--PAGE_BREAK--
Рис.3
После сжатия в компрессоре (1—2) газ последовательно охлаждается в теплообменниках (2—3—4) и затем расширяется (дросселируется) в вентиле (4—5). При этом часть газа сжижается и скапливается в сборнике, а несжижившийся газ направляется в теплообменники и охлаждает свежие порции сжатого газа. Для сжижения газа по циклу с дросселированием необходимо, чтобы температура сжатого газа перед входом в основной теплообменник T3 была ниже температуры инверсионной точки. Для этого и служит теплообменник с посторонним холодильным агентом T2. Если температура инверсионной точки газа лежит выше комнатной (азот, аргон, кислород), то схема принципиально работоспособна и без теплообменников T1 и T2. Применение посторонних хладагентов в этих случаях имеет целью повышение выхода жидкости. Если же температура инверсионной точки газа ниже комнатной, то теплообменник с посторонним хладагентом обязателен. Например, при сжижении водорода методом дросселирования в качестве постороннего хладагента используется жидкий азот, при сжижении гелия — жидкий водород.
Для сжижения газа в промышленных масштабах чаще всего применяются циклы с детандерами (рис. 4), т. к. расширение газов с производством внешней работы — наиболее эффективный метод охлаждения.
Рис.4
В самом детандере жидкость обычно не получают, ибо технически проще проводить само сжижение в дополнительной дроссельной ступени. После сжатия в компрессоре (1—2) и предварительного охлаждения в теплообменнике (2—3) поток сжатого газа делится на 2 части: часть М отводится в детандер, где, расширяясь, производит внешнюю работу и охлаждается (3—7). Охлажденный газ подаётся в теплообменник, где понижает температуру оставшейся части сжатого газа 1 — М, которая затем дросселируется и сжижается. Теоретически расширение в детандере должно осуществляться при постоянной энтропии (3—6). Однако из-за потерь расширение протекает по линии 3—7. Для увеличения термодинамической эффективности процесса сжижения газа иногда применяют несколько детандеров, работающих на различных температурных уровнях.
Циклы с тепловыми насосами обычно используются (наряду с детандерными и дроссельными циклами) при сжижения газа с помощью холодильно-газовых машин, которые позволяют получать температуры до 12 К, что достаточно для сжижения всех газов, кроме гелия (см. табл.). Для сжижения гелия к машине пристраивается дополнительная дроссельная ступень.
Подвергаемые сжижению газы должны очищаться от паров воды, масла и др. примесей (например, воздух — от углекислоты, водород — от воздуха), которые при охлаждении могут затвердеть и закупорить теплообменную аппаратуру. Поэтому узел очистки газа от посторонних примесей — необходимая часть установок сжижения газа.
Значения температуры кипения Ткип (при 760 мм. рт. ст.), критической температуры ТК, минимальной Lmin и действительной LД работ сжижения некоторых газов:
Газ
Ткип, К
ТК, К
Lmin, квт•ч/кг
Lд, квт•ч/кг
Азот
Аргон
Водород
Воздух
Гелий
Кислород
Метан
Неон
Пропан
Этилен
77,4
87,3
20,4
78,8
4,2
90,2
111,7
27,1
231,1
169,4
126,2
150,7
33,0 132,5
5,3
154,2
191,1
44,5
370,0
282,6
0,220
0,134
3,31
0,205
1,93
0,177
0,307
0,37
0,04
0,119
1,2—1,5
0,8—0,95
15—40
1,25—1,5
15—25
1,2—1,4
0,75—1,2
3—4
~ 0,08
~ 0,3
Сжижение (конденсацию) газов возможно осуществить лишь после их охлаждения до температур, меньших Тк.
Детандер(от франц. détendre — ослаблять), машина для охлаждения газа путём его расширения с отдачей внешней работы. Детандер относится к классу расширительных машин, но применяется главным образом не с целью совершения внешней работы, а для получения холода. Расширение газа в детандере — наиболее эффективный способ его охлаждения. Детандер используется в установках для сжижения газов и разделения газовых смесей методом глубокого охлаждения, в криогенных рефрижераторах, в установках, имитирующих высотные и космические условия, в некоторых системах кондиционирования воздуха и т.д.
Наиболее распространены поршневые детандеры. и турбодетандеры :
продолжение
--PAGE_BREAK--
Поршневой детандер
Поршневые детандеры— машины объёмного периодического действия, в которых потенциальная энергия сжатого газа преобразуется во внешнюю работу при расширении отдельных порций газа, перемещающих поршень. Они выполняются вертикальными и горизонтальными, одно- и многорядными. Торможение поршневых детандеров осуществляется электрогенератором и реже компрессором.
Применяются в основном в установках с холодильными циклами высокого 15-20 Мн/м2 (150-200 кгс/см2) и среднего 2-8 Мн/м2 (20-80 кгс/см2) давлений для объёмных расходов газа при температуре и давлении на входе в машину (физических расходов) 0,2-20 м3/ч.
Центростремительный реактивный турбодетандер
Турбодетандеры — лопаточные машины непрерывного действия, в которых поток проходит через неподвижные направляющие каналы (сопла), преобразующие часть потенциальной энергии газа в кинетическую, и систему вращающихся лопаточных каналов ротора, где энергия потока преобразуется в механическую работу, в результате чего происходит охлаждение газа.
Они делятся по направлению движения потока на центростремительные, центробежные и осевые; по степени расширения газа в соплах — на активные и реактивные; по числу ступеней расширения — на одно- и многоступенчатые. Наиболее распространён реактивный одноступенчатый центростремительный детандер разработанный П. Л. Капицей. Торможение турбинных детандеров осуществляется электрогенератором, гидротормозом, нагнетателем, насосом.
Турбодетандеры применяются главным образом в установках с холодильным циклом низкого давления 0,4-0,8 Мн/м2 (4-8 кгс/см2) для объёмных (физических) расходов газа 40-4000 м3/ч. Созданы турбодетандеры для холодильных циклов низкого, среднего и высокого давлений с объёмными расходами газа 1,5-40 м3/ч. Эти машины характеризуются малыми размерами (диаметр рабочего колеса 10-40 мм) и высокой частотой вращения ротора (100000-500000 об/мин).
Адиабатный процесс
Адиабатный процесс- процесс, происходящий в физической системе без теплообмена с окружающей средой. Адиабатный процесс можно осуществить в системе, окруженной теплоизолирующей (адиабатной) оболочкой. Пример такого адиабатного процесса — рабочий такт тепловой машины, при котором газ (пар) расширяется в цилиндре с теплоизолирующими стенками и поршнем, при отсутствии необратимых превращений работы трения в теплоту.
Адиабатный процесс можно реализовать и при отсутствии адиабатной оболочки; для этого он должен протекать настолько быстро, чтобы за время процесса не произошло теплообмена между системой и окружающей средой. Так происходит, например, сжатие газа ударной волной, при котором газ, не успевая отдать выделившуюся теплоту, сильно нагревается. При скорости волны порядка 1 км/сек (скорости, достигнутой современными сверхзвуковыми самолётами) и сжатии воздуха под действием ударной волны в 4 раза температура воздуха повышается до 700 С. Адиабатное расширение газа с совершением работы против внешних сил и сил взаимного притяжения молекул вызывает его охлаждение. Такое охлаждение газов лежит в основе процесса
сжижения газов Адиабатный процесс размагничивания парамагнитных солей позволяет получить температуры, близкие к абсоллютному нулю.
Адиабатные процессы могут протекать обратимо и необратимо. В случае обратимого адиабатного процесса энтропия системы остаётся постоянной. Поэтому обратимый адиабатный процесс называют ещё изоэнтропийным. На диаграмме состояния системы он изображается кривой, называемой адиабатой, или изоэнтропой. В необратимых адиабатных процессах энтропия возрастает.
Низкие температуры
Низкие температуры — криогенные температуры, обычно температуры, лежащие ниже точки кипения жидкого воздуха (около 80 К). Такие температуры принято отсчитывать от абсолютного нуля температуры (-273,15 С, или 0 К) и выражать в кельвинах (К).
На 13-м конгрессе Международного института холода в 1971 была принята рекомендация, согласно которой криогенными температурами следует называть температуры ниже 120 К. Однако эта рекомендация ещё не получила широкого распространения; в данной статье рассматриваются низкие температуры границей ~ 80 К.
Получение низких температур. Для получения и поддержания низких температур обычно используют сжиженные газы. В сосуде Дьюара, содержащем сжиженный газ, испаряющийся под атмосферным давлением, достаточно хорошо поддерживается постоянная температура нормального кипения Tn хладоагента. Практически применяют следующие хладоагенты (сжиженные газы): воздух (TN = 80 К), азот (Tn = 77,4 К), неон (TN = 27,1 К), водород (TN = 20,4 К), гелий (TN = 4,2 К). Для получения жидких газов служат специальные установки — ожижители, в которых сильно сжатый газ при расширении до обычного давления охлаждается и конденсируется. Сжиженные газы могут сохраняться достаточно долго в сосудах Дьюара и криостатах с хорошей теплоизоляцией (порошковые и пористые теплоизоляторы, например пенопласты).
Откачивая испаряющийся газ из герметизированного сосуда, можно уменьшать давление над жидкостью и тем самым понижать температуру её кипения. Т. о., изменением давления паров над кипящей жидкостью можно регулировать ёё температуру. Естественная или принудительная конвекция и хорошая теплопроводность хладоагента обеспечивают при этом однородность температуры во всём объёме жидкости. Таким путём удаётся перекрыть широкий диапазон температур: от 77 К до 63 К с помощью жидкого азота, от 27 К до 24 К — жидкого неона, от 20 К до 14 К — жидкого водорода, от 4,2 К до 1 К — жидкого гелия.
Методом откачки нельзя получить температуру ниже тройной точки хладоагента. При более низких температурах вещество затвердевает и теряет свои качества хладоагента. Промежуточные температуры, лежащие между указанными выше интервалами, достигаются в специальных криостатах. Охлаждаемый объект теплоизолируют от хладоагента, например, помещают его внутрь вакуумной камеры, погруженной в сжиженный газ. При небольшом контролируемом выделении теплоты в камере (в ней имеется электрический нагреватель) температура исследуемого объекта повышается по сравнению с температурой кипения хладоагента и может поддерживаться с высокой стабильностью на требуемом уровне.
В др. способе получения промежуточных температур охлаждаемый образец помещают над поверхностью испаряющегося хладоагента и регулируют скорость испарения жидкости нагревателем. Отвод теплоты от исследуемого объекта здесь осуществляет поток откачиваемого газа. Применяется также метод охлаждения, при котором холодный газ, получаемый при испарении хладоагента, прогоняется через теплообменник (обычно медная трубка, свитая в спираль, или блок пористой меди), находящийся в тепловом контакте с охлаждаемым объектом.
Гелий при атмосферном давлении остаётся жидким вплоть до абсолютного нуля температуры. Однако при откачке паров жидкого 4He обычно не удаётся получить температуру существенно ниже 1 К даже с помощью очень мощных насосов (этому мешают чрезвычайно малая упругость насыщенных паров 4He и его сверхтекучесть).Поэтому для достижения температур порядка десятых долей Кельвина употребляют изотоп гелия 3He (Tn = 3,2 К), который не является сверхтекучим при данных температурах. Откачивая испаряющийся 3He, удаётся понизить температуру жидкости до 0,3 К.
Область температур ниже 0,3 К принято называть сверхнизкими температурами. Для получения таких температур применяются различные методы.
Методом адиабатического размагничивания (магнитного охлаждения) с применением парамагнитной соли в качестве охлаждающей системы удаётся достичь Н. т. ~ 10-3 К. Тем же методом с использованием парамагнетизма атомных ядер были достигнуты Н. т. ~ 10-6 К. Принципиальную проблему в методе адиабатического размагничивания (как, впрочем, и в др. методах получения низких температур) составляет осуществление хорошего теплового контакта между объектом, который охлаждают, и охлаждающей системой. Особенно это трудно достижимо в случае системы атомных ядер. Совокупность ядер атомов можно охладить до сверхнизких температур, но добиться такой же степени охлаждения вещества, содержащего эти ядра, не удаётся.
Для получения температур порядка нескольких мК теперь широко пользуются более удобным методом — растворением жидкого 3He в жидком 4He. Применяемая для этой цели установка называется рефрижератором растворения. Действие рефрижераторов растворения основано на том, что 3He сохраняет конечную растворимость (около 6%) в жидком 4He вплоть до абсолютного нуля температуры. Поэтому при соприкосновении почти чистого жидкого 3He с разбавленным раствором 3He в 4He атомы 3He будут переходить в раствор. При этом поглощается теплота растворения, и температура раствора понижается. Растворение осуществляется в одном месте прибора (в камере растворения), а удаление атомов 3He из раствора путём откачки — в другом (в камере испарения). При непрерывной циркуляции 3He, осуществляемой системой насосов и теплообменников, можно поддерживать в камере растворения температуру ~ 10-30 мК. неограниченно долго. Холодопроизводительность таких рефрижераторов определяется производительностью насосов, а предельно достижимая низкая температурыа (несколько мК)- эффективностью теплообменников и устранением паразитного притока теплоты.
Гелий 3He можно охладить ещё сильнее, используя эффект Померанчука. Жидкий 3He затвердевает при давлениях более 30 бар. В области температур ниже 0,3 К увеличение давления (в пределе до 34 бар) сопровождается поглощением теплоты и понижением температуры равновесной смеси жидкой и твёрдой фаз (затвердевание идёт с поглощением теплоты). Таким путём были достигнуты температуры ~1-2 мК
продолжение
--PAGE_BREAK--