Реферат по предмету "Математика"


Статистическая устойчивость случайных событий

--PAGE_BREAK--Варианты задач для заданий 1 и 2


Задача 1.

Событие А – появление герба при бросании монеты. Результаты опытов отражены в приложении 1. Серии брать по 10 бросаний монеты. Последовательность испытаний указана в таблице заданий.

Задача 2.

Событие А – регистрация мальчиков среди новорожденных. Результаты опытов отражены в приложении 2. Серии брать по 10 регистраций. Последовательность испытаний указана в таблице заданий.

Задача 3.

Событие А – поступление в КИСМ абитуриентов с фамилией, начинающейся с буквы К. Результаты опытов отражены в прил. 3. Серии брать по числу студентов в группах. Последовательность опытов -в таблице заданий.

Задача 4 .

Событие А – появление цифры 1,2,3,4,5 или 6 при бросании игрального кубика. Результаты опытов отражены в приложении 4. Серии брать по 30 бросаний кубика. Последовательность испытаний и цифра указаны в таблице заданий.

Задача 5.

Сделать вырезку из газеты или журнала. Событие А – появление буквы в тексте. В отрывке должно быть 2000 букв. Серии брать по 100 букв. Необходимая буква указана в таблице заданий. Вероятности появлений русских букв в тексте в приложении 11.
Таблица заданий


Номер

Номер задачи

Последовательность

Вариант буквы

варианта

для задания 1

испытаний

для задания 2

1

1

1-300

Задача 5 — «О»

2

1

101-400

Задача 5 — «И»

3

1

201-500

Задача 5 — «А»

4

1

301-600

Задача 5 — «Е»

5

1

401-700

Задача 5 — «О»

6

1

501-800

Задача 5 — «И»

7

2

1-360

Задача 5 — «А»

8

2

121-480

Задача 5 — «Е»

9

2

241-600

Задача 5 — «О»

10

2

351-720

Задача 5 — «И»

11

2

481-840

Задача 5 — «А»

12

2

601-960

Задача 5 — «Е»

13

2

721-1080

Задача 5 — «О»

14

3

С01-Д91

Задача 5 — «И»

15

3

Д91-Р83

Задача 5 — «А»

16

4

1-600 цифра 6

Задача 5 — «Е»

17

4

1-600 цифра 5

Задача 5 — «О»

18

4

1-600 цифра 4

Задача 5 — «И»

19

4

1-600 цифра 3

Задача 5 — «А»

20

4

1-600 цифра 2

Задача 5 — «Е»

21

4

1-600 цифра 1

Задача 5 — «О»

22

4

301-900 цифра 6

Задача 5 — «И»

23

4

301-900 цифра 5

Задача 5 — «А»

24

4

301-900 цифра4

Задача 5 — «Е»

25

4

301-900 цифра 3

Задача 5 — «О»

26

4

301-900 цифра 2

Задача 5 — «И»

27

4

301-900 цифра 1

Задача 5 — «А»

28

4

451-1050 цифра 6

Задача 5 — «Е»

29

4

451-1050 цифра 5

Задача 5 — «О»

30

4

451-1050 цифра 4

Задача 5 — «И»
    продолжение
--PAGE_BREAK--Задания к лабораторной работе.
1.Для изучения статистической устойчивости события А в заданиях 1 и 2 результаты испытаний сгруппировать сериями по n испытаний в каждой серии, Число полученных серий обозначим k.

2.Подсчитать число появлений mі события А в каждой серии.

3.Вычислить частоту ωi(A) появления событий А в каждой серии/

4.Объединив результаты опытов 1 и 2, затем 1, 2, 3 и т.д. до последней серии опытов в задании, вычислить:

Nі – число опытов в объединённых (накопленных) сериях испытаний.

Mі – число появления события А в объединенных (накопленных) сериях

испытаний.

Wі(А) – частоту появления события А в объединенных (накопленных) сериях испытаний.

5. Результаты вычислений занести в таблицу 1.

6. Построить точечную диаграмму №1. Зависимость ωi(A) от номера серииі=1, 2,… k.

7.Построить точечную диаграмму №2. Зависимость Wk (А)от числа опытов в серии Nі .

8. Сравнить полученные диаграммы и сделать вывод о статической устойчивости события А.

9. Вычислить или найти в приложении 1 и 2 вероятность появления события А Р(А).

10. Вычислить вероятность противоположного события, пользуясь формулой q = 1 -p.

11.Найти отклонение относительной частоты Wk(А) от его статистической вероятности Р(А), пользуясь формулой e=÷Wk(А)-Р(А)÷.

12.Изобразить на точечной диаграмме №2 линии, соответствующие значениям Р(А), Р(А)+e и Р(А)-e.

13. Вычислить вероятность того, что отклонение относительной частоты  от постоянной вероятности р по абсолютной величине не превышает заданного числа e>0.



14. Определить, находится ли в пределах заданной величины e отклонение частоты Wk(А) от его статистической вероятности Р(А).

15.Оценить минимальное число опытов, необходимых для стабильного получения отклонений частоты Wk(А) от его статистической вероятности Р(А)в пределах заданной величины e, для доверительной вероятности γ = 0,95 по формуле



16.Сделать выводы.
Замечания
1.Все вычисления производить с точностью до 0,001.

2.Точечные диаграммы строить на миллиметровой бумаге, выбирая масштаб в зависимости от полученных числовых значений величины Wі (А).

Контрольные вопросы.

1.      Какие события называются случайными?

2.      Что называется частотой случайного события А?

3.      Какое событие называется статистически устойчивым?

4.      Сформулировать статистическое определение вероятности.

5.      Сформулировать классическое определение вероятности.

6.      Как определить вероятность отклонения частоты W(A) случайного события А от его вероятности Р(А) в независимых испытаниях?

7.      Какая функция называется функцией Лапласа? Сформулировать свойства функции Лапласа.

8.      Как найти вероятность события противоположного событию А?

9.      Что называется доверительной вероятностью или надежностью оценки характеристики W(A)?

10.  Как определить минимальное число опытов, необходимых для стабильного получения отклонений частоты W(A) в пределах заданной доверительной вероятности?



 задача № 1
   Задача 1

Событие А – появление герба при бросании монеты. Результаты опытов отражены в приложении 1. Серии брать по 10 бросаний монеты. Последовательность испытаний и цифра указаны в таблице заданий.
Решение.

1.      Результаты испытаний сгруппируем в k=15 серий по n=10 испытаний в каждой серии.

2.      Заполним первую колонку таблицы "№ серии". Для этого проставляем номера серий от 1 до 15,

3.      Заполним вторую колонку таблицы «Число испытаний в серии». В каждой серии по n=10 испытаний.

4.      Подсчитаем числопоявление  герба  при  бросании  монеты в каждой серии. Данные занесем в третью колонку " Появление герба  при  бросании  монеты  в серии".

5.                  Вычислим частоту ωi (А) появления  герба  при  бросании  монеты  в каждой серии. Для этого  поделим появление  герба  при  бросании  монеты  на количество испытаний в серии.



6.                  Объединяем результаты опытов всех 15-ти серий.

7.                  Вычисляем  появление  герба  при  бросании  монеты   в объединенной серии: Мі.

8.                  Вычисляем Wk(А) – частоту   появление герба  при  бросании  монеты  в объединенных сериях испытаний.

9.                  Построим точечную диаграмму №1 «Зависимость ωi(A) от номера серии і=1, 2,… k».

10.              Строим точечную диаграмму №2 «Зависимость Wk(А) от числа опытов в объединенной серии Nk».

11.              Находим в приложении 1  появления  герба  при  бросании  монеты.

Р(А) = 0,5

12.              Вычисляем вероятность противоположного события, пользуясь формулой

q = 1 — p

q = 1 — 0,5= 0,5

13.              Находим отклонение относительной частоты Wk(А) от вероятности Р(А) = 0,5, пользуясь формулой e=÷Wk(А) — Р(А)÷


    продолжение
--PAGE_BREAK--e=÷0,927 – 0,5÷= 0,427 Изобразим на точечной диаграмме № 2 линии, соответствующие значениям
Р(А)= 0,5

Р(А)+e= 0,5 + 0,427 =0,927

Р(А) — e= 0,5 – 0,427 = 0,073


Вычисляем вероятность того, что отклонение относительной частоты  от постоянной вероятности р по абсолютной величине не превышает заданного числа e >0.


 

Отметим, что отклонение частоты Wk(А) от вероятности Р(А) =0,5 находится в пределах найденной величины e= 0,427.
17.  Сравниваем полученные диаграммы и делаем вывод о статистической устойчивости события А -  появление герба  при  бросании  монеты.

18.  Оценим минимальное число опытов, необходимых для стабильного получения отклонений частоты Wk(А) от вероятности Р(А) в пределах заданной величины e= 0,427, для доверительной вероятности γ = 0,95 по формуле


Выводы к задаче №1
1.Проведя  15 серий опытов по 10 опытов в каждой серии и построив точечную диаграмму зависимости частоты ωi(A) от номера серии, заметим, что число опытов не достаточно для определения статистической устойчивости случайного события А –   появления герба  при  бросании  монеты.

2.Проведя 150 опытов и построив точечную диаграмму зависимости накопленной частоты Wk(А) от количества испытаний, убеждаемся, что событие А -  появление  герба  при  бросании  монеты, является статистически устойчивым, поскольку с увеличением числа опытов накопленная частота стабилизируется и стремится к числу

Wk(А) = 0,053

3. Вероятность отклонения частоты W k (А) случайного события А от его статистической вероятности Р(А) = 0,5 на величину e = 0,427  равна Р = 0,5.

4. Минимальное число опытов, необходимых для стабильного получения отклонений частоты Wk(А) от вероятности Р(А) в пределах заданной величины e= 0,427 для доверительной вероятности γ = 0,95.
N= 5,267       



Таблица  № 1



№ серии

ni — число испытаний в серии

mi — число появлений события А

wi(A) — частота появления события А

Ni — число испытаний в объединённой серии

Mi — число появления события А в объединённой серии

Wi(A) — частота появления события А в объединённой серии

P(A)

ε = |W-P|

P(A)+ε

P(A)-ε

1

2

3

4

5

6

7

8

9

10

11

1

10

9

0,900

10

9

0,900

0,500

0,427

0,927

0,073

2

10

11

1,100

20

20

1,000

0,500

0,427

0,927

0,073

3

10

13

1,300

30

33

1,100

0,500

0,427

0,927

0,073

4

10

6

0,600

40

39

0,975

0,500

0,427

0,927

0,073

5

10

7

0,700

50

46

0,920

0,500

0,427

0,927

0,073

6

10

11

1,100

60

57

0,950

0,500

0,427

0,927

0,073

7

10

12

1,200

70

69

0,986

0,500

0,427

0,927

0,073

8

10

10

1,000

80

79

0,988

0,500

0,427

0,927

0,073

9

10

10

1,000

90

89

0,989

0,500

0,427

0,927

0,073

10

10

10

1,000

100

99

0,990

0,500

0,427

0,927

0,073

11

10

10

1,000

110

109

0,991

0,500

0,427

0,927

0,073

12

10

4

0,400

120

113

0,942

0,500

0,427

0,927

0,073

13

10

6

0,600

130

119

0,915

0,500

0,427

0,927

0,073

14

10

11

1,100

140

130

0,929

0,500

0,427

0,927

0,073

15

10

9

0,900

150

139

0,927

0,500

0,427

0,927

0,073




Таблица значений функции Ф (х) =

х

Ф (х)

х

Ф (х)

х

Ф (х)

х

Ф (х)

0,00

0,0000

0,24

0,0948

0,48

 0,1844

0,72

0,2642

0,01

0,0040

0,25

0,0987

0,49

0,1879

0,73

0,2673

0,02

0,0080

0,26

0,1026

0,50

0,1915

0,74

0,2703

0,03

0,0120

0,27

0,1064

0,51

0,1950

0,75

0,2734

0,04

0,0160

0,28

0,1103

0,52

0,1985

0,76

0,2764

0,05

0,0199

0,29

0,1141

0,53

0,2019

0,77

0,2794

0,06

0,0239

0,30

0,1179

0,54

0,2054

0,78

0,2823

0,07

0,0279

0,31

0,1217

0,55

0,2088

0,79

0,2852

0,08

0,0319

0,32

0,1255

0,56

0,2123

0,80

0,2881

0,09

0,0359

0,33

0,1293

0,57

0,2157

0,81

0,2910

0,10

0,0398

0,34

0,1331

0,58

0,2190

0,82

0,2939

0,11

0,0438

0,35

0,1368

0,59

0,2224

0,83

0,2967

0,12

0,0478

0,36

0,1406

0,60

0,2257

0,84

0,2995

0,13

0,0517

0,37

0,1443

0,61

0,2291

0,85

0,3023

0,14

0,0557

0,38

0,1480

0,62

0,2324

0,86

0,3051

0,15

0,0596

0,39

0,1517

0,63

0,2357

0,87

0,3078

0,16

0,0636

0,40

0,1554

0,64

0,2389

0,88

0,3106

0,17

0,0675

0,41

0,1591

0,65

0,2422

0,89

0,3133

0,18

0,0714

0,42

0,1628

0,66

0,2454

0,90

0,3159

0,19

0,0753

0,43

0,1664

0,67

0,2486

0,91

0,3186

0,20

0,0793

0,44

0,1700

0,68

0,2517

0,92

0,3212

0,21

0,0832

0,45

0,1736

0,69

0,2549

0,93

0,3238

0,22

0,0871

0,46

0,1772

0,70

0,2580

0,94

0,3264

0,23

0,0910

0,47

0,1808

0,71

0,2611

0,95

0,3289

0,96

0,3315

1,37

0,4147

1,78

0,4625

2,36

0,4909

0,97

0,3340

1,38

0,4162

1,79

0,4633

2,38

0,4913

0,98

0,3365

1,39

0,4177

1,80

0,4641

2,40

0,4918

0,99

0,3389

1,40

0,4192

1,81

0,4649

2,42

0,4922

1,00

0,3413

1,41

0,4207

1,82

0,4656

2,44

0,4927

1,01

0,3438

1,42

0,4222

1,83

0,4664

2,46

0,4931

1,02

0,3461

1,43

0,4236

1,84

0,4671

2,48

0,4934

1,03

0,3485

1,44

0,4251

1,85

0,4678

2,50

0,4938

1,04

0,3508

1,45

0,4265

1,86

0,4686

2,52

0,4941

1,05

0,3531

1,46

0,4279

1,87

0,4693

2,54

0,4945

1,06

0,3554

1,47

0,4292

1,88

0,4699

2,56

0,4948

1,07

0,3577

1,48

0,4306

1,89

0,4706

2,58

0,4951

1,08

0,3599

1,49

0,4319

1,90

0,4713

2,60

0,4953

1,09

0,3621

1,50

0,4332

1,91

0,4719

2,62

0,4956

1,10

0,3643

1,51

0,4345

1,92

0,4726

2,64

0,4959

1,11

0,3665

1,52

0,4357

1,93

0,4732

2,66

0,4961

1,12


0,3686

1,53

0,4370

1,94

0,4738

2,68

0,4963

1,13

0,3708

1,54

0,4382

1,95

0,4744

2,70

0,4965

1,14

0,3729

1,55

0,4394

1,96

0,4750

2,72

0,4967

1,15

0,3749

1,56

0,4406

1,97

0,4756

2,74

0,4969

1,16

0,3770

1,57

0,4418

1,98

0,4761

2,46

0,4971

1,17

0,3790

1,58

0,4429

1,99

0,4767

2,78

0,4973

1,18

0,3810

1,59

0,4441

2,00

0,4772

2,80

0,4974

1,19

0,3830

1,60

0,4452

2,02

0,4783

2,82

0,4976

х

Ф (х)

х

Ф (х)

х

Ф (х)

х

Ф (х)

1,20

0,3849

1,61

0,4463

2,04

0,4793

2,84

0,4977

1,21

0,3869

1,62

0,4474

2,06

0,4803

2,86

0,4979

1,22

0,3883

1,63

0,4484

2,08

0,4812

2,88

0,4980

1,23

0,3907

1,64

0,4495

2,10

0,4821

2,90

0,4981

1,24

0,3925

1,65

0,4505

2,12

0,4831

2,92

0,4982

1,25

0,3944

1,66

0,4515

2,14

0,4838

2,94

0,4984

1,26

0,3962

1,67

0,4525

2,16

0,4846

2,96

0,4985

1,27

0,3980

1,68

0,4535

2,18

0,4854

2,98

0,4986

1,28

0,3997

1,69

0,4545

2,20

0,4861

3,00

0,49865

1,29

0,4015

1,70

0,4554

2,22

0,4868

3,20

0,49931

1,30

0,4032

1,71

0,4564

2,24

0,4875

3,40

0,49966

1,31

0,4049

1,72

0,4573

2,26

0,4881

3,60

0,499841

1,32

0,4066

1,73

0,4582

2,28

0,4887

3,80

0,499928

1,33

0,4082

1,74

0,4591

2,30

0,4893

4,00

0,499968

1,34

0,4099

1,75

0,4599

2,32

0,4898

4,50

0,499997

1,35

0,4115

1,16

0,4608

2,34

0,4904

5,00

0,499997

1,36

0,4131

1,77

0,4616








    продолжение
--PAGE_BREAK--Вероятность появления русских букв в тексте без учета знаков препинания            Р(О) =0,109                Р(Е, Ё) = 0,087
   

            Р(А) = 0,075                  Р(И) = 0,075
Вероятность регистрации студента с фамилией, начинающейся с буквы К
Р = 0,143
Вероятность регистрации мальчика среди новорожденных


Р = 0,518


Вероятность выпадения цифр 1,2,3,44,5 или 6


Р=0,5


Вероятность выпадения герба


Р=0,5



Задание 2


серии


n
i

число испытаний в серии


m
i
— число появлений события А


w
i
(A)
— частота появления события А


N
i
— число испытаний в объединённой серии


M
i
— число появления события А в объединённой серии


Wi(A)
— частота появления события А в объединённой серии


P(A)

ε = |W-P|

P(A)+ε

P(A)-ε

1

2

3

4

5

6

7

8

9

10

11

1

100

8

0,080

200

8

0,040

0,075

0,010

0,085

0,065

2

100

10

0,100

46

18

0,391

0,075

0,010

0,085

0,065

3

100

6

0,060

246

24

0,098

0,075

0,010

0,085

0,065

4

100

9

0,090

346

33

0,095

0,075

0,010

0,085

0,065

5

100

10

0,100

446

43

0,096

0,075

0,010

0,085

0,065

6

100

15

0,150

546

58

0,106

0,075

0,010

0,085

0,065

7

100

6

0,060

646

64

0,099

0,075

0,010

0,085

0,065

8

100

9

0,090

746

73

0,098

0,075

0,010

0,085

0,065

9

100

6

0,060

846

79

0,093

0,075

0,010

0,085

0,065

10

100

2

0,020

946

81

0,086

0,075

0,010

0,085

0,065

11

100

5

0,050

1046

86

0,082

0,075

0,010

0,085

0,065

12

100

1

0,010

1146

87

0,076

0,075

0,010

0,085

0,065

13

100

3

0,030

1246

90

0,072

0,075

0,010

0,085

0,065

14

100

5

0,050

1346

95

0,071

0,075

0,010

0,085

0,065

15

100

8

0,080

1446

103

0,071

0,075

0,010

0,085

0,065

16

100

6

0,060

1546

109

0,071

0,075

0,010

0,085

0,065

17

100

5

0,050

1646

114

0,069

0,075

0,010

0,085

0,065

18

100

7

0,070

1746

121

0,069

0,075

0,010

0,085

0,065

19

100

4

0,040

1846

125

0,068

0,075

0,010

0,085

0,065

20

100

2

0,020

1946

127

0,065

0,075

0,010

0,085

0,065
    продолжение
--PAGE_BREAK--







Выпадение герба при бросании монеты.

№ 1-100





















































1

1

1

1





1

1















1

1



1

1

1













1

1

1





1

1









1











1

1



1



1

1







1

1



1















1





1







1



1



1





1

1





1

1

1

1















1

1

1





1



1

1

1











1





1

































































№ 101-200





















































1





1





1

1

1



1









1





1



1

1















1







1





1

1

1





1





1

1



1



1

1

1









1



1





1

1





1









1

1





1





1

1









1



1





1



1

1



1



1



1



1





1

1





1



1









1

1

1



























































№ 201-300





















































1

1





1





1

1







1



1

1

1



1





1

1





1









1











1









1





1

1



1

1



1

1



1

1

1

1







1

1

1







1



1





1









1

1



1







1

1

1

1







1







1



1

1





1



1







1



1





1

1



1





























































№ 301-400



















































































1





1

1





1





1

1



1



1









1



1

1





1

1

1



1





1

1









1



1



1

1

1















1



1

1

1

1

1





1

1

1







1



1

1



1



1

1





1









1

1

1

1





1





1







1







№ 401-500























































1

1

1

1





1

1

1

1







1

1





1

1









1

1



1



1



1

1





1



1

1







1

1

1

1





1

1

1

1



1



1

1



1

1



1

1





1

1



1







1

1









1









1

1



1

1

1



1

1



1

1





1





1





1



1





1





1

1



1

1



























































№ 501-600























































1

1

1

1



1

1





1



1

1

1





















1



1







1









1

1



1









1





1











1

1







1





1











1

1



1

1

1

1

1



1

1





1







1





1





1





1



1



1



1

1

1



1



1



1











1

1





























































№ 601-700























































1





1



1



1



1







1









1

1









1



1



1



1



1



1

1





1



1

1

1

1

1





1

1

1

1





1



1





1

1

1





1

1





1











1







1

1













1



1



1

1





1



1

1





1

1



1



1







1



1

1

1

1

1



























































№ 701-800





















































1

1



1























1





1

1









1





1





1

1

1











1







1











1



1





1





1



1







1









1





1



1







1







1





1



1

1







1

1



1







1









1

1



1

1

1

1

1







1



1
    продолжение
--PAGE_BREAK--
Регистрация новорожденных мальчиков
№ 1-120
































































    продолжение
--PAGE_BREAK--
1

1



1





1







1



1

1

1

1

1







1

1









1

1





1





1

1

1



1



1



1

1

1













1







1

1













1







1





1



1





1





1





1



1



1

1

1







1

1

1





1

1







1

1



1

1

1





1

1



1

1



1

1



1

1

1

1

1



1





1





1

1

1

1

1



1

1

1





№ 121-240



































































1

1

1



1

1





1



1

1

1







1

1



1





1

1

1



1





1

1







1











1



1





1

1





1







1







1



1



1



1

1

1

1



1











1

1

1

1





1













1



1

1





1



1

1



1

1



1

1







1

1



1



1



1





1

1

1





1

1



1

1







1



1







1

1



№ 241-360































































1







1





1

1



1



1

1

1

1

1



1

1

1

1





1

1

1

1

1



1







1













1

1

1

1

1





1

1

1

1



1

1

1



1



1

1

1

1

1











1

1

1

1

1





1

1

1



1







1













1







1

1

1







1

1

1

1

1

1

1

1





1



1



1



1





1

1



1



1



1



1

1

1

1







1





1

№ 361-480

































































1

1

1

1



1

1















1

1







1

1



















1





1

1





1

1







1



1



1

1



1





1

1

1







1



1

1







1

1

1

1

1



1













1













1



1





1









1







1

















1



1

1

1

1

1



1











1



1



1







1



1



1

1

1

1

1

№ 481-600

































































1



1

1











1





1

1



1



1

1





1



1



1



1



1



1





1





1









1







1

1













1



1







1

1





1

1







1





1





1

1

1

1









1



1





1

1



1



1























1



1

1







1

1







1



1

1



1

1



1

1



1







1



1

1

1

1

1

№ 601-720

































































1



1





1

1









1





1

1



1







1



1

















1



1





1

1





1





1



1







1









1







1



1





1



1

1

1



1

1

1

1



1



1

1









1

1

1







1

1





1

1





1



1

1



1

1



1





1



1



1

1







1











1



1

1



1



1

1





1

1

1

1

1

№ 721-840































































1





1

1



1





1







1



1

1





1

1



1



1

1

1











1





1







1



1



1

1





1

1





1





1



1





1

1











1



1

1



1









1

1



1





1

1

1



1



1

1

1

1





1

1





1



1

1

1

1

1

1

1





1



1





1





1

1

1

1

1











1





1

1

1

1





1

1





№ 841-960































































1



1

1





1

1

1

1





1

1

1



1





1

1

1

1







1

1

1





1



1











1











1



1





1

1



1





1







1



1

1







1





1

1

1



1





1

1

1

1



1















1











1









1

1

1

1







1

1





1

1

1









1









1





















1



1

1



№ 961-1080































































1

1

1



1



1





1

1



1

1

1







1

1





1





1

1

1

1



1

1

1





1

1



1

1







1

1







1

1



1









1

1



1

1

1

1

1





1







1

1

1

1

1







1

1







1

1











1



1





1



1





1

1

1





1

1

1

1

1



1



1

1

1



1











1



1



1



1











1

1



1

1
    продолжение
--PAGE_BREAK--

3. Распределение фамилий, начинающихся с буквы К, в группах

группа

Количествостудентов

количество фамилий, начинающихся с буквы К

группа

количество

студентов

количество фамилий, начинающихся с буквы К

С 01

19

2

Д91

23

4

С 02

20

2

Д92

25

3

С 03

17

1

Д93

24

3

С 04

16

3

Д94

25

5

Э 01

21

3

Л91

25

2

Э 02

24

3

Л92

25

4

А 01

26

2

Р91

25

2

Д 01

22

5

Р92

24

4

Д 02

20



Р93

24

4

Д 03

19

6

К91

24

4

Д 04

20

3

К92

23

2

Д 05

20

5

Т91

23

8

Л 01

24

4

Т92

25

2

Л 02

29



Т93

24

2

Р 01

26

3

Т94

23

2

Р 02

25

5

Т95

23

4

Р 03

25

1

Т96

25

3

К 01

25

2

С82

23

5

К 02

25

4

С83

23

4

Т 01

25

4

Э81

24

5

Т 02

25

4

Э82

20

2

ТО3

25

3

А81

20

2

ТО4

25

5

А82

22

1

ТО5

25

5

Д81

25

4

ТО6

25

2

Д82

22

1

С91

23

4

Д83

25

4

С92

22

7

Д84

25

3

Э92

23

4

Л81

25

4

З92

27

2

Л82

21

1

А91

23

2

Р81

24

2

А92

25

3

Р82

22

2

Д91

23

4

Р83

21

2
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Финансовые инструменты. Финансовая система и институты
Реферат Environmental Impact Of Eating Beef And Dairy
Реферат Городское планирование как объект социологического изучения
Реферат История создания Троицкого Собора
Реферат Общество русской культуры им. А.С. Пушкина в Америке
Реферат Автор программы: Е. А. Саркисян (Ереван, нии педагогики)
Реферат I. Исторические и религиозные аспекты борьбы за Иерусалим
Реферат Топик: Central Processor Unit
Реферат Особенности признания, оценки и учета дебиторской задолженности за продукцию, товары, работы, услуги
Реферат Литература - Терапия (Вопросы из экзаменационных билетов по внутренним
Реферат Облік виробничих запасів на промислових підприємствах
Реферат Развитие экономической мысли классического средневековья
Реферат Людовик, герцог Ангулемский
Реферат Censorship And Internet Essay Research Paper Censorship
Реферат Экономическая и территориальная структура хозяйства