ГОУ Колледж сфер и услуг №10.
Выполнена студентом 2 курса группы 2/23 Жучковым Антоном Андреевичем Научный руководитель: |
Москва 2010
Содержание1 Происхождение и понимание термина „Искусственный интеллект“
2 Предпосылки развития науки искусственного интеллекта
3 Подходы и направления
3.1 Подходы к пониманию проблемы
3.1.1 Тест Тьюринга и интуитивный подход
3.1.2 Символьный подход
3.1.3 Логический подход
3.1.4 Агентно-ориентированный подход
3.1.5 Гибридный подход
3.2 Модели и методы исследований
3.2.1 Символьное моделирование мыслительных процессов
3.2.2 Работа с естественными языками
3.2.3 Накопление и использование знаний
3.2.4 Биологическое моделирование искусственного интеллекта
3.2.5 Робототехника
3.2.6 Машинное творчество
3.2.7 Другие области исследований
4 Современный искусственный интеллект
4.1 Положение дел
4.2 Применение
4.3 Перспективы
5 Связь с другими науками
5.1 Компьютерные технологии и кибернетика
5.2 Психология и когнитология
5.3 Философия
5.3.1 Вопросы создания ИИ
5.3.2 Этика
6 ИИ и общество
6.1 Религия
6.2 Научная фантастика
6.2.1 Кинофильмы
6.2.2 Аниме
6.2.3 Музыкальные произведения
7 Литература
Иску́сственный интелле́кт (ИИ, англ. Artificial intelligence, AI, ИскИн)
Это наука и технология создания интеллектуальных машин и систем, особенно интеллектуальных компьютерных программ. Это связано с задачей использования компьютеров, чтобы понять человеческий интеллект, но при этом используемые методы не обязательно биологически правдоподобны. Но проблема состоит в том, что неизвестно какие вычислительные процедуры мы хотим называть интеллектуальными, а так же мы понимаем только некоторые механизмы интеллекта. Поэтому под интеллектом в пределах этой науки понимается только вычислительная часть способности достигать целей в мире
Различные виды и степени интеллекта существуют у многих людей, животных и некоторых машин, интеллектуальных информационных систем и различных моделей экспертных систем с различными базами знаний. При этом, как видим, такое определение интеллекта не связано с пониманием интеллекта у человека — это разные вещи. Более того, эта наука моделирует человеческий интеллект, так как с одной стороны, можно изучить кое-что о том, как заставить машины решить проблемы, наблюдая других людей, а с другой стороны, большинство работ в ИИ касаются изучения проблем, которые требуется решать человечеству в промышленном и технологическом смысле. Поэтому ИИ-исследователи вольны использовать методы, которые не наблюдаются у людей, если это необходимо для решения конкретных проблем.
Именно в таком смысле термин ввел Джон Маккарти в 1956 году на конференции в Дартмутском университете, и до сих пор несмотря на критику тех, кто считает, что интеллект — это только биологический феномен, в научной среде термин сохранил свой первоначальный смысл, несмотря на явные противоречия с точки зрения человеческого интеллекта.
В философии не решён вопрос о природе и статусе человеческого интеллекта. Нет и точного критерия достижения компьютерами «разумности», хотя на заре искусственного интеллекта был предложен ряд гипотез, например, тест Тьюринга или гипотеза Ньюэлла — Саймона. Поэтому несмотря на наличие множества подходов как к пониманию задач ИИ, так и созданиюинтеллектуальных информационных систем можно выделить два основных подхода к разработке ИИ:
нисходящий (англ. Top-Down AI), семиотический — создание экспертных систем, баз знаний и систем логического вывода, имитирующих высокоуровневые психические процессы: мышление, рассуждение, речь, эмоции, творчество и т. д.;
восходящий (англ. Bottom-Up AI), биологический — изучение нейронных сетей и эволюционных вычислений, моделирующих интеллектуальное поведение на основе биологических элементов, а так же создание соответствующих вычислительных систем, таких как нейрокомпьютер или биокомпьютер.
Последний подход, строго говоря, не относится к науке о ИИ в смысле данном Джоном Маккарти — их объединяет только общая конечная цель.
Одно из частных определений интеллекта, общее для человека и «машины», можно сформулировать так: «Интеллект — способность системы создавать в ходе самообучения программы (в первую очередь эвристические) для решения задач определённого класса сложности и решать эти задачи».
Предпосылки развития науки искусственного интеллектаИстория искусственного интеллекта как нового научного направления начинается в середине XX века. К этому времени уже было сформировано множество предпосылок его зарождения: среди философов давно шли споры о природе человека и процессе познания мира, нейрофизиологи и психологи разработали ряд теорий относительно работы человеческого мозга и мышления, экономисты и математики задавались вопросами оптимальных расчётов и представления знаний о мире в формализованном виде; наконец, зародился фундамент математической теории вычислений — теории алгоритмов — и были созданы первые компьютеры.
Возможности новых машин в плане скорости вычислений оказались больше человеческих, поэтому в учёном сообществе закрался вопрос: каковы границы возможностей компьютеров и достигнут ли машины уровня развития человека? В 1950 году один из пионеров в области вычислительной техники, английский учёный Алан Тьюринг, пишет статью под названием «Может ли машина мыслить?», в которой описывает процедуру, с помощью которой можно будет определить момент, когда машина сравняется в плане разумности с человеком, получившей название теста Тьюринга.
Единого ответа на вопрос чем занимается искусственный интеллект, не существует. Почти каждый автор, пишущий книгу об ИИ, отталкивается в ней от какого-либо определения, рассматривая в его свете достижения этой науки.
Тест Тьюринга и интуитивный подход
Эмпирический тест, идея которого была предложена Аланом Тьюрингом в статье «Вычислительные машины и разум» (англ. Computing Machinery and Intelligence), опубликованной в 1950 году в философском журнале «Mind». Целью данного теста является определение возможности искусственного мышления, близкого к человеческому.
Стандартная интерпретация этого теста звучит следующим образом: «Человек взаимодействует с одним компьютером и одним человеком. На основании ответов на вопросы он должен определить, с кем он разговаривает: с человеком или компьютерной программой. Задача компьютерной программы — ввести человека в заблуждение, заставив сделать неверный выбор». Все участники теста не видят друг друга.
Самый общий подход предполагает, что ИИ будет способен проявлять поведение, не отличающееся от человеческого, причём, в нормальных ситуациях. Эта идея является обобщением подхода теста Тьюринга, который утверждает, что машина станет разумной тогда, когда будет способна поддерживать разговор с обычным человеком, и тот не сможет понять, что говорит с машиной (разговор идёт по переписке).
Писатели-фантасты часто предлагают ещё один подход: ИИ возникнет тогда, когда машина будет способна чувствовать и творить. Так, хозяин Эндрю Мартина из «Двухсотлетнего человека» начинает относиться к нему как к человеку, когда тот создаёт игрушку по собственному проекту. А Дейта из Звёздного пути, будучи способным к коммуникации и научению, мечтает обрести эмоции и интуицию.
Символьный подходИсторически символьный подход был первым в эпоху цифровых машин, так как именно после создания Лисп, первого языка символьных вычислений, у его автора возникла уверенность в возможности практически приступить к реализации этим средствами интеллекта. Символьный подход позволяет оперировать слабоформализованными представлениями и их смыслами. От умения выделить только существенную информацию зависит эффективность и результативность решения задачи.
Но широта классов задач, эффективно решаемых человеческим разумом, требует невероятной гибкости в методах абстрагирования. А это недоступно при любом инженерном подходе, в котором исследователь выбирает методы решения, основываясь на способность быстро дать эффективное решение какой-то наиболее близкой этому исследователю задачи. То есть уже за реализованную в виде правил единственную модель абстрагирования и конструирования сущностей. Это выливается в значительные затраты ресурсов для непрофильных задач, то есть система от интеллекта возвращается к грубой силе на большинстве задач и сама суть интеллекта исчезает из проекта.
Основное применение символьной логики - это решение задач по выработке правил. Большинство исследований останавливается как раз на невозможности хотя бы обозначить новые возникшие трудности средствами выбранных на предыдущих этапах символьных системах. Тем более решить их и тем более обучить компьютер решать их или хотя бы идентифицировать и выходить из таких ситуаций.
Логический подходЛогический подход к созданию систем искусственного интеллекта направлен на создание экспертных систем с логическими моделями баз знаний с использованием языка предикатов.
Учебной моделью систем искусственного интеллекта в 1980-х годах был принят язык и система логического программирования Пролог. Базы знаний, записанные на языке Пролог, представляют наборы фактов и правил логического вывода, записанных на языке логических предикатов.
Логическая модель баз знаний позволяет записывать не только конкретные сведения и данные в форме фактов на языке Пролог, но и обобщенные сведения с помощью правил и процедур логического вывода и в том числе логических правил определения понятий, выражающих определённые знания как конкретные и обобщенные сведения.
В целом исследования проблем искусственного интеллекта в рамках логического подхода к проектированию баз знаний и экспертных систем направлено на создание, развитие и эксплуатацию интеллектуальных информационных систем, включая вопросы обучения студентов и школьников, а также подготовки пользователей и разработчиков таких интеллектуальных информационных систем.
Агентно-ориентированный подход
Последний подход, развиваемый с начала 1990-х годов называется агентно-ориентированным подходом, или подходом, основанным на использовании интеллектуальных (рациональных) агентов. Согласно этому подходу, интеллект — это вычислительная часть (грубо говоря, планирование) способности достигать поставленных перед интеллектуальной машиной целей. Сама такая машина будет интеллектуальным агентом, воспринимающим окружающий его мир с помощью датчиков, и способной воздействовать на объекты в окружающей среде с помощью исполнительных механизмов.
Этот подход акцентирует внимание на тех методах и алгоритмах, которые помогут интеллектуальному агенту выживать в окружающей среде при выполнении его задачи. Так, здесь значительно сильнее изучаются алгоритмы поиска пути и принятия решений.
Гибридный подход предполагает, что только синергетическая комбинация нейронных и символьных моделей достигает полного спектра когнитивных и вычислительных возможностей. Например, экспертные правила умозаключений могут генерироваться нейронными сетями, а порождающие правила получают с помощью статистического обучения. Сторонники данного подхода считают, что гибридные информационные системы будут значительно более сильными, чем сумма различных концепций по отдельности.
Модели и методы исследований Символьное моделирование мыслительных процессовАнализируя историю ИИ, можно выделить такое обширное направление как моделирование рассуждений. Долгие годы развитие этой науки двигалось именно по этому пути, и теперь это одна из самых развитых областей в современном ИИ. Моделирование рассуждений подразумевает создание символьных систем, на входе которых поставлена некая задача, а на выходе требуется её решение. Как правило, предлагаемая задача уже формализована, то есть переведена в математическую форму, но либо не имеет алгоритма решения, либо он слишком сложен, трудоёмок и т. п. В это направление входят: доказательство теорем, принятие решений и теория игр, планирование и диспетчеризация, прогнозирование.
Работа с естественными языкамиНемаловажным направлением является обработка естественного языка, в рамках которого проводится анализ возможностей понимания, обработки и генерации текстов на «человеческом» языке. В частности, здесь ещё не решена проблема машинного перевода текстов с одного языка на другой. В современном мире большую роль играет разработка методов информационного поиска. По своей природе, оригинальный тест Тьюринга связан с этим направлением.
Накопление и использование знанийСогласно мнению многих учёных, важным свойством интеллекта является способность к обучению. Таким образом, на первый план выходит инженерия знаний, объединяющая задачи получения знаний из простой информации, их систематизации и использования. Достижения в этой области затрагивают почти все остальные направления исследований ИИ. Здесь также нельзя не отметить две важные подобласти. Первая из них — машинное обучение — касается процесса самостоятельного получения знаний интеллектуальной системой в процессе её работы. Второе связано с созданием экспертных систем — программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.
К области машинного обучения относится большой класс задач на распознавание образов. Например, это распознавание символов, рукописного текста, речи, анализ текстов. Многие задачи успешно решаются с помощью биологического моделирования Особо стоит упомянуть компьютерное зрение, которое связано ещё и с робототехникой.
Биологическое моделирование искусственного интеллектаОтличается от понимания искусственного интеллекта по Джону Маккарти, когда исходят из положения о том, что искусственные системы не обязаны повторять в своей структуре и функционировании структуру и протекающие в ней процессы, присущие биологическим системам, сторонники данного подхода считают, что феномены человеческого поведения, его способность к обучению и адаптации, есть следствие именно биологической структуры и особенностей ее функционирования.
Сюда можно отнести несколько направлений. Нейронные сети используются для решения нечётких и сложных проблем, таких как распознавание геометрических фигур или кластеризация объектов. Генетический подход основан на идее, что некий алгоритм может стать более эффективным, если позаимствует лучшие характеристики у других алгоритмов («родителей»). Относительно новый подход, где ставится задача создания автономной программы внешней средой, называется агентным подходом.
РобототехникаВообще, робототехника и искусственный интеллект часто ассоциируется друг с другом. Интегрирование этих двух наук, создание интеллектуальных роботов, можно считать ещё одним направлением ИИ. Примером интеллектуальной робототехники могут служить игрушки-роботы Pleo, AIBO, QRIO.
Машинное творчествоПрирода человеческого творчества ещё менее изучена, чем природа интеллекта. Тем не менее, эта область существует, и здесь поставлены проблемы написания компьютером музыки,литературных произведений (часто — стихов или сказок), художественное творчество. Создание реалистичных образов широко используется в кино и индустрии игр.
Добавление данной возможности к любой интеллектуальной системе позволяет весьма наглядно продемонстрировать что именно система воспринимает и как это понимает. Добавлением шума вместо недостающей информации или фильтрация шума имеющимися в системе знаниями производит из абстрактных знаний конкретные образы, легко воспринимаемые человеком, особенно это полезно для интуитивных и малоценных знаний, проверка которых в формальном виде требует значительных умственных усилий.
Другие области исследованийНаконец, существует масса приложений искусственного интеллекта, каждое из которых образует почти самостоятельное направление. В качестве примеров можно привести программирование интеллекта в компьютерных играх, нелинейное управление, интеллектуальные системы информационной безопасности.
Можно заметить, что многие области исследований пересекаются. Это свойственно для любой науки. Но в искусственном интеллекте взаимосвязь между, казалось бы, различными направлениями выражена особенно сильно, и это связано с философским спором о сильном и слабом ИИ.
В настоящий момент в создании искусственного интеллект наблюдается вовлечение многих предметных областей, имеющих хоть какое-то отношение к ИИ. Многие подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа так и не подошла.
Исследования ИИ влились в общий поток технологий сингулярности (видового скачка, экспоненциального развития человека), таких как информатика, экспертные системы, нанотехнология, молекулярная биоэлектроника, теоретическая биология, квантовая теория.
ПрименениеНекоторые из самых известных ИИ-систем:
Deep Blue — победил чемпиона мира по шахматам. Матч Каспаров против суперЭВМ не принёс удовлетворения ни компьютерщикам, ни шахматистам, и система не была признана Каспаровым. Затем линия суперкомпьютеров IBM проявилась в проектах brute force BluGene (молекулярное моделирование) и моделирование системы пирамидальных клеток в швейцарском центре Blue Brain.
MYCIN — одна из ранних экспертных систем, которая могла диагностировать небольшой набор заболеваний, причем часто так же точно, как и доктора.
20Q — проект, основанный на идеях ИИ, по мотивам классической игры «20 вопросов». Стал очень популярен после появления в Интернете на сайте 20q.net.
Распознавание речи. Системы такие как ViaVoice способны обслуживать потребителей.
Роботы в ежегодном турнире RoboCup соревнуются в упрощённой форме футбола.
Банки применяют системы искусственного интеллекта (СИИ) в страховой деятельности (актуарная математика) при игре на бирже и управлении собственностью. Методы распознавания образов (включая, как более сложные и специализированные, так и нейронные сети) широко используют при оптическом и акустическом распознавании (в том числе текста и речи), медицинской диагностике, спам-фильтрах, в системах ПВО (определение целей), а также для обеспечения ряда других задач национальной безопасности.
Разработчики компьютерных игр применяют ИИ в той или иной степени проработанности. Это образует понятие «Игровой искусственный интеллект». Стандартными задачами ИИ в играх являются нахождение пути в двумерном или трёхмерном пространстве, имитация поведения боевой единицы, расчёт верной экономической стратегии и так далее.
ПерспективыМожно выделить два направления развития ИИ:
решение проблем, связанных с приближением специализированных систем ИИ к возможностям человека, и их интеграции, которая реализована природой человека.
создание искусственного разума, представляющего интеграцию уже созданных систем ИИ в единую систему, способную решать проблемы человечества.
Искусственный интеллект вместе с нейрофизиологией, эпистемологией и когнитивной психологией образует более общую науку, называемую когнитология. Отдельную роль в искусственном интеллекте играет философия.
Также, с проблемами искусственного интеллекта тесно связана эпистемология — наука о знании в рамках философии. Философы, занимающиеся данной проблематикой, решают вопросы, схожие с теми, которые решаются инженерами ИИ о том, как лучше представлять и использовать знания и информацию.
Производство знаний из данных — одна из базовых проблем интеллектуального анализа данных. Существуют различные подходы к решению этой проблемы, в том числе — на основе нейросетевой технологии, использующие процедуры вербализации нейронных сетей.
Компьютерные технологии и кибернетикаВ компьютерных науках проблемы искусственного интеллекта рассматриваются с позиций проектирования экспертных систем и баз знаний. Под базами знаний понимается совокупность данных и правил вывода, допускающих логический вывод и осмысленную обработку информации. В целом исследования проблем искусственного интеллекта в компьютерных науках направлено на создание, развитие и эксплуатацию интеллектуальных информационных систем, а вопросы подготовки пользователей и разработчиков таких систем решаются специалистами информационных технологий.
Психология и когнитологияМетодология когнитивного моделирования предназначена для анализа и принятия решений в плохо определенных ситуациях. Была предложена Аксельродом.
Основана на моделировании субъективных представлений экспертов о ситуации и включает: методологию структуризации ситуации: модель представления знаний эксперта в виде знакового орграфа (когнитивной карты) (F, W), где F — множество факторов ситуации, W — множество причинно-следственных отношений между факторами ситуации; методы анализа ситуации. В настоящее время методология когнитивного моделирования развивается в направлении совершенствования аппарата анализа и моделирования ситуации. Здесь предложены модели прогноза развития ситуации; методы решения обратных задач.
ФилософияНаука «о создании искусственного разума» не могла не привлечь внимание философов. С появлением первых интеллектуальных систем были затронуты фундаментальные вопросы о человеке и знании, а отчасти о мироустройстве. С одной стороны, они неразрывно связаны с этой наукой, а с другой — привносят в неё некоторый хаос.
Философские проблемы создания искусственного интеллекта можно разделить на две группы, условно говоря, «до и после разработки ИИ». Первая группа отвечает на вопрос: «Что такое ИИ, возможно ли его создание, и, если возможно, то как это сделать?» Вторая группа (этика искусственного интеллекта) задаётся вопросом: «Каковы последствия создания ИИ для человечества?»
Течение трансгуманизма считает создание ИИ одной из важнейших задач человечества.
Вопросы создания ИИСреди исследователей ИИ до сих пор не существует какой-либо доминирующей точки зрения на критерии интеллектуальности, систематизацию решаемых целей и задач, нет даже строгого определения науки. Существуют разные точки зрения на вопрос, что считать интеллектом. Аналитический подход предполагает анализ высшей нервной деятельности человека до низшего, неделимого уровня (функция высшей нервной деятельности, элементарная реакция на внешние раздражители (стимулы), раздражение синапсов совокупности связанных функцией нейронов) и последующее воспроизведение этих функций.
Некоторые специалисты за интеллект принимают способность рационального, мотивированного выбора, в условиях недостатка информации. То есть интеллектуальной просто считается та программа деятельности (не обязательно реализованная на современных ЭВМ), которая сможет выбрать из определённого множества альтернатив, например, куда идти в случае «налево пойдёшь…», «направо пойдёшь…», «прямо пойдёшь…».
Наиболее горячие споры в философии искусственного интеллекта вызывает вопрос возможности мышления творения человеческих рук. Вопрос «Может ли машина мыслить?», который подтолкнул исследователей к созданию науки о моделировании человеческого разума, был поставлен Аланом Тьюрингом в 1950 году. Две основных точки зрения на этот вопрос носят названия гипотез сильного и слабого искусственного интеллекта.
Термин «сильный искусственный интеллект» ввел Джон Сёрль, его же словами подход и характеризуется:
Более того, такая программа будет не просто моделью разума; она в буквальном смысле слова сама и будет разумом, в том же смысле, в котором человеческий разум — это разум
Напротив, сторонники слабого ИИ предпочитают рассматривать программы лишь как инструмент, позволяющий решать те или иные задачи, которые не требуют полного спектра человеческих познавательных способностей.
Мысленный эксперимент «Китайская комната» Джона Сёрля — аргумент в пользу того, что прохождение теста Тьюринга не является критерием наличия у машины подлинного процесса мышления.
Мышление есть процесс обработки находящейся в памяти информации: анализ, синтез и самопрограммирование.
Аналогичную позицию занимает и Роджер Пенроуз, который в своей книге «Новый ум короля» аргументирует невозможность получения процесса мышления на основе формальных систем.
Существует разумный критерий отбора наиболее вероятных гипотез будущего развития (в том числе появления ИИ) — внимательное изучение развития в прошлом. В данном случае, имеет смысл обратиться к истории появления первых нервных клеток в многоклеточных организмах:
Первые нейроноподобные клетки появились из обычных клеток наружных слоёв первобытных многоклеточных организмов. Постепенно они мигрировали внутрь организма.
ИИ (точнее электронную личность) создадут на основе человеческой личности, что будет сходно с процессом появления нервной клетки в результате трансформации обычной клетки.
Пройдёт время и часть электронных личностей, будет постепенно консолидироваться в отдельные структуры, целые ансамбли из миллионов и даже миллиардов электронных единиц. Причём в специально отведённых для этого суперкомпьютерах будущего. Где-то появится и «головной мозг» нашей Цивилизации — СуперИИ. Но уже не мы станем его создателями. Он будет состоять из совершенных электронных личностей (примерно так, как и мозг любого животного состоит из нейронов), сплотившихся под руководством единой программы, позволяющей ему ощущать себя некой сверхличностью, а всю цивилизацию — своим реальным телом.
ЭтикаЭтот раздел содержит вопросы, касающиеся искусственного интеллекта и этики. Э. Юдковски (англ. Eliezer Yudkowsky) исследует в Институте сингулярности (SIAI) в США проблемы глобального риска, которые может создать будущий сверхчеловеческий ИИ, если его не запрограммировать на дружественность к человеку. В 2004 году SIAI был создан сайт AsimovLaws.com, созданный для обсуждения этики ИИ в контексте проблем, затронутых в фильме «Я, робот», выпущенном лишь два дня спустя. На этом сайте они хотели показать, что законы робототехники Азимова небезопасны, поскольку, например, могут побудить ИИ захватить власть на Земле, чтобы «защитить» людей от вреда.
Если в будущем машины смогут рассуждать, осознавать себя и иметь чувства, то что тогда делает человека человеком, а машину — машиной?
Среди последователей авраамических религий существует несколько точек зрения на возможность создания ИИ. По одной из них мозг, работу которого пытаются имитировать системы, по их мнению, не участвует в процессе мышления, не является источником сознания и какой-либо другой умственной деятельности. В соответствии с другой точкой зрения, мозг участвует в процессе мышления, но в виде «передатчика» информации от души. Мозг ответственен за такие «простые» функции, как безусловные рефлексы, реакция на боль и т. п. Обе позиции на данный момент обычно не признаются наукой, так как понятие душа не рассматривается современной наукой в качестве научной категории.
По мнению многих буддистов ИИ возможен. Так, духовный лидер далай-лама XIV не исключает возможности существования сознания на компьютерной основе.
Раэлиты активно поддерживают разработки в области искусственного интеллекта.
Научная фантастикаВ научно-фантастической литературе ИИ чаще всего изображается как сила, которая пытается свергнуть власть человека (Омниус, HAL 9000 в «Космическая одиссея 2001 года», Скайнет,Colossus, «Матрица» и репликант в «Бегущий по лезвию») или обслуживающий гуманоид (C-3PO, Data, KITT и KARR, «Двухсотлетний человек»). Неизбежность доминирования над миром ИИ, вышедшего из под контроля, оспаривается такими его исследователями, как фантаст Айзек Азимов и кибернетик Кевин Уорвик (Kevin Warwick), известный множественными экспериментами по интеграции машин и живых существ.
Любопытное видение будущего представлено в романе «Выбор по Тьюрингу» писателя-фантаста Гарри Гаррисона и ученого Марвина Мински. Авторы рассуждают на тему утраты человечности у человека, в мозг которого была вживлена ЭВМ, и приобретения человечности машиной с ИИ, в память которой была скопирована информация из головного мозга человека.
Некоторые научные фантасты, например Вернор Виндж, также размышляли над последствиями появления ИИ, которое, по-видимому, вызовет резкие драматические изменения в обществе. Такой период называют технологической сингулярностью.
Тема ИИ рассматривается под разными углами в творчестве Роберта Хайнлайна: гипотеза возникновения самоосознания ИИ при усложнении структуры далее определённого критического уровня и наличии взаимодействия с окружающим миром и другими носителями разума («The Moon Is a Harsh Mistress», «Time Enough For Love», персонажи Майкрофт, Дора и Ая в цикле «История будущего»), проблемы развити ИИ после гипотетического самоосознания и некоторые социально-этические вопросы («Friday»). Социально-психологические проблемы взаимодействия человека с ИИ рассматривает и роман Филипа К. Дика «Снятся ли андроидам электроовцы?», известный также по экранизации «Бегущий по лезвию».
Одни из самых глубоких исследований проблематики ИИ проявляются в творчестве фантаста и философа Станислава Лема.
КинофильмыКосмическая одиссея 2001 года
9 (мультфильм, 2009)
ВАЛЛ-И
Искусственный разум
Бегущий по лезвию
Двухсотлетний человек
Матрица
Тринадцатый этаж
Терминатор
Я, робот
Рыцарь дорог
Военные игры
Короткое замыкание
Приключения Электроника
Дух в машине (Секретные материалы)
Стелс
АнимеGhost in the Shell
Чобиты
Затерянная вселенная
Музыкальные произведения2032: Легенда о несбывшемся грядущем
Компьютер учится и рассуждает (ч. 1) // Компьютер обретает разум = Artificial Intelligence Computer Images / под ред. В. Л. Стефанюка. — Москва: Мир, 1990. — 240 с.
Девятков В. В. Системы искусственного интеллекта / Гл. ред. И. Б. Фёдоров. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2001.
Лорьер Ж.-Л. Системы искусственного интеллекта. — М.: Мир, 1991. — 568 с. — 20 000 экз.
Люгер Дж. Ф. Искусственный интеллект: стратегии и методы решения сложных проблем = Artificial Intelligence: Structures and Strategies for Complex Problem Solving / Под ред. Н. Н. Куссуль. — 4-е изд.. — М.: Вильямс, 2005.
Рассел С., Норвиг П. Искусственный интеллект: современный подход = Artificial Intelligence: a Modern Approach / Пер. с англ. и ред. К. А. Птицына. — 2-е изд. — М.: Вильямс, 2006.
Смолин Д. В. Введение в искусственный интеллект: конспект лекций. — М.: ФИЗМАТЛИТ.
Хант Э. Искусственный интеллект = Artificial intelligence / Под ред. В. Л. Стефанюка. — М.: Мир, 1978.
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |