Реферат по предмету "Военная кафедра"


Оружие 3-го поколения

Оглавление





Введение



История развития ядерного оружия



Нейтронное оружие



Супер-ЭМИ



Гиперзвуковая шрапнель



Вывод



Используемая литература









Введение





Приверженность принципу
ядерного нераспространения является одной из основополагающих установок
российской внешней политики. Согласно Концепции национальной безопасности
России, укрепление режима нераспространения оружия массового уничтожения (ОМУ)
и средств его доставки относится к основным задачам в области обеспечения
национальной безопасности Российской Федерации, а распространение ОМУ и средств
его доставки рассматривается как одна из основных угроз национальной
безопасности . Президент России В.В. Путин назвал проблему нераспространения
ядерного оружия «важнейшим вопросом современности» . Актуальность задач,
связанных с нераспространением ОМУ, подтверждается каждодневно. Одни события
уходят, им на смену приходят новые, но смело можно утверждать: за последние 30
лет вопросы нераспространения ОМУ, прежде всего ядерного, а также средств его
доставки стали одними из центральных в международных отношениях. Главной целью
политики Российской Федерации в обеспечении военной безопасности является
предотвращение войн и вооруженных конфликтов, а в случае их развязывания -
гарантированная защита интересов, суверенитета и территориальной целостности
государства и его союзников от любого возможного агрессора. Надежное
обеспечение военной безопасности России может быть гарантировано только
постоянным наличием у нее силового фактора, адекватного по характеристикам
возможным угрозам. Составной частью такого фактора в настоящее время и в
обозримом будущем должно оставаться ядерное оружие. Цель данной работы:
Рассмотреть проблему ядерного оружия и его значение для России. Задачи данной
работы: определить роль ядерного оружия в безопасности России.











История развития
ядерного оружия





Как известно, к
ядерному оружию первого поколения, его нередко называют атомным, относят боевые
заряды, основанные на использовании энергии деления ядер урана-235 или
плутония-239. Первое в истории испытание такого зарядного устройства мощностью
15 кт было проведено в США 16 июля 1945 года на полигоне Аламогордо. Взрыв в
августе 1949 г первой советской атомной бомбы придал новый импульс в
развертывании работ по созданию ядерного оружия второго поколения. В его основе
лежит технология использования энергии термоядерных реакций синтеза ядер
тяжелых изотопов водорода - дейтерия и трития. Такое оружие называют
термоядерным или водородным. Первое испытание термоядерного устройства
"Майк" было проведено Соединенными Штатами 1 ноября 1952 года на
острове Элугелаб (Маршалловы острова), мощность которого составила 5-8
миллионов тонн. В следующем году термоядерный заряд был взорван в СССР.



Осуществление атомных и
термоядерных реакций открыло широкие возможности для их использования при
создании серии различных боеприпасов последующих поколений. К ядерному оружию
третьего поколения относят специальные заряды (боеприпасы), у которых за счет
особой конструкции добиваются перераспределения энергии взрыва в пользу одного
из поражающих факторов. Другие варианты зарядов такого оружия обеспечивают
создание фокусировки того или иного поражающего фактора в определенном
направлении, что также приводит к значительному усилению его поражающего
действия. Анализ истории создания и совершенствования ядерного оружия
свидетельствует о том, что США неизменно лидировали в создании новых его
образцов. Однако проходило некоторое время и СССР ликвидировал эти
односторонние преимущества США. Не является исключением в этом отношении и
ядерное оружие третьего поколения. Одним из наиболее известных образцов
ядерного оружия третьего поколения является нейтронное оружие.





Нейтронное оружие





Что представляет собой
нейтронное оружие? О нейтронном оружии широко заговорили на рубеже 60-х годов.
Однако впоследствии стало известно, что возможность его создания обсуждалась
еще задолго до этого. Бывший президент Всемирной федерации научных работников
профессор из Великобритании Э.Буроп вспоминал, что впервые он услышал об этом
еще в 1944 году, когда в составе группы английских ученых работал в США над
"Манхэттенским проектом". Работа над созданием нейтронного оружия
была инициирована необходимостью получения мощного боевого средства,
обладающего избирательной способностью поражения, для использования непосредственно
на поле боя.



Первый взрыв
нейтронного зарядного устройства (кодовый номер W-63) был произведен в
подземной штольне Невады в апреле 1963 года. Полученный при испытании поток
нейтронов оказался значительно ниже расчетной величины, что существенно снижало
боевые возможности нового оружия. Потребовалось еще почти 15 лет для того,
чтобы нейтронные заряды приобрели все качества боевого оружия. По мнению
профессора Э.Буропа, принципиальное отличие устройства нейтронного заряда от
термоядерного заключается в различной скорости выделения энергии: "В
нейтронной бомбе выделение энергии происходит гораздо медленнее. Это нечто
вроде пиропатрона замедленного действия". За счет этого замедления и
уменьшается энергия, идущая на образование ударной волны и светового излучения
и, соответственно, возрастает ее выделение в виде потока нейтронов. В ходе
дальнейших работ были достигнуты определенные успехи в обеспечении фокусировки
нейтронного излучения, что позволяло не только обеспечивать усиление его
поражающего действия в определенном направлении, но и снизить опасность при его
применении для своих войск.



В ноябре 1976 года в
Неваде были проведены очередные испытания нейтронного боезаряда, в ходе которых
были получены весьма впечатляющие результаты. В результате этого в конце 1976
года было принято решение о производстве компонентов нейтронных снарядов 203-мм
калибра и боеголовок к ракете "Ланс". Позднее, в августе 1981 года на
заседании Группы ядерного планирования Совета национальной безопасности США
было принято решение о полномасштабном производстве нейтронного оружия: 2000
снарядов к 203-мм гаубице и 800 боеголовок к ракете "Ланс".



При взрыве нейтронной
боеголовки основное поражение живым организмам наносится потоком быстрых
нейтронов. По расчетам, на каждую килотонну мощности заряда выделяется около 10
нейтронов, которые с огромной скоростью распространяются в окружающем
пространстве. Эти нейтроны обладают чрезвычайно высоким поражающим действием на
живые организмы, гораздо сильнее, чем даже Y-излучение и ударная волна. Для
сравнения укажем, что при взрыве обычного ядерного заряда мощностью 1 килотонна
открыто расположенная живая сила будет уничтожена ударной волной на расстоянии
500-600 м. При взрыве нейтронной боеголовки той же мощности уничтожение живой
силы будет происходить на расстоянии примерно в три раза большем.



Образующиеся при взрыве
нейтроны движутся со скоростями несколько десятков километров в секунду.
Врываясь словно снаряды в живые клетки организма, они выбивают ядра из атомов,
рвут молекулярные связи, образуют свободные радикалы, обладающие высокой
реакционной способностью, что приводит к нарушению основных циклов жизненных
процессов. При движении нейтронов в воздухе в результате столкновений с ядрами
атомов газов они постепенно теряют энергию. Это приводит к тому, что на
расстоянии около 2 км их поражающее действие практически прекращается. Для того
чтобы снизить разрушительное действие сопутствующей ударной волны мощность
нейтронного заряда выбирают в пределах от 1 до 10 кт, а высоту взрыва над
землей - порядка 150-200 метров.



По свидетельству
некоторых американских ученых, в Лос-Аламосской и Сандийской лабораториях США и
во Всероссийском институте экспериментальной физики в Сарове (Арзамас-16)
проводятся термоядерные эксперименты, в которых наряду с исследованиями по
получению электрической энергии изучается возможность получения чисто
термоядерной взрывчатки. Наиболее вероятным побочным результатом проводимых
исследований, по их мнению, может стать улучшение энергомассовых характеристик
ядерных боезарядов и создание нейтронной мини-бомбы. По оценкам экспертов,
такой нейтронный боезаряд с тротиловым эквивалентом всего в одну тонну может
создать смертельную дозу излучения на расстояниях 200-400 м.



Нейтронное оружие
является мощным оборонительным средством и его наиболее эффективное применение
возможно при отражении агрессии, особенно в том случае, когда противник вторгся
на защищаемую территорию. Нейтронные боеприпасы являются тактическим оружием и
их применение наиболее вероятно в так называемых "ограниченных"
войнах, в первую очередь в Европе. Это оружие может приобрести особое значение
для России, поскольку в условиях ослабления ее вооруженных сил и возрастания
угрозы региональных конфликтов она будет вынуждена делать больший упор в
обеспечении своей безопасности на ядерное оружие. Применение нейтронного оружия
может быть особенно эффективным при отражении массированной танковой атаки.
Известно, что танковая броня на определенных расстояниях от эпицентра взрыва
(более 300-400 м при взрыве ядерного заряда мощностью 1 кт) обеспечивает защиту
экипажей от ударной волны и Y-излучения. В то же время быстрые нейтроны
проникают через стальную броню без существенного ослабления.



Проведенные расчеты
показывают, что при взрыве нейтронного заряда мощностью 1 килотонна экипажи
танков будут мгновенно выведены из строя в радиусе 300 м от эпицентра и
погибнут в течение двух суток. Экипажи, находящиеся на расстоянии 300-700 м,
выйдут из строя через несколько минут и в течение 6-7 дней также погибнут; на
расстояниях 700-1300 м они окажутся небоеспособными через несколько часов, а
гибель большинства из них растянется в течение нескольких недель. На
расстояниях 1300-1500 м определенная часть экипажей получит серьезные
заболевания и постепенно выйдет из строя.



Нейтронные боезаряды
могут быть также использованы в системах ПРО для борьбы с боеголовками
атакующих ракет на траектории. По расчетам специалистов, быстрые нейтроны,
обладая высокой проникающей способностью, пройдут через обшивку боеголовок
противника, вызовут поражение их электронной аппаратуры. Кроме того, нейтроны,
взаимодействуя с ядрами урана или плутония атомного детонатора боеголовки,
вызовут их деление. Такая реакция будет происходить с большим выделением
энергии, что, в конечном счете, может привести к нагреванию и разрушению
детонатора. Это, в свою очередь, приведет к выходу из строя всего заряда
боеголовки. Это свойство нейтронного оружия было использовано в системах
противоракетной обороны США. Еще в середине 70-х годов нейтронные боеголовки
были установлены на ракетах-перехватчиках "Спринт" системы
"Сейфгард", развернутой вокруг авиабазы "Гранд Форкс" (штат
Северная Дакота). Не исключено, что в будущей системе национальной ПРО США
будут также использованы нейтронные боезаряды.



Как известно, в
соответствии с обязательствами, объявленными президентами США и России в
сентябре-октябре 1991 г, все ядерные артснаряды и боеголовки тактических ракет
наземного базирования должны быть ликвидированы. Однако не вызывает сомнений,
что в случае изменения военно-политической ситуации и принятия политического
решения отработанная технология нейтронных боезарядов позволяет наладить их
массовое производство в короткое время.









Супер-ЭМИ



ядерный
нейтронный оружие электромагнитный импульс



"Супер-ЭМИ"
Вскоре после окончания Второй мировой войны, в условиях монополии на ядерное
оружие, Соединенные Штаты возобновили испытания с целью его совершенствования и
определения поражающих факторов ядерного взрыва. В конце июня 1946 года в
районе атолла Бикини (Маршалловы острова) под шифром "Операция
Кроссроудс" были проведены ядерные взрывы, в ходе которых исследовалось
поражающее действие атомного оружия. В ходе этих испытательных взрывов было
обнаружено новое физическое явление - образование мощного импульса
электромагнитного излучения (ЭМИ), к которому сразу же был проявлен большой
интерес. Особенно значительным оказался ЭМИ при высоких взрывах. Летом 1958
года были произведены ядерные взрывы на больших высотах. Первую серию под
шифром "Хардтэк" провели над Тихим океаном вблизи острова Джонстон. В
ходе испытаний были взорваны два заряда мегатонного класса: "Тэк" -
на высоте 77 километров и "Ориндж" - на высоте 43 километра. В 1962
году были продолжены высотные взрывы: на высоте 450 км под шифром
"Старфиш" был произведен взрыв боеголовки мощностью 1,4 мегатонны.
Советский Союз также в течение 1961-1962 гг. провел серию испытаний, в ходе
которых исследовалось воздействие высотных взрывов (180-300 км) на
функционирование аппаратуры систем ПРО.



При проведении этих
испытаний были зафиксированы мощные электромагнитные импульсы, которые обладали
большим поражающим действием на электронную аппаратуру, линии связи и
электроснабжения, радио- и радиолокационные станции на больших расстояниях. С
тех пор военные специалисты продолжали уделять большое внимание исследованию
природы этого явления, его поражающего действия, способов защиты от него своих
боевых и обеспечивающих систем.



Физическая природа ЭМИ
определяется взаимодействием Y-квантов мгновенного излучения ядерного взрыва с
атомами газов воздуха: Y-кванты выбивают из атомов электроны (так называемые
комптоновские электроны), которые движутся с огромной скоростью в направлении
от центра взрыва. Поток этих электронов, взаимодействуя с магнитным полем
Земли, создает импульс электромагнитного излучения. При взрыве заряда
мегатонного класса на высотах несколько десятков километров напряженность
электрического поля на поверхности земли может достигать десятков киловольт на
метр.



На основе полученных в
ходе испытаний результатов военные специалисты США развернули в начале 80-х
годов исследования, направленные на создание еще одного вида ядерного оружия
третьего поколения - Супер-ЭМИ с усиленным выходом электромагнитного излучения.



Для увеличения выхода
Y-квантов предполагалось создать вокруг заряда оболочку из вещества, ядра
которого, активно взаимодействуя с нейтронами ядерного взрыва, испускают
Y-излучение высоких энергий. Специалисты считают, что с помощью Супер-ЭМИ
возможно создать напряженность поля у поверхности Земли порядка сотен и даже
тысяч киловольт на метр. По расчетам американских теоретиков, взрыв такого
заряда мощностью 10 мегатонн на высоте 300-400 км над географическим центром
США - штатом Небраска приведет к нарушению работы радиоэлектронных средств
почти на всей территории страны в течение времени, достаточном для срыва
ответного ракетно-ядерного удара.



Дальнейшее направление
работ по созданию Супер-ЭМИ было связано с усилением его поражающего действия
за счет фокусировки Y-излучения, что должно было привести к увеличению
амплитуды импульса. Эти свойства Супер-ЭМИ делают его оружием первого удара,
предназначенном для выведения из строя системы государственного и военного
управления, МБР, особенно мобильного базирования, ракет на траектории,
радиолокационных станций, космических аппаратов, систем энергоснабжения и т.п.
Таким образом, Супер-ЭМИ имеет явно наступательный характер и является
дестабилизирующим оружием первого удара.



Проникающие боеголовки
(пенетраторы) Поиски надежных средств уничтожения высокозащищенных целей
привели военных специалистов США к идее использования для этого энергии
подземных ядерных взрывов. При заглублении ядерных зарядов в грунт значительно
возрастает доля энергии, идущей на образование воронки, зоны разрушения и
сейсмических ударных волн. В этом случае при существующей точности МБР и БРПЛ
значительно повышается надежность уничтожения "точечных", особо
прочных целей на территории противника.



Работа над созданием
пенетраторов была начата по заказу Пентагона еще в середине 70-х годов, когда
концепции "контрсилового" удара придавалось приоритетное значение.
Первый образец проникающей боеголовки был разработан в начале 80-х годов для
ракеты средней дальности "Першинг-2". После подписания Договора по
ракетам средней и меньшей дальности (РСМД) усилия специалистов США были
перенацелены на создание таких боеприпасов для МБР. Разработчики новой
боеголовки встретились со значительными трудностями, связанными, прежде всего,
с необходимостью обеспечить ее целостность и работоспособность при движении в
грунте. Огромные перегрузки, действующие на боезаряд (5000-8000 g, g-ускорение
силы тяжести) предъявляют чрезвычайно жесткие требования к конструкции
боеприпаса.



Поражающее действие
такой боеголовки на заглубленные, особо прочные цели определяется двумя
факторами - мощностью ядерного заряда и величиной его заглубления в грунт. При
этом для каждого значения мощности заряда существует оптимальная величина
заглубления, при которой обеспечивается наибольшая эффективность действия
пенетратора. Так, например, разрушающее действие на особо прочные цели ядерного
заряда мощностью 200 килотонн будет достаточно эффективным при его заглублении
на глубину 15-20 метров и оно будет эквивалентным воздействию наземного взрыва
боеголовки ракеты МХ мощностью 600 кт. Военные специалисты определили, что при
точности доставки боеголовки-пенетратора, характерной для ракет МХ и
"Трайдент-2", вероятность уничтожения ракетной шахты или командного
пункта противника одним боезарядом, весьма высока. Это означает, что в этом
случае вероятность разрушения целей будет определяться лишь технической
надежностью доставки боеголовок.



Очевидно, что
проникающие боеголовки предназначены для уничтожения центров государственного и
военного управления противника, МБР, находящихся в шахтах, командных пунктов и
т.п. Следовательно, пенетраторы являются наступательным,
"контрсиловым" оружием, предназначенным для нанесения первого удара и
в силу этого имеют дестабилизирующий характер. Значение проникающих боеголовок,
в случае принятия их на вооружение, может значительно возрасти в условиях
сокращения стратегических наступательных вооружений, когда снижение боевых
возможностей по нанесению первого удара (уменьшение количества носителей и
боеголовок) потребует повышения вероятности поражения целей каждым боеприпасом.
В то же время для таких боеголовок необходимо обеспечивать достаточно высокую
точность попадания в цель. Поэтому рассматривалась возможность создания
боеголовок-пенетраторов, оснащенных системой самонаведения на конечном участке
траектории, подобно высокоточному оружию.



Рентгеновский лазер с
ядерной накачкой. Во второй половине 70-х годов в Ливерморской радиационной
лаборатории были начаты исследования по созданию "противоракетного оружия
XXI века" - рентгеновского лазера с ядерным возбуждением. Это оружие с самого
начала замышлялось в качестве основного средства уничтожения советских ракет на
активном участке траектории, до разделения боеголовок. Новому оружию присвоили
наименование - "оружие залпового огня".



В схематическом виде
новое оружие можно представить в виде боеголовки, на поверхности которой
укрепляется до 50 лазерных стержней. Каждый стержень имеет две степени свободы
и подобно орудийному стволу может быть автономно направлен в любую точку
пространства. Вдоль оси каждого стержня, длиной несколько метров, размещается
тонкая проволока из плотного активного материала, "такого как
золото". Внутри боеголовки размещается мощный ядерный заряд, взрыв
которого должен выполнять роль источника энергии для накачки лазеров. По
оценкам некоторых специалистов, для обеспечения поражения атакующих ракет на
дальности более 1000 км потребуется заряд мощностью несколько сотен килотонн.
Внутри боеголовки также размещается система прицеливания с быстродействующим
компьютером, работающим в реальном масштабе времени.



Для борьбы с советскими
ракетами военными специалистами США была разработана особая тактика его боевого
использования. С этой целью ядерно-лазерные боеголовки предлагалось разместить
на баллистических ракетах подводных лодок (БРПЛ). В "кризисной
ситуации" или в период подготовки к нанесению первого удара подлодки,
оснащенные этими БРПЛ, должны скрытно выдвинуться в районы патрулирования и
занять боевые позиции как можно ближе к позиционным районам советских МБР: в
северной части Индийского океана, в Аравийском, Норвежском, Охотском морях. При
поступлении сигнала о старте советских ракет производится пуск ракет подводных
лодок. Если советские ракеты поднялись на высоту 200 км, то для того, чтобы
выйти на дальность прямой видимости, ракетам с лазерными боеголовками необходимо
подняться на высоту около 950 км. После этого система управления совместно с
компьютером производит наведение лазерных стержней на советские ракеты. Как
только каждый стержень займет положение, при котором излучение будет попадать
точно в цель, компьютер подаст команду на подрыв ядерного заряда.



Огромная энергия,
выделяющаяся при взрыве в виде излучений, мгновенно переведет активное вещество
стержней (проволоку) в плазменное состояние. Через мгновение эта плазма,
охлаждаясь, создаст излучение в рентгеновском диапазоне, распространяющееся в
безвоздушном пространстве на тысячи километров в направлении оси стержня. Сама
лазерная боеголовка через несколько микросекунд будет разрушена, но до этого
она успеет послать мощные импульсы излучения в сторону целей. Поглощаясь в
тонком поверхностном слое материала ракеты, рентгеновское излучение может
создать в нем чрезвычайно высокую концентрацию тепловой энергии, что вызовет
его взрывообразное испарение, приводящее к образованию ударной волны и, в
конечном счете, к разрушению корпуса.



Однако создание
рентгеновского лазера, который считался краеугольным камнем рейгановской
программы СОИ, встретилось с большими трудностями, которые пока не удалось
преодолеть. Среди них на первых местах стоят сложности фокусировки лазерного
излучения, а также создание эффективной системы наведения лазерных стержней.
Первые подземные испытания рентгеновского лазера были проведены в штольнях
Невады в ноябре 1980 года под кодовым названием "Дофин". Полученные
результаты подтвердили теоретические выкладки ученых, однако, выход
рентгеновского излучения оказался весьма слабым и явно недостаточным для
уничтожения ракет. После этого последовала серия испытательных взрывов
"Экскалибур", "Супер-Экскалибур", "Коттедж", "Романо",
в ходе которых специалисты преследовали главную цель - повысить интенсивность
рентгеновского излучения за счет фокусировки. В конце декабря 1985 года был
произведен подземный взрыв "Голдстоун" мощностью около 150 кт, а в
апреле следующего года - испытание "Майти Оук" с аналогичными целями.
В условиях запрета на ядерные испытания на пути создания этого оружия возникли
серьезные препятствия.



Необходимо подчеркнуть,
что рентгеновский лазер является, прежде всего, ядерным оружием и, если его
взорвать вблизи поверхности Земли, то он будет обладать примерно таким же
поражающим действием, что и обычный термоядерный заряд такой же мощности.



Гиперзвуковая шрапнель





"Гиперзвуковая
шрапнель" В ходе работ по программе СОИ, теоретические расчеты и результаты
моделирования процесса перехвата боеголовок противника показали, что первый
эшелон ПРО, предназначенный для уничтожения ракет на активном участке
траектории, полностью решить эту задачу не сможет. Поэтому необходимо создать
боевые средства, способные эффективно уничтожать боеголовки в фазе их
свободного полета. С этой целью специалисты США предложили использовать мелкие
металлические частицы, разогнанные до высоких скоростей с помощью энергии
ядерного взрыва. Основная идея такого оружия состоит в том, что при высоких
скоростях даже маленькая плотная частица (массой не более грамма) будет
обладать большой кинетической энергией. Поэтому при соударении с целью частица
может повредить или даже пробить оболочку боеголовки. Даже в том случае, если
оболочка будет только повреждена, то при входе в плотные слои атмосферы она
будет разрушена в результате интенсивного механического воздействия и
аэродинамического нагрева. Естественно, при попаданий такой частицы в
тонкостенную надувную ложную цель, ее оболочка будет пробита и она в вакууме
сразу же потеряет свою форму. Уничтожение легких ложных целей значительно
облегчит селекцию ядерных боеголовок и, тем самым, будет способствовать
успешной борьбе с ними.



Предполагается, что
конструктивно такая боеголовка будет содержать ядерный заряд сравнительно небольшой
мощности с автоматической системой подрыва, вокруг которого создается оболочка,
состоящая из множества мелких металлических поражающих элементов. При массе
оболочки 100 кг можно получить более 100 тысяч осколочных элементов, что
позволит создать сравнительно большое и плотное поле поражения. В ходе взрыва
ядерного заряда образуется раскаленный газ - плазма, который, разлетаясь с
огромной скоростью, увлекает за собой и разгоняет эти плотные частицы. Сложной
технической задачей при этом является сохранение достаточной массы осколков,
поскольку при их обтекании высокоскоростным потоком газа будет происходить унос
массы с поверхности элементов.



В США была проведена
серия испытаний по созданию "ядерной шрапнели" по программе
"Прометей". Мощность ядерного заряда в ходе этих испытаний составляла
всего несколько десятков тонн. Оценивая поражающие возможности этого оружия,
следует иметь в виду, что в плотных слоях атмосферы частицы, движущиеся со
скоростями более 4-5 километров в секунду, будут сгорать. Поэтому "ядерную
шрапнель" можно применять только в космосе, на высотах более 80-100 км, в
условиях безвоздушного пространства. Соответственно этому, шрапнельные
боеголовки могут с успехом применяться, помимо борьбы с боеголовками и ложными
целями, также в качестве противокосмического оружия для уничтожения спутников
военного назначения, в частности, входящих в систему предупреждения о ракетном
нападении (СПРН). Поэтому возможно его боевое использование в первом ударе для
"ослепления" противника.



Рассмотренные выше
различные виды ядерного оружия отнюдь не исчерпывают всех возможностей в
создании его модификаций. Это, в частности, касается проектов ядерного оружия с
усиленным действием воздушной ядерной волны, повышенным выходом Y-излучения,
усилением радиоактивного заражения местности (типа пресловутой
"кобальтовой" бомбы) и др.



В последнее время в США
рассматриваются проекты ядерных зарядов сверхмалой мощности: мини-ньюкс
(мощность сотни тонн), микро-ньюкс (десятки тонн), тайни-ньюкс (единицы тонн),
которые кроме малой мощности, должны быть значительно более
"чистыми", чем их предшественники. Процесс совершенствования ядерного
оружия продолжается и нельзя исключить появления в будущем сверхминиатюрных
ядерных зарядов, созданных на основе использования сверхтяжелых
трансплутониевых элементов с критической массой от 25 до 500 граммов. У
трансплутониевого элемента курчатовия величина критической массы составляет
около 150 граммов. Зарядное устройство при использовании одного из изотопов
калифорния будет иметь настолько малые размеры, что, обладая мощностью в
несколько тонн тротила, может быть приспособлено для стрельбы из гранатометов и
стрелкового оружия.











Вывод





Все вышесказанное
свидетельствует о том, что использование ядерной энергии в военных целях
обладает значительными потенциальными возможностями и продолжение разработок в
направлении создания новых образцов оружия может привести к
"технологическому прорыву", который снизит "ядерный порог",
окажет отрицательное влияние на стратегическую стабильность. Запрещение всех
ядерных испытаний если и не перекрывает полностью пути развития и
совершенствования ядерного оружия, то значительно тормозит их. В этих условиях
особое значение приобретает взаимная открытость, доверительность, ликвидация
острых противоречий между государствами и создание, в конечном счете,
эффективной международной системы коллективной безопасности.









Список используемой
литературы





Для подготовки данной работы были
использованы материалы с сайта http://www.courier.com.ru



Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.