Реферат по предмету "Наука и техника"


Современная судовая газотурбинная установка

Современная  судовая  газотурбинная  установка  

СОДЕРЖАНИЕ:

ВВЕДЕНИЕ---------------------------------------------------------------------------2

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ГТУ И ЕЕ ЭЛЕМЕНТОВ------2

1.1 Состав ГТУ

    1.1.1.ГТУ в составе судовой энергетической установки.-----------------3

    1.1.2 Газотурбинный двигатель------------------------------------------------4

    1.1.3 Передача---------------------------------------------------------------------7

    1.1.4 Общая компоновка ГТУ--------------------------------------------------8

          1.1.4.1 Судовые ГТУ промышленного типа---------------------------12

          1.1.4.2 Судовые ГТУ легкого типа--------------------------------------13

1.2 Редукторы -----------------------------------------------------------------------16

1.3 Средства реверса----------------------------------------------------------------17

   1.3.1 Газовый реверс -------------------------------------------------------------17

   1.3.2 Реверсивные передачи-----------------------------------------------------19

   1.3.3 Винт регулируемого шага-------------------------------------------------21

1.4. Средства и посты управления------------------------------------------------21

1.5. Преимущества комбинированной установки-----------------------------23

Заключение----------------------------------------------------------------------------24

ВВЕДЕНИЕ.

Современная  судовая  газотурбинная  установка   (ГТУ) успешно конкурирует с аналогичными по
назначению паротурбин­ными и дизельными. От последних она выгодно отличается ком­пактностью и малой удельной массой, маневренностью и высокой
ремонтопригодностью, лучшей приспособленностью к автоматиза­ции и дистанционному управлению.

Газотурбинная установка может использоваться как всережимная и в сочетании с дизельными и паротурбинными.

При эксплуатации ГТУ чувствительна к качеству подготовки топлива и масла, к изменению внешних
условий (температура, чи­стота и давление атмосферного воздуха), ее надежность, как ни у какой другой установки зависит от точности выполнения всех
эксплуатационных инструкций, а также от своевременности и правильности решений, принимаемых обслуживающим персо­налом в непредусмотренных инструкциями
ситуациях.

Опыт эксплуатации судовых ГТУ показал, что от инженера-ме­ханика требуется не только знание и пунктуальное выполнение
требований эксплуатационной документации, но и понимание фи­зических, химических и других процессов, протекающих в рабо­тающих двигателях. Кроме
того, при длительных плаваниях ин­женеру-механику часто необходим справочный материал, связан­ный с эксплуатацией ГТУ и отсутствующий в имеющейся на судне
документации.

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ГТУ И ЕЕ ЭЛЕМЕНТОВ.

Судовая энергетическая установка (СЭУ) служит для сообще­ния хода судну, а также для обеспечения всех судовых потребите­лей
необходимыми видами энергии (тепловой, электрической и пр.).

Судовые энергетические установки классифицируются как по роду используемого топлива (с органическим и
ядерным топли­вом), так и по типу двигателя—двигатели внутреннего сгорания (ДВС), паротурбинные установки (ПТУ) и газотурбинные (ГТУ), а также
комбинированные, состоящие из двигателей различных типов.

Судовые ГТУ от других типов выгодно отличаются целым ря­дом показателей: малыми габаритами и удельной массой, более высокой
маневренностью, высокой ремонтопригодностью, лучшей приспособленностью к автоматизации и дистанционному управле­нию. Одновременно ГТУ несколько уступают
ДВС по экономич­ности и требуют более тщательного ухода, как во время работы, так и при бездействии.

1.1. Состав ГТУ

1.1.1. ГТУ в составе судовой энергетической установки.

В соответствии с назначением СЭУ весь комплекс ее механиз­мов и систем условно
делят на четыре группы:

— главную установку, предназначенную для обеспечения дви­жения судна:

— вспомогательную,   обеспечивающую   потребности судна в различных видах энергии
на стоянке, при подготовке главной установки к действию и бытовые потребности судна;

— электроэнергетическую, обеспечивающую судно различными видами электроэнергии;

— механизмы и системы общесудового назначения. Газотурбинная установка может быть
главной или се состав­ной частью, может быть приводом электрических генераторов, различных механизмов общесудового назначения. В последних двух
случаях ГТУ называют вспомога­тельной.

Судовая энергетическая установка состоит из одного или нескольких комплексов двигатель-движитель,
каждый из которых включает движитель, валопровод и одну главную установку. Главная установка в свою очередь состоит из одного или нескольких однотипных (в КУ,
возможно, и разнотипных) двигателей и общей для них передачи, подводящей энергию к движителю через линию вала. Если двигатели главной установки
газотурбинные, и она обеспечивает ход и маневрирование судна, ее называют газотурбинной всережимной. В комбинированной установке газотурбинная, как
правило, является ускорительной (форсажной), обеспечивающей судну приращение скорости переднего хода.

1.1.2. Газотурбинный двигатель.

Газотурбинный двигатель—тепловая машина, предназначенная, для преобразования энергии сгорания топлива в механическую
работу на валу двигателя. Основными элементами ГТД являются компрессор, камера сгорания и газовая турбина.

       Т                                                                                             3



 

                                                          Р2

                       2





                                                            

                                          Р1                                                           4      

       0                     1                                                                                             
S

Рис.1.1. Теоретический простой цикл ГТД.

Наибольшее распространение получили ГТД с непрерывным сгоранием топлива при постоянном
давлении. На рис. 1.1 изображен теоретический простой цикл такого ГТД на диаграмме Т-S. Здесь 1—2—
изоэнтропийный (адиабатический) процесс повышения давления воздуха в компрессоре; 2—3—изобарный подвод теплоты в КС; 3—4 —
изоэнтропийный (адиабатический) процесс расширения газа в турбине; 4—1—изобарный отвод теплоты в атмосферу. Большая часть работы расширения газа в турбине
расходуется на сжатие воздуха в компрессоре, остальная часть производимой турбиной ГТД работы обычно после преобразова­ния передается к потребителю
мощности и называется полезной работой.

В так называемых сложных циклах ГТД, где можно получить более высокий КПД, или большую полезную работу,
предусматри­вается либо промежуточное охлаждение воздуха   (например, между компрессорами или их
ступенями), либо вторичный подо­грев газов (в дополнительных КС между турбинами), либо реге­нерация, т.е. использование теплоты выходящих из турбин
газов для предварительного подогрева сжатого воздуха, либо любое возможное сочетание названных средств. Двигатели, выполненные по сложному циклу, имеют
большие массы и габариты по сравнению с ГТД простого цикла, менее маневренны, менее надежны, весьма сложны.

Существенный недостаток ГТД простого цикла-относительно низкая экономичность-может быть устранен
согласованным уве­личением степени повышения давления воздуха Лк в компрессоре ГТД и температуры газа Тоз на входе в первую турбину ГТД (на выходе газа из
КС), что наглядно подтверждается зависимостью КПД  ГТУ от Лк при различных отношениях Тоз/То: здесь Тоз-абсолютная
температура газа на выходе из КС в полных па­раметрах; То-абсолютная температура воздуха на входе в ГТУ.

Максимальное значение КПД при реально достижимой в настоя­щее время температуре Тоз=1000°С имеет место при
Лк=16-21. Данную Лк можно осуществить в многоступенчатом осевом ком­прессоре; при этом в составе ГТД могут быть два последовательно установленных
компрессора, каждый из которых приводится от отдельной турбины, или один компрессор, устойчивость режимов работы которого повышается вследствие
применения поворотных лопаток спрямляющих аппаратов на ряде первых ступеней. При этом возможно применение дополнительных устройств, обеспечивающих
устойчивость работы компрессоров, особенно на переходных режимах: лент перепуска воздуха, антипомпажных клапанов и т.д.

                                                          
Топливо                                                            Газ

                 
                                                                                                                                                    







ТНД











ТВ













КК
ВД



















                                                                                                               Т             

                                                              





ВВВоздух

    

Рис.1.2. Принципиальная схема двухкомпрессорного ГТД со свободной турбиной винта.

Принципиальная схема двухкомпрессорного ГТД приведена на рис.1.2. На ней показаны компрессора и турбины, их количество, взаимное
расположение и силовая  связь.



   Собственно газовыми тур­бинами являются ТВД, ТНД. ТВ; совокупность КНД, ТНД, и со­единяющего их
вала образует турбокомпрессорный блок низкого давления (ТКНД); совокупность КВД, ТВД и соединяющих их конструкций—турбокомпрессорный  блок 
высокого  давления (ТКВД): часть ГТД, включающую ТКНД, ТКВД и КС, часто на­зывают генератором газа (ГГ). Таким
образом, ГТД можно рассматривать как совокупность генератора газа и пропульсивнои турбины.

1.1.3. Передача



Оптимальные условия работы гребного винта и пропульспвной турбины ГТД обеспечиваются обычно
при различных частотах вращения. Для достижения приемлемых экономичности, масс и га­баритов частота вращения ротора пропульсивной турбины должна быть
значительно выше, чем гребного винта. Снижение частоты вращения осуществляется в передаче при обязательном требова­нии минимальных потерь мощности. Передача
может выполнять и другие функции, в частности «собирать» мощности нескольких двигателей на один движитель, «раздавать» мощность теплового двигателя на
несколько движителей, разобщать двигатели от дви­жителей, осуществлять реверс и т. д.

Различают передачи механические, гидравлические, электри­ческие. Последняя может работать
на переменном и постоянном токе. В первом случае потери энергии в передаче составляют 6— 14%, во втором—11—19%. Для электропередач характерны большие
массы и габариты: так, приходящаяся на 1 кВт масса электропередачи составляет 7—22 кг. Несомненны преимущества электропередач:

— возможность использования нереверсивного главного дви­гателя;

— удобство управления установкой;

— уменьшение длины гребных валов;

— отсутствие жесткой связи между главным двигателем и вин­том и т. д.

Чисто гидравлическая передача имеет относительно малый КПД: 95—96 и 85—88 % —
соответственно гидромуфты и гидро­трансформатора переднего хода, 70—75 % —гидротрансформатора
заднего хода. По этой причине их предпочитают применять в со­четании с механической передачей. Механическая (обычно зубча­тая) передача имеет высокий
КПД (до 98—99 % ) и находит пре­имущественное применение на судах .

1.1.4. Общая компоновка ГТУ.

На судах применяют ГТУ двух основных типов: с ГТД про­мышленного (тяжелого) типа;
с ГТД авиационного (легкого) типа. Компоновочные схемы этих ГТУ могут существенно отли­чаться. Для ГТУ второго типа характерно выполнение ГТД в
рамном или безрамном варианте, с трубчатым основанием, в звукоизолирующем кожухе. Максимально возможная часть си­стем, обеспечивающих работу ГТД, смонтирована на нем или в
его раме; основные вспомогательные механизмы (например, ос­новные топливный и масляный насосы) навешены на ГТД и при­водятся от блока его вращения, в наименьшей
степени изменяю­щего частоту вращения при переходе ГТД с режима на режим.

На редукторе ГТУ также смонтированы обеспечивающие его работу системы и механизмы
(например, навесные маслонасосы). Связь ГТД с редуктором осуществляется посредством рессор.

Системы ГТУ включают комплексы разнообразных техниче­ских средств, при помощи которых
могут быть осуществлены все эксплуатационные режимы работы установки, а также ее техни­ческое обслуживание. Условно их можно разделить на две группы. Первая
группа—это комплексы технических средств, которые по­зволяют управлять установкой, т. е. задавать и поддерживать не­обходимые режимы се работы и
изменять эти режимы при необхо­димости. К ним относятся системы:

- управления, воздействующая на подачу топлива в КС, на системы пуска и реверса и другие системы,
обеспечивающие под­держание и изменение режима работы;

- пуска, с помощью которой ГТУ вводится в действие;

- реверса, обеспечивающая изменение направления упора, со­здаваемого гребным винтом или другим движителем.

Ко второй группе относятся следующие системы, обеспечиваю­щие оптимальные условия
для работы ГТУ:

- топливная, состоящая из технических средств, размещенных на ГТД, а также вне двигателя;

-масляная с техническими средствами на ГТД, передаче (ре­дукторе) и вне их;

-охлаждения забортной водой, размещенная обычно вне ГТУ и предназначенная для охлаждения масла ГТУ в
маслоохлади­телях;

- сжатого воздуха, технические средства которой размещены как на ГТУ, так и вне установки;

- промывки проточной части;

- антиобледенительная (система обогрева входного устрой­ства ГТД) и ряд других.

Кроме того, работа ГТД на судне обеспечивается воздухоприемным и газовыпускным устройствами, системой
теплоизоляции ГТД. Основные характеристики судов с ГТУ приведены в табл. 1.1, а показатели ГТУ - в табл. 1.2 (по отечественным и иностранным литературным
источникам).

Таблица 1. 1. Основные характеристики судов с ГТУ.




Характеристика



“Парижская       коммуна"



“Айрон монарх"



“Лусайн”



“Шеврон

орегон"





Тип судна



Сухогруз



Ролкер



Метановоз



Танкер





Год введения в эксплуа­тацию



1968



1973—1974



1974



1975—1977





Изготовитель

Дедвейт, т



СССР

16 185



Австралия

 15450



Норвегия

20900



США

35560





Водоизмещение, т



22225











45396





Эксплуатационная ско­рость, уз



18,2



20



19,7



15





Число гребных валов



1



1



1



1









“Сивен принс"



“Адмирал Каллэгэн”



“Евролай- нер”



“Финджет”



“Капитан Смирнов"





Паром



Ролкер



Контейне-

ровоз



Паром



Ролкер





1975



1967



1971



1977



1978





Австралия



ФРГ



ФРГ



Финляндия



СССР





5550







23 100



23000













24000



32000







36000





18



26



26



30,5



25





2



2



2



2



2




Таблица 1.2 Основные характеристики ГТУ




Характеристика



«Парижская коммуна"



„Айрон монарх"



„Лусайн"



.Шеврон Орегон"





Тип установки



Промышлен-ная



Промышлен-

ная­



Промыш­лен-

ная



Промышлен-

ная









ГТУ-20











Цикл работы установки



Регенератив-ный+охлажде-ние



Регенера­тивный



Регенера­тивный



Регенера-

­тивный ­





Тип передачи



Механическая­



Механическая­



Механиче­ская



Электриче­ская





Частота вращения греб­ного
винта, об/мин



103



125



125



100





Способ реверса



ВРШ



ВРШ



ВРШ



ВРШ





Мощность ГТД, кВт:













максимальная







13950



14 700







номинальная



8700



12850







9200





Топливо



Дизельное

тяжелое



Тяжелое



Дизельное



Дизельное





Удельный расход топ­лива
г/(кВт*ч)



320—324



272







269





Удельная масса агре­гата,
кг/кВт



27,2



































“Сивей принс"



“Адмирал Каллэгэн"



„Евролайнер"



„Финджэт"



“Капитан Смирнов"







Промышленная



Авиацион­ная



Авиацион­ная



Авиационная­



Комбиниро-

ванная­







Регенератив-ный



Простой



Простой



Простой



Простой







Электрическая­



Механическая­



Механиче­ская



Механиче­ская



Механиче­ская







200



145—135



135



170



130—128







ВРШ



Реверс-редук-

тор­



ВРШ



ВРШ



Газовый











2Х18400



2Х22000





2Х18400







8900



2Х15300



2Х20000



2Х27500



2Х17300







Дизельное



Дизельное



Дизельное



Дизельное



Дизельное











293—312







272



238









11,4







——



8,09




1.1.4.1. Судовые ГТУ промышленного типа.

Примером названных установок может служить ГТУ-20 судна «Парижская коммуна». Она состоит из двух одинаковых
устано­вок ГТУ-10, работающих через общий редуктор на один ВРШ. Особенностью ГТУ-20 является блокированная ТНД, что потребовало установки ВРШ.

Установки промышленного типа МS-1000, МS-3000, МS-5000, МS-7000 и их модификации
фирмы «Дженерал электрик» конвер­тированы в судовые из стационарных ГТУ. Все они работают но открытому циклу с регенерацией теплоты уходящих газов для по­догрева
воздуха.

 Особенностью ГТУ М5-3012К является привод генератора пе­ременного тока от ТНД и постоянная частота их вращения. Глав­ный электродвигатель (ГЭД)
переменного тока с постоянной ча­стотой вращения приводит в действие ВРШ. Установка М5-3012К со всеми обслуживающими механизмами и системами располо­жена
на верхней палубе судна, а ГЭД — в машинном отделении. Некоторые данные о судовых ГТД промышленного типа приве­дены в табл. 1.3.

Таблица1.3. Характеристики судовых ГТД типа МS.
















Характеристика



МS-1002R



МS-3002R



МS-50002R



МS-7000

















Мощность, кВт



2 940-



5500-



16200-



33000-







3680



8800



22000



44000





Номинальная мощность, кВт



3300



8100



20700



40500





Температура газа перед ТВД на номи-





1198



1 198



1 173





 нальном режиме, К













Удельный расход топ.



272



269



266



274





лива, г/(кВт-ч)













Частота вращения,













об/мин:













ТВД







6900



5100









ТВ (ТНД)



10290



6500



4670



3020





Расход воздуха, кг/сек







46,5



113



216





Степень повышения давления Лк





6,7



8,2



8,1





Сухая масса ГТД, т:













с регенератором



70



111



200



455





с редуктором







179



315









Габариты (без редук-













тора), мм:













длина



7200



9600



14700



18500





ширина



 4900



5200



8400



12000





высота (с регенератором)



6500



9100



10200



13400





Расчетная температуря То, °С



21



21



21



        -




1.1.4.2. Судовые ГТУ легкого типа.

На судах такие ГТУ нашли применение в следующем исполнении:

- с одним компрессором и одной турбиной  (блокированная, рис. 1.6, а);


-с одним турбокомпрессором и свободной ТВ (рис. 1.6, б);

— с двумя турбокомпрессорами и свободной ТВ (см. рис. 1.2). Были проведены большие работы по конвертированию авиаци­онных ГТД для
использования их на судах: в СССР — ГТУ М-25.

В США были созданы ГТД типов: LМ-100, LМ-300, LМ-1500, LМ-2500, LМ-5000, FТ-4А, FТ-4А12,
FТ-4С-2 и др.; в Англия - типов «Олимп», «Тайн», «Гном» и др. Некоторые данные о судовых ГТД авиационного типа приведены в табл. 1.4.

Табл.1.4. Характеристики зарубежных судовых ГТД.

 



Характеристика


LМ-1500


LМ-2500


FТ-4А-2


FТ-4А-12


“Олимп"ТМ1


“Олимп"ТМ3


“Тайн”


“Гном"GN




Фирма (страна)


„Джене­рал  элек­трик"
(США)


„Джене­рал  элек­трик"
(США)


„Пратт энд Уитни” (США)


„Пратт энд Уитни" (США)


„Ролс-Ройс» (Англия)


„Ролс-Ройс» (Англия)


„Ролс-Ройс» (Англия)


„Ролс-Ройс» (Англия)




Мощность, кВт:




















максимальная


10300


18768


18768


20600


17660


20000


3310


883




номинальная


9200


16340


15456


17958


14270


15890


2 650


750




Удельный расход топ­


345—357


240—253


308-321


314—321


307—319


296—312


308-332


382 -401




топлива,г/(кВт-ч)




















Температура возд.           °С °С наружного


38


38








15


15


15







Степень повыш.давл.возд.


12


17


12


12


10,3





11,5


8,3




Температура газа перед


1213—


1373


1116





1150


1280


1240


1170




перед ТВД, К


1115


















Расход воздуха, кг/с


69,4


69,3














20


5,6




Число ступеней:




















КНД








8





5


7


6


--




КВД


17


16


7





7


7


У


10




ТВД


3


2


1





1


1





2




ТНД







2





1


1





»




ТВ


1


6


2





1


1










Масса ГТД, кг


3400


3 850


6440


6440


24850


20850


860


160




Габариты, мм:




















длина


5700


6780


7920


7900


6780





4 .350


1 800




ширина


2130


2130


1 455


1430


3 330


2440


1 625


500




высота


2440


2130


2182


2157


2800


3000


1 727


550






1.2. Редукторы

Редукторы обладают рядом преимуществ перед другими ти­пами передач: меньшие масса и
габариты, более высокий КПД, простота устройства, сравнительно меньшая стоимость, большая долговечность, высокая безотказность и т. д. По назначению
раз­личают редукторы главные и вспомогательные; по конструкции — переборные, планетарные и комбинированные, по направлению вращения—реверсивные и
нереверсивные; по виду зубчатых ко­лес—цилиндрические и конические; по числу зубчатых пар— одно- и многоступенчатые; по расположению осей валов—горизон­тальные
и вертикальные; по типу передач — цепные, гнездовые и с раздвоением мощности.

Примером двухступенчатого редуктора с раздвоением мощно­сти является редуктор главного газотурбинного
агрегата М-25 су­дов типа «Атлантика». В 1-й ступени мощность ГТД через шестерню Z1 передается на две шестерни
Z2. На 2-й ступени от каждой шестерни Z3, приводимой от Z2, мощность передается на две шестерни Z4, от них—на главное колесо редуктора Z5 и да­лее—на ВФШ.

Редуктор установки М-25—переборный, реверсивный, с ци­линдрическими зубчатыми колесами, с горизонтальным располо­жением
валов; редуктор установки ГТУ-20—также переборный, с цилиндрическими зубчатыми колесами, двухступенчатый, с го­ризонтальным расположением валов, но
нереверсивный, с цепным типом передачи. Редуктор судовой ГТУ средней мощно­сти с ГТД GТРЕ-990 выполнен планетарным.

Планетарные редукторы в основном устанавливаются на КВП и СПК. Для комбинированных  установок 
наиболее  характерны  редук­торы,  собирающие мощности  от  нескольких  двигателей, в том чи­сле и разнотипных и разной мощности,  а  
также  раздающие   мощность   двигателей   различным   не­скольким  потребителям.  Для  этих 
же  установок  характерны  операции



подключения и отключения двигателей с помощью гид­равлических и специальных механических разобщительных
муфт. Наиболее простой, но достаточно распространенной муфтой такого назначения является автоматическая механическая с обгон­ным устройством .В редукторах
широко используются так называемые самосин­хронизирующие муфты, конструкция которых представляет собой сочетание фрикционной и зубчатой муфт. Первая служит
для син­хронизации валов и создания тем самым условий для включения зубчатой муфты, которая способна продолжительное время пере­давать основной крутящий
момент.

1.3. Средства реверса

Упор винта на переднем ходу называют положительным, на заднем—отрицательным. Отрицательный упор применяют в экс­плуатации для движения судна задним ходом,
торможения и остановки судна, идущего передним ходом, для стаскивания судна с мели и т. п.

Реверсом называют маневр, связанный с изменением направ­ления упора, создаваемого
гребным винтом. Осуществляют реверс с помощью одного из трех элементов пропульспвного комплекса:

-силовая турбина—передача—движитель, который в этом случае называют реверсивным.

1.3.1. Газовый реверс.

При использовании реверсивной силовой турбины реверс на­зывают газовым, а ГТД—реверсивным.
В соответствии с требо­ваниями к проектированию судовых установок мощность на зад­нем ходу должна составлять примерно 40—50 % мощности перед­него хода.

Конструктивно турбина заднего хода может быть выполнена в виде :

а) отдельной турбинной ступени, расположенной на диске, жестко связанном с ротором
турбины переднего хода;





б) отдельной турбины, передающей крутящий момент на ре­дуктор через собственный
вал (рессору);

в) верхнего (нижнего) яруса лопаток, расположенного над (под) ярусом лопаток одной из ступеней переднего хода.

В конструкциях (а) и (б) существенно возрастают массогабаритные показатели ГТД, возникает необходимость в создании
надежных закрытий в газовых каналах, а в случае «б», кроме того, нарушается принцип прямоточности ГТД.  В случае
применения радиальной реверсивной турбины воз­никают трудности компоновки проточных частей турбин, состоя­щих из нескольких последовательно расположенных
центростре­мительных турбин, а также затруднения, связанные с конструк­тивным сочетанием в одной проточной части осевых и радиальных ступеней .

Газовый реверс с использованием двухъярусного облопачивания реверсивной   турбины  
может    быть    выполнен    по      схеме,      разра-




ботанной и испытанной фирмой «Дженерал электрик» для судо­вых ГТУ промышленного типа третьего поколения
(рис. 1.4). На рисунке показаны направления движения газов и положения органов реверсивных устройств ГТУ. Специальные дефлекторы, расположенные за реверсивной
ступенью, образуют на переднем ходу канал для прохода отработавших газов из рабочей решетки верхнего яруса в выпускной диффузор, обеспечивая тем самым
уменьшение протечек газа в ступень заднего хода и снижение вен­тиляционных потерь. При работе на заднем ходу дефлекторы пе­ремещаются в положение, при
котором образуется канал для про­хода отработавших газов из рабочей решетки заднего хода в вы­пускной диффузор.

Существенный недостаток ГТУ с газовым реверсом - потери мощности, достигающие 4—5%, что вызвано увеличенным
сопро­тивлением вращению неработающих ступеней рабочего тела, имеющего весьма высокую плотность (например, по сравнению с ПТУ, в которой неработающие ступени
располагают в зоне ва­куума).



Рис. 1.4. Схема течения газов в реверсивной турбине с двухъярусным облопачиванием: а—при работе на
переднем ходу; б—при работе на заднем ходу.

/—механизм поворота сопловых лопаток; 2—сопловые лопатки ПХ; 3—сопловые
лопатки ЗХ; 4 — газовыпускной диффузор; 5—дефлекторы; 6 — рабочие лопатки ЗХ;

7—рабочие лопатки ПХ; 8—газовый канал ЗХ; 9—газовый канал ПХ; 10—раз­делитель газового потока; 11— рабочие лопатки
предыдущей турбины.

1.3.2. Реверсивные передачи

Конструкция реверсивной передачи позволяет изменить напра­вление вращения выходного
(соединенного с винтом) вала пере­дачи при неизменном направлении вращения входного (соединен­ного с ГТД) вала.

Реверсивные передачи могут быть электрическими, гидравличе­скими и механическими. Электрический реверс
применяют на су­дах с электродвижением. Его недостатки и достоинства опреде­ляются недостатками и достоинствами электрических машин, при­меняемых на судах для
обеспечения хода судна.

Гидрореверсивная передача, изображенная на рис. 1.5, вклю­чает в свой состав гидромуфту и гидротрансформатор. В данной схеме
продолжительный передний ход осуществляется передачей крутящего момента от вала 7 на шестерню 4 непосредственно че­рез фрикционную или кулачковую муфту
(на рис. 1.5 не пока­зана ), а внутренняя полость гидромуфты может быть либо за­полненной рабочей жидкостью, либо опорожненной. Для перехода на задний ход нужно
заполнить рабочей жидкостью гидромуфту,


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Морфологическое обоснование применения аллотрансплантатов в хирургии желудочно-кишечного тракта
Реферат Развитие Дальнего Востока во второй половине 19 века
Реферат Понятийный компонент учебной дисциплины "Этнология" в педагогическом вузе
Реферат Строительные материалы: портландцемент, лако-красочные материалы, строительные растворы, известь и др.
Реферат Государственная власть и самоуправление в Украине
Реферат Не всегда правдой душу вылечишь по пьесе Горького На дне
Реферат Формально-логические законы, гипотеза
Реферат Describe A Challenging Situation Essay Research Paper
Реферат Современный урок систематизации и обобщения
Реферат Межличностные отношения детей подросткового возраста
Реферат Уголовноправовая борьба с незаконным обладанием оружия
Реферат Стратегія комплексної модернізації українського суспільства
Реферат Тепло Термины и определения
Реферат Конструкции имени существительного с прилагательным в романе Р Кено Chiendent грамматика писателя
Реферат Расчетно-аналитическое исследование показателей пожарной опасности веществ и прогнозирование динамики