--PAGE_BREAK--В процессе эксплуатации мореходные качества судна могут изменяться, так как они зависят от многих факторов, например, от количества принятого груза, его размещения и т. д.
Знание теории корабля позволяет судоводителю выбрать правильную схему загрузки судна и избежать опасных положений при различных условиях плавания.
Плавучесть— это способность судна плавать, имея заданную нагрузку и определенную осадку.
На судно, плавающее на спокойной воде, постоянно действуют две силы (рис. 1 а):
сила веса D, которая приложена в центре тяжести судна G и направлена вниз;
Рис 1. Действие сил веса и поддержания на судно:
а —в прямом положении; б —в наклоненном (без перемещения центра тяжести, например, под действием ветра или волнения)сила поддержания, соответствующая по закону Архимеда массе вытесненной судном воды V. Она приложена в центре величины судна С (центре тяжести подводной части) и направлена вверх.
Чтобы плавающее судно находилось в равновесии, эти две силы должны быть равны по величине и направлены в противоположные стороны по одной вертикали.
При плавании в штормовую погоду, а также в случае пробоины, течи судно принимает значительное количество воды, увеличивающей его массу. Поэтому судно должно иметь определенный запас плавучести.
Запас плавучести — это непроницаемый для воды объем корпуса судна, находящийся выше действующей ватерлинии. Этот объем образует помещения, ограниченные верхней водонепроницаемой палубой, а также надстройки при условии, что они водонепроницаемы, т. е. имеют водонепроницаемые двери и другие закрытия. При отсутствии запаса плавучести судно затонет при попадании внутрь корпуса даже небольшого количества воды.
Мерой запаса плавучести является отношение надводного объема корпуса к объемному водоизмещению судна.
Для сухогрузных судов запас плавучести составляет 25—50% водоизмещения, для наливных—10—25% и пассажирских —до 100%.
Необходимый для безопасного плавания судна запас плавучести обеспечивается приданием судну в процессе проектирования достаточной высоты надводного борта, устройством водонепроницаемых закрытий и делением судна на отсеки прочными водонепроницаемыми переборками и палубами. При отсутствии переборок и палуб любое повреждение подводной части судна при невозможности заделать его приводит к полной потере запаса плавучести и гибели судна.
Запас плавучести зависит от высоты надводного борта — чем выше надводный борт, тем больше запас плавучести. Минимальная допустимая высота надводного борта определяется Правилами Регистра Украины в зависимости от типа судна. Для контроля за ее сохранением на обоих бортах судна наносят особую грузовую марку.
Марки углублений (рис. 2). Для быстрого определения осадки судна на носу и в кормовой части судна наносят арабские или римские цифры — марки углублений.
На судах заграничного плавания марки углублений наносят: на правом борту в дециметрах и обозначают арабскими цифрами, высота цифр и интервала между ними равны 1 дм; на левом борту— в футах и обозначают римскими цифрами, высота цифр и интервалы между ними равны 1/2 фута. На судах внутреннего плавания марки углублений наносят в дециметрах. Нижние кромки цифр соответствуют той осадке, которую они обозначают.
Марки углублений накернивают при постройке судна и наносят на темном фоне белой краской, а на светлом фоне— черной.
По известной осадке можно легко определить дедвейт и водоизмещение судна, используя специальную таблицу — грузовую шкалу.
Грузовая шкала позволяет решать и обратные задачи, например, как изменится осадка при приеме известного количества груза и т. п. Такая шкала является одним из важнейших судовых документов.
Рис. 2. Марки углублений:
a — в дециметрах; б — в футах; в — другой вариант марок углублений в дециметрах
Рис. 3. Международная грузовая марка
Грузовая марка (рис. 3) показывает минимальный допустимый надводный борт с учетом района плавания судна и времени года.
Грузовые марки наносятся в соответствии с требованиями Международной конвенции по охране человеческой жизни на море и Правил Регистра Украины о грузовой марке. Суда загранплавания должны иметь Международное свидетельство о грузовой марке, а каботажные суда, плавающие во внутренних водах,— свидетельство Регистра Украины, учитывающее более легкие условия плавания между портами СНГ.
Марка наносится (накрашивается) следующим образом. На обоих бортах судна в средней части на уровне верхней (главной) палубы надводного борта наносят горизонтальную линию длиной 300 мм, которая называется палубной линией. От ее верхней кромки вниз откладывают высоту минимального летнего надводного борта и наносят горизонтальную линию длиной 450 мм. Из середины этой линии; как из центра, описывают
окружность диаметром 300 мм. Если грузовую марку наносят по Правилам Регистра, то по бокам круга наносят буквы «Р» и «С» высотой 115 мм и шириной 75 мм. На расстоянии 540 мм от центра круга (диска Плимсоля) в нос проводят вертикальную линию, а перпендикулярно ей —марки (горизонтальные линии длиной 230 мм, так называемую «гребенку»).
Летняя марка — это верхняя кромка линии, проходящей через центр круга, или линии, отмеченной буквой Л (S). Осадка судна в тропиках отмечается маркой Т (Т); для зимнего плавания -маркой 3 (W); для зимнего плавания в Северной Атлантике--маркой ЗСА (WNA). Эта марка наносится только на судах длиной не более 100,5 м. Осадка судна в пресной воде указывается маркой П (F), в пресной воде в тропиках — ТП (TF).
Посадкой называется положение судна относительно поверхности воды. Судно может занимать различное положение. Диаметральная плоскость судна наклонена на некоторый угол (рис. 4) по отношению к вертикальной плоскости, который называется углом крена. Плоскость мидель-шпангоута может быть наклонена к вертикальной плоскости на некоторый угол , который называется углом дифферента.
Посадка судна, при которой плоскость мидель-шпангоута и ДП вертикальны (y = 0, q = 0), называется прямой. Судно, имеющее такую посадку, называют сидящим на ровный киль.
Если q > 0, y = 0, то судно сидит на ровный киль, но с креном, при q = 0, q = 0 > 0 судно сидит прямо, но с дифферентом. Если судно имеет крен и дифферент, то его посадку называют произвольной.
У судна, имеющего посадку с дифферентом, осадки носом Тн и кормой Тк различны. Разность осадок носом и кормой определяет дифферент судна:
d = Тн — TK.
Рис. 4. Характеристики посадки судна
Полусумму осадок судна носом и кормой называют средней осадкой:
Тср = (Тн + Тк) / 2 (1)
Продольные наклонения судна происходят относительно поперечной оси, проходящей через центр тяжести площади ватерлинии. Положение центра тяжести действующей ватерлиний F относительно миделя определяется абсциссой хf.
Осадка судна в районе центра тяжести площади ватерлинии
ТF = Тср + D TF (2)
где D TF — поправка к средней осадке, м.
Для определения поправки рассмотрим треугольники abF и AВС. Из подобия треугольников ab/(bF) = AВ/(АС) или D TF / хf = (Тн — Tк)/L,
откуда D TF = [(Тн — Tк)/L] хf
Подставив полученное значение TF в выражение (2), получим
ТF = Тср + [(Тн — Tк)/L] хf (3)
При расчетах поправки ТF следует учитывать знак перед xf. Если центр тяжести F площади ватерлинии расположен в нос от миделя, то абсцисса xf берется со знаком плюс, если же он расположен в корме от миделя, то xf — со знаком минус.
При определении осадок по формулам (1) и (3) допускаются некоторые погрешности, однако их достоверность достаточна для практических расчетов. Для измерения фактических осадок служат марки осадок, которые наносят на обоих бортах корпуса на носовом и кормовом перпендикулярах.
Осадку носом и кормой определяем пользуясь таблицей элементов теоритического чертежа, приведенной в «Информации об остойчивости»
Средняя осадка d = 3.63 м.
Аппликата поперечного метацентра – Zm = 5,77 м
Момент, дифферентующий на 1 см МТС = 101тм/с
Абсцисса центра величины xс = — 0,12 м
Абсцисса ЦТ ватерлинии xf = — 0,95 м
Определим поперечную метацентрическую высоту:
h = Zm – Zg = 5,77 – 3,51 = 2,26 м
Определяем дифферентующий момент Мдиф
Мдиф = Mx – D xc = — 1195 – 4460 (- 1,12) = — 660 тм
Определяем дифферент t
t = Мдиф / 100МТС = — 660 / 100*101 = — 0,065 м
Определяем осадку носом dн и кормой dк
dн = d + t (0,5 – xf/L) = 3,63 + (- 0,065 (0,5 – (-0,95/110)) = 3,6 м
dк = d – t (0,5 + xf/L) = 3,66 м
Рис. 5. План загрузки.
Одним из важнейших навигационных качеств судна является остойчивость. В реальных условиях плавания, кроме силы тяжести и силы поддержания, на судно действуют дополнительные силы, например сила ветра на надводную поверхность судна. Практика судовождения знает случаи опрокидывания судов при перемещении в трюме сыпучих или плохо закрепленных единичных грузов. Отсюда следует, что, для того чтобы судно плавало в заданном равновесии, недостаточно, чтобы оно удовлетворяло только основным уравнениям плавучести. Оно должно сопротивляться также внешним силам, стремящимся вывести его из положения равновесия.
Остойчивостью называют способность судна, отклоненного от положения равновесия действием внешних сил, возвращаться в первоначальное положение после прекращения действия этих сил.
Остойчивость зависит от формы корпуса и положения ЦТ судна, поэтому путем правильного выбора формы корпуса при проектировании и правильного размещения грузов на судне при эксплуатации можно обеспечить достаточную остойчивость, гарантирующую предотвращение опрокидывания судна при любых условиях плавания.
Остойчивость при поперечных наклонениях, т. е. при крене, называют поперечной. Поперечную остойчивость в зависимости от угла крена делят на начальную при малых (до 10—15°) углах крена и остойчивость при больших углах крена.
Наклонения судна происходят под действием пары сил. Момент этой пары сил, вызывающий поворот судна вокруг продольной оси, называют кренящим моментом — Мкр. Рассмотрим пример образования кренящего момента от воздействия на судно ветра (рис. 6). Сила ветра, приложенная в ЦТ площади надводной части судна (площади парусности), вызывает его боковое движение (дрейф), а совместно с силой, возникающей от сопротивления воды R6, приводит к появлению кренящего момента:
Mкр=Pвlкр.
где Мкр — кренящий момент, кН • м;
Рв — сила действия ветра, кН;
lКр — плечо кренящей пары, м.
Плечо кренящей пары lкр зависит от формы корпуса судна и в практических расчетах определяется в соответствии с указаниями Речного Регистра в зависимости от ширины корпуса, осадки и положения центра парусности судна.
Рис. 6. Возникновение кренящего момента
Действию кренящего момента препятствует восстанавливающий момент Мв, который характеризует способность судна сопротивляться внешним воздействиям.
По характеру действия внешних сил, вызывающих наклонения судна, различают статическую и динамическую остойчивость. Если кренящий момент нарастает от нуля до конечного значения постепенно и не вызывает угловых ускорений, а следовательно, и сил инерции, то остойчивость при таком наклонении называют статической. Если же кренящий момент действует на судно внезапно, то возникают угловое ускорение и сила инерции, а остойчивость при таком наклонении называют динамической.
2.1. Построение диаграммы статической остойчивости.
Для построения диаграммы статической остойчивости необходимы величины плеч статической остойчивости.
Плечи статической остойчивости рассчитываем по формуле:
lст = lф – Zg sin q
где lф – плечо формы для соответствующего угла крена q
Zg – аппликата центра тяжести судна
q — угол крена
Плечи формы находим с пантокарен п. 3. 7. «Информации по водоизмещению для каждого угла крена от 10 до 70о
Расчет ДСО
Углы крена q, град.
lст = lф – Zg sin q
10
12
20
30
40
50
60
70
l формы, м
1,01
1,22
2,03
2,9
3,6
3,96
4,09
4,05
sin q
0,1736
0,2079
0,3420
0,5
0,6427
0,766
0,866
0,9397
Zg sin q
0,61
0,73
1,2
1,76
2,26
2,69
3,04
3,3
lст
0,43
0,53
0,83
1,14
1,34
1,27
1,05
0,75
По данным таблицы строим диаграмму статической остойчивости.
2.2 Построение диаграммы динамической остойчивости.
Диаграмма динамической остойчивости – это кривая, выражающая зависимость работы восстанавливающего момента (плеча динамической остойчивости) от углов крена .
Кривая динамической остойчивости является интегральной кривой по отношению к диаграмме статической остойчивости.
Для ее построения производим расчет плеч динамической остойчивости lq
lq = 1/2dq SSlст
где SSlст – интегральная сумма плеч lст
1/2dq = 1/2 * 10о/57,3 = 0,08725
Следовательно, lq = 0,08725SSlст
qо
lст, м
Интегральная сумма SSlст, м
lq, м
10
0,4
SSlст10 = 0,4
0,035
20
0,83
SSlст10 = 2*0,4+0,83=1,63
0,14
30
1,14
SSlст10 = 2(lст10+ lст20)+ lст30 = 3,6
0,31
40
1,34
SSlст10 = 2(lст10+ lст20+ lст30)+ lст40=6,08
0,53
50
1,27
SSlст10 = 2(lст10+ lст20+ lст30+ lст40)+ lст50=8,7
0,76
60
1,05
SSlст10 = 2(lст10+ lст20+ lст30+ lст40+ lст50)+ lст60=11,01
0,96
70
0,75
SSlст10 = 2(lст10+ lст20+ lст30+ lст40+ lст50+ lст60)+ lст70=12,81
1,12
По данным таблицы строим диаграмму динамической остойчивости.
Рис. 8. Диаграмма динамической остойчивости.
Максимальное значение нагрузки, при котором еще возможно равновесие, соответствует положению, когда прямая из центра О станет касательной к диаграмме. Поэтому для нахождения опрокидывающего момента и угла опрокидывания из начала координат проводят прямую ОВ, касательную к диаграмме динамической остойчивости. Отрезок ВК на оси ординат численно равен минимальному опрокидывающему моменту Мопр.
При действии на судно большего динамического кренящего момента оно опрокинется.
qопр = 55о
В данном случае наше судно перевозит навалочный груз. К навалочным относятся грузы, которые складывают на судно без специальной укладки и распределения (зерно, каменный уголь, железная руда, бокситы, глинозем и т.д.). При наклонениях судна эти грузы смещаются подобно жидкости, если есть свободная поверхность и их перемещение не ограничено. Но влияние таких грузов на остойчивость имеет свои особенности. Смещение груза возможно только при углах наклонения, превышающих угол естественного скоса. Этот угол определяется углом крутизны, при котором находящийся в пирамиде груз остается в покое.
Примем для упрощения, что поверхность груза аа совпадает с ватерлинией ВЛ0(рис. 9, а). При наклонении судна на угол крена q1, равный углу покоя а, груз пересыпаться не будет. Когда угол крена q2
Рис. 9. Перемещение сыпучего груза при наклонении судна
станет больше угла покоя a(рис. 9, б), груз начнет пересыпаться, причем уровень поверхности груза a1a1 будет сохранять с плоскостью действующей ватерлинии ВЛ2 постоянный угол a.
Сыпучий груз смещается, как правило, слоем значительной толщины. Смещение вызывается ударом волны, местной вибрацией или какой-либо другой дополнительной причиной. Сместившийся груз при обратном наклонении судна в исходное состояние возвращается лишь частично. Инструкция для капитана по эксплуатации судна требует в случае образования такого крена немедленного установления вызвавшей его причины и следования благоприятным курсом в ближайший порт для устранения крена.
Безопасность перевозки зерна нормируется конвенцией по охране человеческой жизни на море и Регистром Судоходства Украины. Для перевозки зерна установлены требования, учитывающие появление дополнительного кренящего момента от смещения зерна в различных случаях загрузки судна, в том числе при установке дополнительных временных переборок, называемых шифтингбордсами. Шифтингбордсы закладывают в специальные гнезда, устроенные в поперечных комингсах люка или в пиллерсах под ними, а в пролете упрочняют стойками, которые с помощью канатов с талрепами прикрепляют к бортам.
продолжение
--PAGE_BREAK--
продолжение
--PAGE_BREAK--Сила в направлении оси х вызывает ускорение или торможение движения, а сила в направлении оси у— боковое смещение (дрейф). Момент вокруг оси z вызывает лишь отклонение от курса.
Колебания судна обычно происходят одновременно, но их раздельное изучение облегчает задачу, а результирующее перемещение, определяющее положение судна относительно воды, может быть получено суммированием результатов.
Характеристиками колебательного процесса являются:
амплитуда качки — наибольшее отклонение судна от положения равновесия;
размах качки — полное перемещение от одного крайнего положения до другого (сумма двух амплитуд следующих друг за другом колебаний);
частота качки w — число полных колебаний судна за время 2nt;
период качки t — интервал времени между двумя последовательными колебаниями отклонений судна в одном и том же направлении (два размаха), t= 2p/w;
коэффициент динамичности качки — отношение амплитуды качки к амплитуде волны, отражающее реакцию судна на воздействие регулярных волн.
Если возмущающая сила приложена однократно, то колебательный процесс под действием сопротивления быстро затухает. Амплитуда максимального отклонения зависит от значения приложенной силы и характеристик судна, а частота или период качки — только от характеристик судна. Поэтому такие колебания называют собственными, или свободными.
Наиболее важным параметром качки является частота, которая при совпадении с частотами действующих сил может привести к резонансным колебаниям и значительному, иногда многократному, увеличению амплитуды. Обеспечение плавания без попадания в условия резонансных колебаний возлагается на судоводителя. При отсутствии расчетных данных с достаточной точностью период свободной бортовой качки может быть определен по формулe
tq= Kk(B/h1/2m) (1)
где Kk— размерный коэффициент (принимают Kk = 0,83-:-0,86 с/м для пассажирских судов, 0,75-:-0,85 с/м для грузовых судов и 0,62-:-0,72 с/м для буксиров; большие значения коэффициента относятся к порожнему судну, меньшие — к груженому);
В — ширина судна, м;
hm — малая метацентрическая высота, м.
Из формулы (1) видно, что чем меньше метацентрическая высота, тем больше период качки, а следовательно, плавнее качка. Поэтому в процессе проектирования и эксплуатации судна стремятся к тому, чтобы его метацентрическая высота имела минимальное значение, обеспечивающее безопасность мореплавания.
Периоды свободной килевой и вертикальной качки одинаковы и приближенно могут быть определены:
ty= tверт – (2,7-:-3)Т
где Т — осадка судна, м.
Связь между периодом бортовой качки и метацентрической высотой позволяет заметить, что при увеличении остойчивости (hm возрастает) снижается плавность качки (tq убывает), т. е. возрастает частота колебаний w.
На волнении повторяемость возмущающих сил (встреча с волной) оказывается регулярной, что может привести к резонансным колебаниям. Частота встречи с волной зависит от скорости судна и волны, угла их встречи. Если считать, что судно идет к направлению распространения волн под углом , то относительная скорость встречи
c' = vcosj± cB, (2)
где v — скорость судна, м/с;
сB — скорость распространения волны, м/с (знак плюс соответствует встречной волне, минус — попутной).
Частота встречи (частота возмущающей силы) соответствует отношению длины волны к относительной скорости встречи, т. е.
tB= lB/ c'
Длина волны lBопределяется расстоянием между двумя соседними вершинами или подошвами волн. Высота волны определяется по вертикали от нижней точки ее впадины (подошвы) до высшей точки вершины (гребня). Период волны tB определяется временем, в течение которого две соседние волны проходят через одну неподвижную точку пространства. Приближенно скорость распространения волны
св=1,25 l1/2B.
Тогда кажущийся период волны
tB= lB/ (vcosj± 1,25l1/2B). (3)
Судоводитель должен сопоставить период собственных колебаний судна [формулы (1) и (2)] с вынужденными колебаниями —(3). Для обеспечения безопасности движения различие между ними должно быть не менее 20 %. Как видно из выражения (3), частоту возмущающей силы можно изменить изменением скорости судна и угла встречи с волной.
На практике безопасную скорость судна и курсовой угол часто выбирают с помощью специальных диаграмм Ремеза, Власова и других.
Влияние качки учитывают главным образом при нормировании мореходных качеств. В нормировании остойчивости качка учитывается при определении допускаемых моментов, а для судов класса М-СП и при нормировании относительного ускорения при бортовой качке, которое соответствует удовлетворительной обитаемости. Сводится это к тому, чтобы ускорение, испытываемое человеком, не превышало значения, равного одной десятой части ускорения свободного падения (0,lg). Если это требование не удовлетворяется, то на судне следует выполнить мероприятия, снижающие амплитуду бортовой качки.
Рис. 12. Возникновение сил на скуловых килях при качке
Наиболее простым средством являются скуловые кили — пластины, установленные на скуловом поясе перпендикулярно обшивке (рис. 12). Протяженность их соответствует длине цилиндрической вставки, ширина — габаритам шпангоута. При действии возмущающего момента Мв скуловые кили создают момент сопротивления силам Р. Применяют также активные скуловые кили (бортовые рули, стабилизирующие качку).
Рис. 13. Цистерны для успокоения качки:
/ — свободное пространство цистерн; 2, 4 — соответственно воздушный и водяной соединительные каналы; 3 — система клапанов
Существуют и другие виды гасителей колебаний, к которым относятся пассивные успокоительные цистерны, представляющие собой бортовые цистерны, соединенные воздушным каналом сверху и водяным снизу (рис. 13). Каналы снабжены системой клапанов, обеспечивающих перетекание жидкости при крене. Сопротивление воздуха, силы инерции и трения тормозят перетекание жидкости в такой мере, что период перетекания оказывается равным периоду качки судна и отстает по фазе от колебаний судна на 90° и колебаний волны на 180°. Таким образом, жидкость перекает в сторону поднимающегося борта и ее масса создает момент, успокаивающий качку судна. При режимах качки, близких к резонансу, цистерны уменьшают амплитуды качки примерно вдвое. Если жидкость перемещается насосами, то такие успокоительные цистерны считаются активными.
Наиболее сложным и дорогостоящим является применение гироскопических успокоителей. Тяжелый диск (гироскоп) успокоителя вращается с большой скоростью вокруг оси, соединенной с рамой. Ось качания рамы расположена горизонтально в поперечной плоскости судна и специальными цапфами соединена с его корпусом. При качке судна и вращении гироскопа возникает сложное движение рамы — прецессия, приводящая к появлению в цапфах реакций, создающих стабилизирующий момент.
4.1 Расчет амплитуды качки
Амплитуда качки судна рассчитывается по формуле
qr= 109k*x1*x2* r*S
где k – коэффициент учитывающий влияние скуловых килей, k = 1 (скуловые кили отсутствуют).
x1 – безразмерный множитель, зависящий от отношения ширины судна к осадке (В/d):
B/d = 13/3,63 = 3,58 по табл. 2.1.3.1-1[3] x1 = 0,79
x2 – безразмерный множитель, зависит от коэффициента полноты сВ
где сВ= V/LBT = D/gLBT = 4460/1,025*110*13*3,63 = 0,84
по табл. 2.1.3.1-2[3] для сВ > 0,7 x2 = 1,0
r – параметр определяемый по формуле:
r = 0,73 * 0,6(zq – d)/d = 0,73 + 0,6 ((3,51 -3,63)/3,63) = 0,71
S – безразмерный множитель, зависит от района плавания и периода качки Т
Т = 2сВ/ h
где с = 0,373 + 0,023 В/d – 0,043 L/100 = 0,373 + 0,023(13/3,63) -0,043* *(110/100) = 0,408
Т = 2 * 0,408 *13/ 2,26 = 7,07
по табл. 2.1.3.1-3[3] для Т = 7,07 S = 0,098 при неограниченном районе плавания.
qr = 109 * 1 *0,79 *1 * 0,71* 0,098 = 22,7o
T = 7,07
qr = 22,7o
4.2. Определение опрокидывающего момента с учетом бортовой
качки.
На диаграмме динамической остойчивости (рис.8) вправо начала координат откладываем r – амплитуду качки динамической остойчивости в точке А1
Через точку А1 проводим прямую, перпендикулярную оси абсцисс и на ней откладываем отрезок АА1 = 2qr…
Полученная точка А будет начальной для кривой динамической остойчивости.
Из начала (точка А) проводим касательную к диаграмме динамической остойчивости. Отрезок АА1 продлеваем до пересечения с вертикалью из точки на абсциссе 1 рад (57,3о).
Эта вертикаль пересекается с касательной к кривой в точке В. Отрезок ВС равен плечу опрокидывающего момента ВС.
ВС = 0,85 м lqопр = 0,85 м
Определим опрокидывающий момент с учетом качки:
Мопрmin = D* lqопр = 4460*0,85 = 3790 нм
Мопрmax=D* lqопр*q = 4460*0,85*9,8 = 37800 нм
4.3. Особенности плавания в штормовую погоду.
Конструкция современных морских судов обеспечивает большую прочность, надежную работу судовых механизмов и хорошие мореходные качества. Однако плавание и управление судном в шторм остаются сложной задачей. Обеспечение безаварийного плавания в этот период требует большого напряжения в работе всего экипажа, особенно судоводителей, четких знаний, умения и сознательной дисциплины.
Основные факторы, действующие на судно во время шторма — ветер и волнение. Ветер оказывает влияние на судно в зависимости от конструктивных особенностей. При развитых надстройках, избыточном надводном борте, небольшой осадке увеличиваются крен и дрейф судна. Ветер встречных направлений увеличивает сопротивление движению судна, ухудшает его управляемость. Если курс проходит вблизи берега, отмелей, рифов, то дрейф в их сторону во время плавания становится опасным.
Главную опасность для судна во время шторма представляют волнение, вызывающее качку, напряжение в корпусе и удары волн. Сильная бортовая качка создает большие динамические нагрузки на корпус и судовые механизмы. В результате этого могут появиться деформации и трещины в наружной обшивке корпуса и в палубах. Возникающие инерционные силы могут явиться причиной сдвига с фундаментов механизмов и устройств, смещения груза; удары волн и качка ухудшают управляемость, снижают скорость судна; рулевая машина работает с большой нагрузкой из-за частных перекладок руля.
Неправильная загрузка судна повлекшая смещение груза, или отсутствие опыта в управлении судна, в шторм приводят к аварийным ситуациям с тяжелыми последствиями, связанными с опрокидыванием на. Плавание с большой скоростью навстречу волне (особенно при неправильной загрузке) может вызывать напряжение корпуса, которое превысит допустимый предел, и судно может переломиться. На волне корма небольших судов и судов в балласте периодически поднимается, оголяя гребной винт, что приводит к перенапряжению в работе главного двигателя.
На судне в балласте качка значительно сильнее, особенно опасна для него встречная волна, которая, ударяясь в поднятое волной днище носовой части корпуса, вызывает сильную вибрацию.
В сильный шторм волны могут повредить или смыть палубные грузы, разрушить люковые закрытия, вентиляторы, судовые устройства и системы. Это создает опасность проникновения воды в трюмы, влечет за собой подмочку груза, а иногда и гибель судна.
Судоводитель должен всегда помнить, что ошибки в управлении судном в шторм могут привести даже самое современное судно к аварийному состоянию или его гибели. Безаварийное плавание в шторм зависит от высоких профессиональных знаний и опыта экипажа, подготовленности судна, заблаговременного получения прогнозов погоды и умелого управления.
Составная часть повседневной организации службы независимо от предстоящего плавания, продолжительности рейса, прогнозируемой погоды является подготовкой судна к штормовым условиям плавания. Судно должно быть приведено в такое состояние, которое обеспечит безопасность плавания в любых погодных условиях. Подготовка судна к плаванию начинается при стоянке в порту. Особое внимание уделяется погрузке. При составлении грузового плана необходимо предусмотреть обеспечение остойчивости, местной и общей прочности корпуса, мореходных качеств на момент выхода судна из порта, на период рейса и приход в порт назначения с учетом расходования судовых запасов в рейсе и качественную доставку груза получателю. Во время погрузки необходимо контролировать остойчивость, при необходимости производить перерасчеты;
тщательно следить за укладкой, наливом, штивкой и сепарацией, креплением груза. Особый контроль необходимо осуществить за погрузкой и креплением тяжеловесных и палубных грузов. Доступ к палубным механизмам и пробкам воздушных трубок балласта, льял или льяльных колодцев должен быть свободным.
При подготовке судна к рейсу следует руководствоваться Рекомендациями по обеспечению безопасности плавания судов в осенне-зимний период и в штормовых условиях (РОБПС-84).
Штормование. Если плавание судна в нужном направлении или в направлении ближайшего порта-убежища невозможно из-за очень сложных штормовых условий, то выполняется штормование — особый вид плавания, при котором судно удерживается на месте или идет курсом и скоростью, наиболее благоприятными относительно направления ветра и ветровых волн. Практикой установлено, что при штормовании против волны наиболее безопасной является минимальная скорость, при которой судно еще слушается руля.
Способ штормования определяется судоводителями с учетом конструктивных особенностей судна, его загрузки, остойчивости и района плавания:
на носовых курсовых углах — наиболее распространенный вид, рекомендуется для судов, имеющих полные обводы в носовой части (корпус конструктивно укреплен и рассчитан на большие волновые нагрузки с дифферентом на корму). На курсах носом на волну судно легче управляется, более устойчиво на курсе. Остойчивость судна сохраняется. Размахи бортовой качки уменьшаются. Скорость минимальная;
на кормовых курсовых углах выполняется только в том случае, когда длина волны значительно отличается от длины судна, имеющего нормальную или повышенную остойчивость; в этом случае возрастает рыскливость, снижается устойчивость на курсе;
в дрейфе — штормование с застопоренными главными двигателями. Опасно для судна при сильном шквальном ветре.
Судно с большой метоцентрической высотой — остойчиво, но будет иметь сильную и резкую бортовую качку, при которой возможны повреждения корпуса, сдвиг механизмов, нарушения креплений и смещение груза.
Судно с большой парусностью может быть положено на борт. Способ требует большого водного пространства, свободного от навигационных опасностей с подветренной стороны.
Штормование лагом к волне. В этом случае судно в наибольшей степени подвержено воздействию волны и ветру. Штормовать данным способом могут суда с повышенной остойчивостью. Качка у таких судов плавная, оно легко восходит на волну, не принимая много воды на палубу.
В штормовых условиях о повороте судна на новый курс экипаж предупреждается заблаговременно. При очень сильном шторме наиболее опасным является положение судна лагом к волне. Чтобы повернуть судно на новый курс, устанавливается закономерность изменения размеров ветровых волн и только после прохождения очередной наиболее развитой волны выполняется поворот.
Поворот при плавании судна против волны совершают как вправо, так и влево, позволив судну уваливаться под ветер и уменьшив ход до минимального. Поворот судна начинают перекладкой руля на борт (30—35°) и дают полный ход, когда корма окажется на обратном склоне крутой волны. Во время поворота, при подходе высоких волн с кормовых углов руль следует отводить к ДП заблаговременно. По окончании поворота изменением скорости хода вывести судно из зоны усиленной качки.
Поворот при плавании судна по волне начинают, когда на обратном склоне последней из серии крупных волн окажется носовая часть судна с таким расчетом, чтобы вторая половина поворота выполнялась в период относительно спокойного волнения. Если у судна перед поворотом период бортовой качки больше периода волн, то первую половину поворота выполняют на малом ходу, а вторую— как можно быстрее, не набирая большой инерции хода.
продолжение
--PAGE_BREAK--
продолжение
--PAGE_BREAK--