Реферат по предмету "Химия"


Введение в теорию атома

Введение в теорию атома. Краткие математические сведения о сферических системах. Ротатор. Уравнение Шрёдингера для одноэлектронного атома (атом водорода и водородоподобные ионы).
8.1. Краткое содержание. Шаровые координаты (r, J, j). Элемент объёма. Лапласиан в шаровых координатах. Уравнение Лапласа в сферических переменных. Роль симметрии в выборе радиальной части общего решения. Угловая часть уравнения Лапласа — уравнение Лежандра. Оператор момента импульса, его квадрат в шаровых переменных и его связь с уравнением Лежандра. Ротатор. Квантование модуля момента импульса ротатора. Операторные уравнения для момента импульса и их связь с уравнением Лежандра.
Уравнение Шрёдингера для электрона в атоме водорода. Разделение переменных. Радиальная и угловая части уравнения Шрёдингера и вид общего решения. Квантование модуля и проекций момента импульса электронного вращения вокруг ядра. Квантование энергии и энергетические уровни. Пределы изменения квантовых чисел. Боровский радиус и его вероятностный смысл.
Одноэлектронный гамильтониан в шаровых координатах и уравнение Шрёдингера для атома водорода (или водородоподобного иона). Разделение переменных. Атомные орбитали, их радиальные и угловые компоненты:
/>.
Квантовые числа (n,l,m), их взаимосвязь, пределы изменения и физический смысл. Квантование энергии, модуля и проекций момента импульса электрона на атомных орбиталях. Полярные диаграммы угловых компонент АО.
Раздел в значительной степени предназначен для начинающего читателя и одна из его целей – упражнения в элементарной алгебре линейных операторов.
8.2. Предварительная общая информация. Сферические переменные. Уравнение Лапласа. Атом водорода. Уравнение Шрёдингера. Разделение переменных (иллюстрации и основные формулы) Радиальная переменная r, азимутальная переменная (угол широты) J, переменная широты (угол широты) j.Квантовые числа.
/>Шаровые координаты:
Радиальная переменная r
Угол широты J
Угол долготы
Декартовы координаты:
/>

Интервалы изменения шаровых переменных: 0
Интервалы изменения переменных дают возможность выявить вид полярных диаграмм угловых функций — решений операторных уравнений.
Элемент объёма в шаровых переменных (см. рис.):
/>
8.3 Лапласиан.
Важное свойство лапласиана состоит в его симметрия ко взаимным перестановкам декартовых координат. Из этого свойства вытекают и приёмы решения наиболее распространённых дифференциальных уравнений в частных производных с его участием.
/>. (8.2)
Простейшее дифференциальное уравнение в частных производных второго порядка, в котором лапласиан играет основную роль — уравнение Лапласа. В шаровых координатах лапласиан оказывается составленным из трёх независимых компонент-операторов, каждый из которых преобразует лишь одну из трёх независимых пространственных переменных.
Симметрией конкретной системы предопределяется выбор координат, в которых следует выразить лапласиан, ею определяется вид решений дифференциальных уравнений, в которых уравнение Лапласа оказывается в роли однородной части.
Таковы две задачи о сферически симметричных движениях.
Первая из них о свободном вращении без потенциальной энергии.
Вторая о вращении в поле центральной силы.
Основная квантово-механическая модель, применяемая для исследования сферического вращения как с потенциальной энергией, так и без неё, называется РОТАТОР.
Первая задача о стационарном вращении частиц с линейно распределённой массой относительно центра масс. Таковы все двухатомные молекулы, а также некоторые трёхатомные молекулы, такие как CO2, CS2. Эта задача более проста, и в ней вращение частицы свободное, т.е. совершается без потенциальной энергии (Urot=0), и единственный вклад в энергетические уровни даёт лишь кинетическая энергия вращения. В классической механике энергию такого движения можно было бы отождествить с энергией чисто тангенциального (касательного) перемещения частицы по сфере.
Вторая задача о стационарном движении с потенциальной энергией в поле центральной силы. В классическом рассмотрении наряду с тангенциальной, чисто вращательной, появилась бы и радиальная компонента энергии.
В атомах существенную роль играет лишь электростатическое взаимодействие, подчиняющееся закону Кулона. Силы гравитации по сравнению с ним неизмеримо мала.
Для одного электрона в поле ядра с порядковым номером Z в Периодической Системе Менделеева потенциальная энергия притяжения в системе СГС равна U(r) = — Z×e2/r.
8.4. Одноэлектронные атомы. Одноэлектронными сферически симметричными системами являются атом водорода, водородоподобные ионы (ионы, ядра которых имеют порядковые номера Z, в поле которых находится всего 1 электрон. Такие ионы образуются при Z-1 ступенчатой ионизации), а также атом позитрония, который образуется перед аннигиляцией электрон — позитронной пары в виде стационарной системы перед тем, как они аннигилируют, излучая два гамма-кванта.
8.5. Перевод лапласиана в шаровые координаты можно осуществить, следуя различным схемам. В сферических координатах лапласиан выглядит на первый взгляд довольно внушительно, но при ближайшем рассмотрении оказывается конструкцией, достаточно простой. Несложные, но довольно длительные преобразования приводят к следующему выражению:
/>. (8.3)
8.6. Компоненты лапласиана.
Для сокращения выделим в лапласиане два слагаемых — радиальное и угловое:
/>(8.4)
Угловой оператор называется оператором Лежандра.
Лапласиан приобретает сжатый вид:
/>(8.5)
8.7. Угловой оператор(оператор Лежандра)
в свою очередь разделяется далее на два независимых оператора. Один действует на переменную долготы J, второй — на переменную широты j, и получается:
/>/>/>. (8.6)
Операторное уравнение для оператора Лежандра встречается в нескольких очень важных фундаментальных ситуациях. Это задачи: 1) о квантовых состояниях и энергетических уровнях ротатора — линейной молекулы, свободно вращающейся вокруг центра массы. 2) об электронном строении атома H и водородоподобных ионов.
Уравнение Лапласа для сферической системы:
Уравнением Лапласа называется дифференциальное уравнение в частных производных второго порядка вида />. В сферических переменных оно имеет вид
/>. (8.7)
/>. (8.8)
Решения находятся по методу Фурье: для разделения переменных искомое решение представляется в виде произведения радиальной и угловой компонент функций.
8.9. Разделение переменных.
Общее правило: Если в дифференциальном уравнении в частных производных можно выделить оператор, включающий несколько переменных, и привести его к аддитивной форме, придавая ему вид суммы слагаемых, определённых лишь для отдельных переменных, то исходное дифференциальное уравнение распадается на систему дифференциальных уравнений.
Каждое из них и их решения определены лишь на переменных соответствующего оператора-слагаемого. Частные решения исходного дифференциального уравнения выбираются в мультипликативном виде, как произведения функций – решений отдельных уравнений системы. Этот результат сформулируем в виде краткого правила: «Оператор аддитивен-Решения мультипликативны». Этот подход встречается всюду в теории многоэлектронных систем – атомов и молекул. --PAGE_BREAK--
8.10. Радиальная часть общего решения сферического уравнения Лапласа выбрана в виде степенной функции от радиальной переменной с показателем степени l принимающим одно из целочисленных неотрицательных значений/>. В этом случае соблюдается симметрия общего решения по отношению к взаимным перестановкам декартовых координат, и делается возможно построение регулярных решений (функций класса Q), которые обладают известными свойствами конечности, однозначности и непрерывности, а также могут быть и пронормированы.
/>. (8.9)
Угловые сомножители общего решения Y(J,j) называются сферическими гармониками (шаровыми функциями). Запишем уравнение Лапласа, и рассмотрим процедуру разделения переменных:
/>. (8.10)
Учитывая, что каждый из операторов активен лишь к своим переменным, получаем:
/>. (8.11)
Для разделения переменных следует слева умножить каждое из слагаемых в уравнении на функцию, обратную искомому общему решению. Эта функция равна />:
/>/>
8.11. Получаем равенство, обе части которого содержат независимые переменные и поэтому их обе следует приравнять постоянной величине, т.е.:
/>. (8.12)
Постоянная легко определяется из радиальной части. Угловая часть уравнения Лапласа представляет собой дифференциальное уравнение Лежандра. Это второе из двух уравнений системы вида
/>. (8.13)
8.12.Уравнение Лежандра
Это операторное уравнение на собственные функции и собственные значения. В квантовой механике таковы все уравнения для динамических переменных. Дифференциальное уравнение Лежандра с точностью до постоянного множителя совпадает с операторным уравнением насобственные значения оператора квадрата момента импульса. Напомним, что оператор момента импульса равен
/>
Возводя его в квадрат и вынося влево постоянный множитель, получаем:
/>
Заменяя декартовы координаты шаровыми и производя всю последовательность действий, находим, что слева получается оператор Лежандра:
/>. (8.14)
На этом основании решения уравнения Лежандра являются также и решениями операторного уравнения на собственные значения квадрата момента импульса. Так получается строгая формула квантования модуля и проекции момента импульса.
8.13. Квадрат модуля момента импульса определяется собственными значениями оператора Лежандра. Для сравнения представим оба выражения:
/>. (8.15)
Допустимые значения модуля момента импульса свободно вращающейся вокруг центра масс квантовой системы (ротатора) следуют из операторного уравнения (8.15):
/>. (8.16)
8.14. Уравнение Лежандра содержит две угловые переменные. Их необходимо разделить и исследовать свойства вращения. Раскрывая оператор Лежандра, получаем
/>. (8.17)
Шаровые функции представим в виде />. Их ещё называют сферическими гармониками из-за того, что у них, как и у обычных тригонометрических гармоник – синусоиды и косинусоиды имеются чередующиеся в пространстве пучности и узлы.
Разделим переменные:
/>
Получена система (8.18) из двух дифференциальных уравнений (8.18.1 и 8.18.2), решения которых связаны общей постоянной.
8.15. Одно из них (8.18.1) имеет знакомый вид. Оно идентично уравнению Шрёдингера для плоского ротатора и описывает свойства вращения относительно оси вращения (вдоль переменной долготы). Полное совпадение с плоским ротатором получится лишь при условии, что в атоме H это уравнение характеризует лишь часть всей ситуации и определяет проекцию момента импульса на ось вращения
/>
Из этого уравнения вытекают значения компоненты момента импульса вдоль оси вращения (в нашем случае – вдоль оси аппликат):/> (8.21)
8.16.Второе из уравнений (8.18.2) системы — дифференциальное уравнение для широты:
/>(8.22)
Наконец-то обратимся к уравнению Шрёдингера для водородоподобного атома!
8.17. Гамильтониан и уравнение Шрёдингера
/>. (8.23)
8.17. Несложные преобразования, состоящие только в перемещении и группировке слагаемых, дают следующее:
/>
/>()
Уравнение Шрёдингера для атома водорода приведено к компактному операторному виду, и здесь уже возможно его решение по методу Фурье разделения переменных.
Решения содержат радиальный и угловой сомножители:
/>
8.18. Схема разделения переменных та же, что и в уравнении Лапласа (по правилу «оператор аддитивен — решение мультипликативно». Есть сомножитель радиальный, и есть угловой, и частные решения углового уравнения – сферические функции. Разделим переменные:
/>
Получается система (8.29) из двух дифференциальных уравнений: (8.29.1) — уравнение Лежандра для сферических гармоник (с точностью до постоянной совпадающее с уравнением для квадрата модуля момента импульса !), и (8.29.2) — чисто радиальное:
/>. (8.29)8.19. Итоги.
8.19.1. Гамильтониан для электрона в водородоподобном ионе (атоме):
/>(8.30)
8.19.2. Лапласиан в сферических переменных:
/>+/>/>. (8.31)
8.19.3. Уравнение Шрёдингера />с потенциальной функцией V(r) для одноэлектронных состояний:
/>. (8.32)
Потенциальная функция V(r) имеет вид:
1) у атома H V(r) = -e2/r,
2) у водородоподобного ионаV(r) =-Ze2/r.
Уравнение Шрёдингера в общем виде для водородоподобного иона приобретает вид
/>. (8.33)
Оно разделяется на систему из трёх дифференциальных уравнений:
/>. (8.34)    продолжение
--PAGE_BREAK--
От потенциала зависит лишь радиальная, но не угловая часть уравнения Шрёдингера.
Система этих уравнений даёт полное описание атомных орбиталей — одноэлектронных волновых функций в простейшем случае – в водородоподобном ионе. Первое уравнение совпадает с уравнением Шрёдингера для плоского ротатора, оно описывает свойства вращения вокруг аппликаты (мы выполняли преобразования так, что это ось z). Решения этого уравнения нумеруются квантовым числом
/>. (8.35)
1) Первое уравнение (как и в плоском ротаторе) описывает компоненту момента импульса вдоль оси вращения, определяя проекцию вектора момента с помощью квантового числа m.
2) Второе и первое уравнения вместе(до разделения угловых переменных) проистекают из одного общего дифференциального уравнения Лежандра
/>(8.36)
из которого следует правило квантования модуля момента импульса с помощью числаl :
/>(8.37)
Уравнение (E) предписывает условие
/>. (8.38)
и возникает следствие /> и магнитное квантовое число m ограничено пределами />. Всякому квантовому числу l, таким образом, отвечает 2l+1 состояние.
3) Радиальное уравнение приводит к квантованию энергии электронного уровня. Правило квантования одноэлектронных уровней – энергетический спектр водородоподобного иона выражается формулой Бора:
/>или в атомных единицах:
/>.
В итоге каждую из атомных орбиталей в атоме водорода можно быть охарактеризовать (пронумеровать) тройкой квантовых чисел />. Для многих целей, связанных просто с перечислением АО, этих чисел вполне достаточно для их исчерпывающей характеристики, и, поэтому вместо символа волновой функции, достаточно просто перечислить тройку квантовых чисел индексы в скобках или в виде индексов. Этот способ записи эквивалентен волновой функции и такой же точно общий символ АО.
8.20.1. Квантовые числа, интервалы возможных значений.
8.20.2. Водородоподобные атомные орбитали.
Угловые компоненты АО и распределение вероятностей.
Полярные функции азимута Qlm(J) и функций широты F|m|(j)
Alm(q)
ql,m(J)
A(j)
F|m|(j)
(1/2)½
1
(1/2p)½
1
(3/2)½
cosJ
(1/2p)½
1
(3/4)½
sinJ
(1/2p)½
exp(±ij)
(5/8)½
3×cos2J-1
(1/2p)½
1
(15/16)½
sin2J
(1/2p)½
exp(±ij)
(15/16)½
sin2J
(1/2p)½
exp(±i2j)


5×cos2J -3×cosJ
(1/2p)½
1


(5×cos2J -1)×sinJ
(1/2p)½
exp(±ij)


sin2J×cosJ
(1/2p)½
exp(±i2j)    продолжение
--PAGE_BREAK--


sin3J
(1/2p)½
exp(±i3j)
Полярные диаграммы функций азимута Qlm(J) и функций широты F|m|(j).
Радиальные компоненты АО атома Н и их графики. Радиальное распределение плотности вероятности и квантово-химический смысл боровского радиуса.
Anl






AZ
2
1
exp(-)










(Z/a)3/2
1/23/2
2- 


exp(-)




(½)×1/61/2







(2/81)×1/31/2
27-18+22


exp(-)




(4/81)×1/31/2
6- 2






(4/81)×1/31/2
 2






(1/192)×(¼)
192-14423


exp(-4)




(1/80)×(1/16)×(5/3)1/2
8023






(1/12)×(1/64)×1/51/2
1223






(1/768)×1/351/2
3






= Z(r/a)
8.20.1. Квантовые числа, интервалы возможных значений.
8.20.3. Пространственные размеры атома водорода.
8.20.4. Наиболее вероятное удаление электрона от ядра.
(Радиус наибольшей плотности вероятности)
/>
Радиус максимальной плотности вероятности называется боровским радиусом и совпадает с радиусом первой орбиты в теории атома водорода по Бору.
8.20.5.Среднее расстояние электрона от ядра.
Поскольку АО представляет собою нормированную одноэлектронную волновую функцию, то знаменатель в формуле для среднего значения любой физической величины, в том числе и расстояния электрона от ядра можно не выписывать, он равен единице, и отсюда следует:
/>. (8.41)
Среднее расстояние электрона от ядра в полтора раза больше наиболее вероятного — боровского радиуса.
Примечание. Использован вспомогательный интеграл: />
(См. теорию Эйлера Гамма — функции 1-го рода).
Энергетическая диаграмма уровней АО атома Н и Z-1–зарядного водородоподобного иона приводится ниже, где она качественные сравнивается со схемой уровней многоэлектронного атома.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Історія економічних учень
Реферат История религии России
Реферат Финансовая политика РФ в современных условиях
Реферат Социология потребления
Реферат Социология религии - традиции и новации
Реферат Внешнеэкономические связи Российской Федерации
Реферат "Входные барьеры" на рынок отрасли
Реферат Оценка уровня финансового состояния ОАО "ПО"Красноярский завод комбайнов""
Реферат Разработка вариантов инвестиционных проектов
Реферат А. Маршалл – основоположник неоклассической экономической теории
Реферат Особливості впливу електричного струму на організм людини
Реферат Технологический прогресс печатания газет
Реферат Прогнозирование доходности хозяйственной деятельности предприятия: содержание, методы, алгоритмы
Реферат Методика організації навчального процесу в рамках колективного способу навчання іноземній мові
Реферат Экзаменационные билеты и приблизительный перечень вопросов для подготовки к экзамену или зачету по предмету Философия