСТ 7611—55 (60% цилиндрового масла плюс 40 солярового).
Принцип работы висцинового фильтра следующий: частички механических примесей, попадая с потоком газа в фильтр, проходят через смоченные висциновым маслом кольца Рашига. меняя свое направление, и прилипают к поверхности колец.
Рис. 5-3. Висциновый фильтр
D
у
700 (
D
уЗОО).
1 — патрубок входной; 2 — корпус фильтра; 3 — перфорированная сетка: 4 — люк эагрузоч-
ный. 5— засыпка (мелкиеметаллические или керамические кольца 15x15 мм): 6 — штуцер:
7 — патрубок выходной: 8— люк разгрузочный: 9 — отбойный лист.
Кактолько перепад давления газа на входе в фильтр и на выходе из него возрастает, что свидетельствует о загрязненности насадки, кольца фильтра очищают паром, промывают содовым раствором, после чего их смазывают чистым висциновым маслом.
Процесс очистки и восстановления работоспособности висцинового фильтра весьма трудоемок, так как осуществляется вручную. Частые очистка и восстановление работоспособности фильтра oбyc-ловлены тем. что масляная активная пленка с колец Рашига быстро растворяется и смывается конденсатом, находящимся в природном газом.
Висциновые фильтры предназначены для очистки газа только от механических примесей, так как их конструкция не позволяет оборудовать фильтры автоматическим сбросом конденсата в подземную емкость.
На некоторых ГРС для очистки газа используют пылеуловители масляные (рис. 5-4) с внутренними диаметрами 1000, 1200, 1400, 1600 мм. Число устанавливаемых на ГРС пылеуловителей зависит от расхода газа, но их должно быть не менее двух.
Пылеуловители масляные состоят из трех секций: нижней, промывочной, в которой все время поддерживается постоянный уровень солярового масла. Средней, осадительной, где газ освобождается от взвешенных частиц солярового масла. Верхней, отбойной, или скрубберной, где и происходит окончательная очистка газа. В нижней секции размещена насадка из пучка трубок, верхние концы которых закреплены в решетке. Нижние концы трубок открыты и имеют 16 продольных прорезей-щелей. Расстояние между концами трубок и поверхностью солярового масла 25—30 мм. Средняя секция пылеуловителя свободна от элементов конструкции, В верхней секции расположена скрубберная насадка, состоящая из жалюзийных листов с волнообразным профилем или металлической сетки, которые образуют лабиринт для прохода газа.
Газчерез газоподводящий патрубок поступает в нижнюю секцию, ударяется об отбойный козырек и изменяет направление движения. Наиболее крупные взвешенные механические частицы падают в нижнюю часть пылеуловителя, заполненную маслом. Затем газ проходит над поверхностью масла, далее через пучок труб и через открытые нижние концы их, а также через прорези.
Далее по контактным трубкам газ поступает в среднюю, осадительную, секцию, где его скорость резко снижается. В результате чего механические частицы и капельки масла оседают на разделительную сетку в виде шлама и по дренажным трубкам стекают в нижнюю секцию. Средняя скорость газа в свободном сечении средней секции 0,5—0,6, в контактных трубках 2,5—3,0 м/с.
Из средней секции газ поступает в верхнюю, отбойную, где за счет изменения направления своего движения на 90° и наличия скрубберной насадки происходит дальнейшая очистка газа. Капельки солярового масла и мелкие механические частицы по специальным дренажным трубкам стекают в нижнюю секцию.
Очищенный газ из пылеуловителя через выходной патрубок направляется или в блок подогрева, или в блок редуцирования. Загрязненное масло из нижней секции продувкой периодически удаляется по трубке для слива грязного масла в сборную емкость. Свежая порция масла заливается в пылеуловитель по специальной трубе для заполнения.
Дли очистки газа используют соляровое масло марки Л, имеющее следующие показатели: температура, ° С: застывания —20°. вспышки — не ниже 125; кинематическая вязкость по Энглеру 1,39— 1.76 о ВУ. Для очистки и осушки командного газа для редуктора ВР-1 до остаточной относительной влажности 2—3% при температуре ок-ружающего воздуха 16—20° С применяют фильтр-осушитель (рис. 5-5). Онсостоит изкорпуса (трубы диаметром 500 или 700 мм), 3/4 объема которого заполнены влагопоглотителем (цеолитом или силикагелем), размещенным в верхней части, между двумя сетками и двумя решетками. Нижняя часть незаполненного объема фильтра предназначена для сбора конденсата, который периодически сливается через дренажный штуцер.
Принцип действия фильтра-осушителя основан на способности влагопоглотителя поглощать большое количество влаги при малом объеме.
Для автоматического сброса из газосепаратора в подземную емкость уловленного конденсата применяют регулирующие клапаны непрямого действия типов К (рис. 5-6) 25с48нж. 25с50нж вида ВО (воздух открывает). При подаче командного давления (газа) на мембрану исполнительного механизма клапан открывается.
Регулирующие клапаны состоят из регулирующего органа (клапана) и мембранно-исполнительного механизма (МИМ). Перемещение золотника относительно седла клапана осуществляется под действием командного газа на мембрану исполнительного механизма, который соединен с золотником посредством штока. Если давление
--PAGE_BREAK--