Реферат по предмету "Производство"


Технология производства черной меди на ОАО Среднеуральский медеплавильный завод

--PAGE_BREAK--4 Сырье для производства меди


Основное сырье для производства меди – руда. Медь может производится из вторичного сырья (отходы металлообработки, металлолом, брак)

Руда состоит из минералов, различают минералы:

— ценные (в их состав входят извлекаемые металлы)

— пустой породы

По минералогическому составу медные руды делятся на:

— сульфидные

— окисленные

— смешанные

— самородные

По количеству сульфидов:

— сплошные — полностью состоят из сульфидов

— вкрапленные – сульфиды присутствуют в виде вкраплений

По количеству ценных компонентов:

— монометаллические

— полиметаллические (комплексные)


5                   Основные минералы меди


Сульфидные:

— ковелин CuS,

— халькопирит CuFeS2,

— халькозинCu2S,

— бормит Cu5FeS4,

— кубанит CuFe2S3

Окисленные:

— малахитCuCO3 Cu(OH)2,

— куприт Cu2O,

— азурит CuCO3 Cu(OH)2,

— тенорит CuO

Кроме медносодержащих минералов в руде может содержаться:

— cфалерит ZnS

— пирротин Fe7S8

— пирит FeS2

— галинит PbS

В руде рисутствуют минералы пустой породы, в основном оксиды (SiO2, CaO, Al2O3, MgO), силикаты, карбонаты, алюмосиликаты.

Содержание меди в рудах: 0,5-1,5 меди, 0,8-1,5 в основном – руды с таким содержанием в металлообработку сразу отправлять нельзя. Применяют обогащение. Метод флотации – получают медный концентрат с содержанием меди 10-30 %, максимальное количество меди в концентрате до 50%. В России основными предприятиями по производству меди являются: Норильский никель, Северный никель, Пышма, Среднеуральский медеплавильный завод.
6                   История развития ОАО «Среднеуральский медеплавильный завод»


Правительственное постановление о строительстве на Урале крупного медеплавильного предприятия на базе Дегтярского месторождения медистых перитов — медно-серно-цинково-колчеданных руд, — расположенного в 15 км. к югу от Ревды было принято в августе 1931 года. Работы по возведению и техническому оснащению производств, прокладке коммуникационных и транспортных сетей, строительству жилья для работников завода заняли без малого девять лет. 25 июня 1940 года были получены первые тонны черновой меди. Этот день считается днем рождения СРЕДНЕУРАЛЬСКОГО МЕДЕПЛАВИЛЬНОГО ЗАВОДА. В последующие десятилетия завод рос, наращивал свой технический потенциал, увеличивал объемы выпуска продукции и прочно вошел в число лидеров отрасли. Тяжелые испытания пришлись на 1990-е годы, когда из-за недостатка медьсодержащего сырья резко сократилось производство черновой меди, хронические неплатежи за переработку и полученную продукцию привели к большой задолженности по заработной плате и, как следствие, к недовольству коллектива. Критическая ситуация была разрешена лишь благодаря совместным усилиям руководства СУМЗа и АО «Уралэлектромедь». С приходом на пост генерального директора А.А. Козицына завод начал работать достаточно стабильно, постоянно увеличивая объемы производства. В настоящее время, согласно оценкам экспертов, ОАО «СУМЗ» входит в первую двадцатку наиболее динамично развивающихся компаний России, с2000 года входит в состав
УГМК.

СУМЗ является градообразующим предприятием. Он является основным плательщиком в муниципальный бюджет. Обеспечивает половину жилого массива города теплом и горячей водой. Завод содержит стоматологическую клинику, профилакторий, базу отдыха для детей, большой спортивный комплекс и Дворец культуры.
7                   Производственный комплекс ОАО «СУМЗ»


СУМЗ представляет собой крупный химико-металлургический комплекс, включающий в себя пять основных производств:

—              обогатительную фабрику, которая после реконструкции достигла мощности по переработке 1 миллиона тонн шлаков в год;

—              медеплавильный цех, производящий свыше 100 тысяч тонн черновой меди из собственного и привозного сырья. Попутно из концентратов и флюсов в готовую продукцию извлекаются золото и серебро;

—              сернокислотный цех, вырабатывающий около 500 тысяч тонн серной кислоты в год. Здесь также извлекается сера из обжиговых и конверторных газов и газов печи Ванюкова;

—              суперфосфатный цех, производящий фосфорные удобрения с использованием собственной серной кислоты. После частичной реконструкции оборудования в цехе освоен выпуск триполифосфата натрия — составляющего сырья для технических и бытовых моющих средств;

—              цех ксантогенатов — крупный производитель бутилового ксантогената калия, флотореагента для обогатительных фабрик. Цех может выпускать до 8,5 тысячи тонн этого продукта, которым обеспечивает большинство горно-обогатительных комбинатов Уральского региона, Башкортостана и Казахстана.

Предприятие поставляет свою продукцию на переработку на российские заводы, а также на экспорт. Основным потребителем черновой меди производства ОАО «СУМЗ» является АО «Уралэлектромедь». Потребителями прочей продукции являются предприятия Урала, Центральных и Восточных районов России. Основным видом экспортной продукции является рафинированная медь.




Динамика объемов производства продукции ОАО «СУМЗ», т



Завод является носителем передовых технологий в комплексной переработке техногенных отходов. На предприятии действует самая современная система экологического мониторинга.

Перспективные планы ОАО «СУМЗ» предусматривают продолжение работ по реконструкции и модернизации оборудования завода с целью увеличения объемов производства, повышения качества продукции, комплексного использования сырья, сокращения вредного воздействия на окружающую среду, утилизации отходов производства.

В настоящее время на предприятии развертывается реконструкция всего основного производства
8 Организация медеплавильного цеха на ОАО «СУМЗ»
До 1995 года медеплавильный цех завода перерабатывал медные концентраты по схеме обжига в печах «кипящего» слоя, отражательной плавки огарка и конвертирования.

Отражательная плавка характеризуется низкой удельной производительностью, высоким расходом огнеупорных материалов, низким тепловым КПД, высоким удельным расходом углеродистого топлива и большим количеством газов с низким содержанием сернистого ангидрида (1,0-2,5%), обезвреживание которых связано со значительными капитальными и эксплуатационными затратами. Такие ценные сопутствующие компоненты, как сера, свинец, цинк, кадмий, германий, рений и др. при отражательной плавке полностью теряются.. Отражательная плавка, основанная на внешних источниках теплоты, — процесс несовершенный. Основными причинами острой необходимости замены отражательной плавки стали высокие требования к предотвращению загрязнения окружающей среды выбросами оксидов серы. В условиях отражательной плавки, характеризующейся образованием огромных количеств очень бедных по SO2 газов, их обезвреживание требует больших капитальных затрат и обходится дорого в эксплуатации. В связи с этим, а также в связи с необходимостью активного использования теплотворной способности сульфидов и ряда других рассмотренных выше факторов были разработаны и освоены новые способы плавки медного сырья. В 1987 году на заводе было начато строительство комплекса плавки медесодержащего сырья в жидкой ванне (печь Ванюкова). В 1995 году комплекс был пущен в эксплуатацию.


    продолжение
--PAGE_BREAK--9                   Интенсификация процесса плавки медного сырья


Целью плавки любого типа является перевод всей перерабатываемой шихты в расплавленное и газообразное состояние с получением штейна или чернового металла, возгонов и шлака и их разделением.

Значительные различия физико-химических свойств химических соединений, составляющих шихту и, в первую очередь, температуры их плавления приводят к постепенному формированию расплава. Сначала образуется первичный расплав из наиболее легкоплавких компонентов, а затем происходит растворение в них более тугоплавких веществ.

Следовательно, процессы штейно- и шлакообразования протекают в две стадии: расплавление легкоплавких составляющих шихты и растворение более тугоплавких веществ в этих расплавах.

Из числа присутствующих в сульфидных шихтах химических соединений наиболее легкоплавкими являются сульфиды (за исключением ZnS). При этом их эвтектические смеси по сравнению с отдельными сульфидами имеют еще меньшие температуры плавления. Поэтому процессы штейнообразования начинаются раньше процессов шлакообразования и идут с большими скоростями.

Шлакообразование начинается позднее и происходит медленнее потому, что для большинства оксидов шихты температура плавления выше, чем температура в печи. При ограниченных температурах в плавильных агрегатах особо важное значение приобретают процессы растворения тугоплавких оксидов в первичных шлаковых расплавах.

Процессы растворения являются диффузионными и поэтому протекают значительно медленнее процессов расплавления легкоплавких компонентов.

Образование шлаков в металлургических печах начинается, как правило, с получения оксидно-сульфидных эвтектик или более сложных многокомпонентных легкоплавких композиций.

В дальнейшем в них растворяются более тугоплавкие оксиды и, в первую очередь, кремнезем, вводимый обычно в шихту в виде кварцевого флюса.

На скорость растворения кремнезема в фаялитовом расплаве наибольшее влияние оказывает интенсивность движения шлака, крупность частиц флюса и его реакционная способность. В условиях отражательной плавки (при которой наблюдается наименее интенсивное перемешивание по сравнению с другими известными пирометаллургическими процессами) около 50—60 % кварцевого флюса, несмотря на длительное пребывание в расплаве (10—15 ч), не успевает полностью раствориться в шлаке. Мелкие частицы кварца образуют тонкую взвесь, а более крупные плавают на поверхности шлаковой ванны в виде «кварцевой шубы». Эксперименты показывают, что принудительное перемешивание расплава вызывает резкое ускорение процесса растворения тугоплавких составляющих шихты.

Наиболее медленным этапом плавки, даже для современных процессов, у которых время завершения других стадий мало, является коалесценция сульфидных капель и разделение штейна и шлака.

Значительная часть меди находится в шлаках в виде эмульсии — мелких капель штейна. Кроме того, при восстановлении или сульфидировании металлов в шлаковом расплаве обычно образуется дополнительное количество капель металлсодержащей фазы, отстаивание которых происходит крайне медленно и не успевает завершиться за приемлемое с практической точки зрения время. Поэтому необходимо обеспечить принудительное укрупнение штейновых или металлических частиц.

Можно однозначно утверждать, что именно медленное укрупнение мелкой штейновой (металлической) взвеси и ее отделение от шлака являются одним из самых медленных этапов плавки в целом

Наиболее эффективным приемом ускорения коалесценции штейно-вой взвеси является перемешивание шлака с получающимся при плавлении штейном. Известно, что даже загрузка сульфидов на поверхность шлаковой ванны и однократная промывка шпака каплями штейна заметно обедняют шлак.

Сочетание процессов восстановления и перемешивания шлака со штейном позволяет резко интенсифицировать укрупнение штейновых частиц и разделение фаз. Доказано, что крупность частиц при этом возрастает настолько, что для разделения штейна и шлака требуется менее 1 ч вместо 8—12 ч.

Правильная организация процесса разделения фаз создает предпосылки для резкой интенсификации работы плавильных агрегатов и повышения их удельной производительности.

Анализ переработки сульфидного сырья на штейн позволил выявить роль и взаимосвязь последовательных элементарных стадий физико-химических превращений и установить, что оптимизация технологии плавки требует определенного сочетания следующих условий:

1)                создание условий для высокой степени использования кислоро

2)                да газовой фазы в локальной зоне металлургического реактора, от

3)                деленной от конечных продуктов плавления;

4)                обеспечение высокой скорости массообменных процессов в сис

5)                теме исходные твердые компоненты — конечные расплавы;

3)      создание условий для достижения заданного приближения к

равновесию между конечными продуктами плавки;

4} ускорение укрупнения диспергированного штейна или металла и обеспечение полноты разделения продуктов плавки.

Результаты научных разработок позволили сформулировать основной принцип новой технологии: плавление сырья и массообмен осуществляются в турбулентно перемешиваемой ванне эмульсии штейна (металла) в шлаке.

Перемешивание расплава при барботаже его технологическими газами, образующимися при, подаче дутья в расплав через боковые фурмы, обеспечивает требуемую степень турбулизации для ускорения металлургических превращений в зоне расплава выше уровня фурм.

При этом обеспечивается коалесценция мелких штейновых капель и формирование составов фаз, близких к конечным. Расслаивание штейна и шлака организовано в прямоточном потоке вертикально движущихся расплавов. Это обеспечило совмещение в одном агрегате для непрерывного процесса реакционной зоны с высокой степенью турбулентности движения барботируемого расплава и зоны с ламинарным движением расплава, необходимой для организации разделения и отдельного выпуска шлака и штейна (металла).

Научно обоснованная оптимизация организации физико-химических процессов и движения расплава позволила создать новую технологию — плавку в жидкой ванне
    продолжение
--PAGE_BREAK--Сравнительные технико-экономические показатели


10 Сущность процесса плавки в жидкой ванне
Сущность технологического процесса плавки в жидкой ванне заключается в следующем. Кислородсодержащий газ вводится под избыточным давлением около 0,1 МПа в расплав через фурмы в стенах печи на уровне примерно 0,3—0,7 м ниже уровня расплава в спокойном состоянии внутри шахты печи.

Общая глубина ванны расплава в печи без барботажа 2,0—2,5 м. Кислородсодержащий газ дутья, барботируя верхнюю часть расплава, энергично перемешивает его и создает газонасыщенный слой гетерогенного расплава, состоящего в основном из шлака с включениями до 10 % (вес.) сульфидов в виде капелек штейна и при недостатке тепла — угля или кокса. Высота барботируемого газонасыщенного расплава увеличивается на величину, равную 2—3-х кратному расстоянию от оси фурм до уровня расплава в спокойном состоянии. Кислородсодержащий газ взаимодействует, в первую очередь, с сульфидом железа, серой и углем и генерирует тепло, необходимое для плавления загружаемой шихты и нагрева расплава именно в зоне технологического процесса равномерно во всем верхнем слое.

Благодаря интенсивному перемешиванию капельки сульфидной фазы, образуемые из загруженных частиц сырья, соударяются и сливаются, достигая гидродинамически устойчивого размера 0,5-5 мм, достаточного для выпадения их из верхнего барботируемого слоя и быстрого опускания в донную фазу.

Шихта, состоящая из флотационного концентрата или кусковой руды с флюсом и, если необходимо, с кусковым углем, вводится сверху в барботируемый слой; вследствие высокой энергии перемешивания она равномерно распределяется по всему его объему.

Расплавленные сульфиды шихты вследствие высокой активности серы и железа интенсивно взаимодействуют со шлаком и кислородом дутья, поддерживают низкое содержание магнетита в шлаке. Это способствует получению шлаков, бедных по цветным металлам. В условиях активного перемешивания происходит быстрое растворение кварца и других тугоплавких компонентов шихты, и поэтому во всем объеме расплава постоянно поддерживается оптимальный состав лака, обеспечивающий минимальные потери цветных металлов. Наличие в расплаве пузырьков барботирующего газа способствует быстрой и полной (в соответствии с величиной равновесного давления пара) возгонке летучих компонентов.

Расположение переточного канала для вывода шлака из шахты на 1 м ниже уровня фурм привело к тому, что весь образующийся в верхнем барботируемом слое шлак постепенно движется сверху вниз, проходя свой путь в течение 1,5—3,0 ч. При этом он непрерывно промывается дождем крупных капель штейна, выпадающих из верхнего перемешиваемого слоя. Ниже фурм движущийся поток шлака уже не перемешивается и в нем можно создавать соответствующие градиенты температуры, состава и других параметров, способствующие обеднению шлака. Благодаря такой организации его движения исключена возможность проскока и быстрого выхода из печи непроработанного шлака с повышенным содержанием цветных металлов. Сульфидная донная фаза, образующаяся на дне печи из опускающихся капель, отдельно от шлака выводится из плавильного агрегата.




11 Процессы, протекающие в надфурменнои и подфурменной зонах печи для плавки в жидкой ванне
В надфурменной зоне происходитплавление, окисление сульфидов, растворение

тугоплавких компонентов, укрупнение мелких сульфидных частиц.

При этом все процессы проходят одновременно и с высокой скоростью. Высокая скорость обеспечивается интенсивным перемешиванием расплава. Отсутствие диффузионных ограничений.

Важная особенность:

-        невысокое содержание магнетита в шлаке в сравнение с другими автогенами процессами способствует снижению потерь меди со шлаком .

-        100% использование кислорода в расплаве, что позволяет изменять состав штейна за счет изменения соотношения кислорода в дутье и количества шихты.

В подфурмениой зоне происходит оседание капель штейна. Скорость движения

капель штейна намного превышает скорость движения шлака вниз. Происходит промывка шлака

каплями штейна. За счет этого ускоряется разделение и отстаивание шлака и штейна. Эти процессы

позволяют достигнуть удельную производительность 60-80т/м в сутки. Процесс может идти как в автогенном, так и полуавтогеном режиме. Во втором случае используется топливо: уголь, природный газ, мазут.
12 Конструкция печи Ванюкова
Достоинства печи Ванюкова:

— возможно широкое управление составом штейна и получение на богатых штейнах относительно бедных отвальных шлаков.

— процесс характеризуется низким пылеуносом и получением возгонов, богатых по содержанию ценных компонентов

— надежная и долговечная аппаратура

— роцесс не требует сложной подготовки сырья и пригоден для переработки как кусковой руды, так и концентратов различного состава

— по своим показателям он превосходит все известные в мировой практике процессы.
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат ЗНО биология 2009 с ответами
Реферат Бато-Лавуар
Реферат Закрытое административно-территориальное образование "Северск"
Реферат Закономірності формування корпоративного управління
Реферат Георгий Конисский – философ XVIII века.
Реферат Законы и модели организационного поведения
Реферат Об уплате налоговых и иных обязательных платежей в процессе конкурсного производства при банкротстве организаций
Реферат Кершовани, Отокар
Реферат Товароведная характеристика и экспертиза качества синтетических моющих средств
Реферат Законы организациии
Реферат Задача по Менеджменту
Реферат Учет расчетов с поставщиками и подрядчиками в ОАО "Славгородская пивоварня"
Реферат Acid Rain Essay Research Paper My first
Реферат Значение мерчендайзинга в торговом бизнесе
Реферат Аннотация программы учебной дисциплины «Администрирование локальных сетей» Направление 010400. 62 «Прикладная математика и информатика»