Реферат по предмету "Другое"


Численные методы и их реализация в Excel

по предмету: ‘’Моделирование ’’ на тему: ‘’Численные методы и их реализация в Excel’’
Выполнила: студентка 3-курса
Камчыбекова Б. гр. КИС-5-97
Проверил: к.т.н. профессор. Бабак В. Ф.
Бишкек – 2000
Глава 1. Подбор параметра… 3 1.1. Нелинейные алгебраические уравнения 3 1.2 Системы двух линейныхалгебраических уравнений 5
Задание1 5
Задание 2 5 Глава 2. Матричная алгебра 6 2.1 Определитель матрицы 6 2.2 Умножение матриц 7
Задание 3 7
Умножение на число 14 9
Задание 4 10 2.6 Система линейных алгебраических уравнений 14
Задание 5 14 Глава3. Поиск решения… 17 1.2Оптимизация 17 3.2Безусловный экстремум 17
Задание6 18 3.4 Математическое программирование 22
3.4.1. Линейное программирование 23
Задание 7 23
Задание 8 25
Задание 9 25
Задание 12 27
Глава 1. Подбор параметра…
1.1. Нелинейные алгебраические уравнения
При моделировании экономических ситуаций часто приходится решать уравнение вида: f (x, p1, p2 ,…, pn)=0 (1) где f-заданная функция, х-неизвестная переменная. p1, p2,…, pn – параметры модели.
Решение таких уравнений может быть как самостоятельной, так и частью более сложных задач. Как правило, исследователя интересует поведение решения в зависимости от параметров pk , k=(1,n
Решениями или корнями уравнения (1) называют такие значения переменной х, которые при подстановке в уравнение обращают его в тождество.
Только для линейных или простейших нелинейных уравнений удается найти решение в аналитической форме, т.е. записать формулу, выражающую искомую величину х в явном виде через параметры pk (например формула корней квадратного уравнения).
В большинстве же случаев приходится решать уравнение (1) численными методами, в которых процедура решения задается в виде многократного применения некоторого алгоритма. Полученное решение всегда является приближенным, хотя может быть сколь угодно близко к точному.
Рассмотрим последовательность действий для получения решения нелинейного уравнения в среде электронной таблицы.
Пусть надо решить уравнение вида:
[pic] (2) Cформируем лист электронной таблицы, как показано на рис.1. Уравнение (2) запишем в клетку С5, начиная со знака равенства, а вместо переменной x укажем адрес клктки В5, которая содержит значение начального приближения решения.
[pic]
вместо переменной x укажем адрес клетки В5. которая содержит значение начального приближения решения Метод, применяемый в EXCEL для решения таких уравнений -модифицированный конечными разностями метод Ньютона, который позволяет не сильно заботится о начальном приближении, как этого требуют другие численные методы решения уравнений (метод хорд, дихотомии и др.) Единственно, что следует учесть - это то, что будет' найдено решение ближайшее к выбранному начальному приближению. Для получения решения уравнения (2) надо выполнить следующую последовательность действий: 1. Выполнить команду Сервис/Подбор параметра... (получим лист электронной таблицы, как показано на Рис. 2); 2. Заполнить диалоговое окно Подбор параметра...: 2,1 Щелкнуть левой клавишей мыши в поле Установить в ячейке, после появления в нем курсора, переместить указатель мыши и щелкнуть на клетке с формулой, в нашем случае это клетка С5, абсолютный адрес которой $С$5 появится в поле рис.1
Этот адрес можно было бы набрать на клавиатуре, после появления курсора в поле. Установить в ячейке 2.2. В поле Значение ввс В нашем случае это значение равно О. 2.3 В поле, Изменяя значение ячейки ввести адрес клетки, где задано начальное приближение решения, в нашем случае это клетка В 5 (абсолютный адрес которой $В$5 появится в поле после щелчка левой клавиши мыши на клетке В5).После выполнения пунктов 1-2 страница электронной таблицы будет выглядеть так, как показано на Рис.3. Правая часть решаемого уравнения не обязана быть всегда нулем равнение (2) преобразовать к виду 10*х*(х+10)/(х-9)=2. то в поле Значение следовало бы установить 2. После нажатия на кнопке ОК появится окно Результат подбора параметра, в котором дается о том нацдена ли решение, чему равна и какова точность полученного решения. Для нашего примера Результат подбора параметра показан на Рис.4 При значении аргумента –0,187204141 функция, стоящая в левой части уравнения (2) отличается от нуля на – 0,000484158. Достигнутая точность решения равна – 1.0Е-3 Если полученные значения следует "отразить на листе электронной таблицы, то надо щелкнуть на кнопке ОК . .если же нет то на кнопку Отмена. В первом случае найденные значения зафиксируются в клетках В5 и С5 и лист электронной таблицы будет выглядеть как на Рис.5, или как на Рис.6, если установить режим отображения результатов, предварительно сняв режим отображения формул, выполнив команду Сервис/Параметры/Вид/Формулы. Численные методы решения уравнений хороши тем, что мoжно получить приближенное решение с заданной точностью. EXCEL име (возможность управлять выбором точности. Для этого надо выполни' команду Сервис/Параметры/Вычисления и в соответствующих полз установить. значения относительной погрешности и количества итераш Рис.7
1.2 Системы двух линейныхалгебраических уравнений
Вышеизложенный способ получения решения уравнения может быть легко распрастранен для случая решения ситемы двух уравнений с двумя неизвестными, если ситема имеет следующий вид. Y=Ф (х) Y=((х) В каждом уравнении системы функции у явна выражена через х Преобразуем систему (3) в одно уравнение вида (+)
Ф (х) -'^(х) = 0 - (4) Полученное уравнение уже можно решить с помощью Подбора параметра... так как это было описано выше. В качестве примера рассмотрим нахождение равновесных цены и объема продаж для рынка некоторого товара. Пусть функция спроса на товар имеет вид Q = 40/(Р+3) а функция предложения: Q = 20Р-14 Найти равновесные цену и объем , построить графики спроса и предложения.
Имеющуюся систему уравнений Q=40/(p+3)
Q=20Р-14
преобразуем в одно уравнение вида 40 / (р + 3) - 20 р +14=0 Подбором параметра... описанным выше, находим равновесную цену, она равна 1,17, подставив это значение в одно из уравнений системы, получим и значение равновесного объема - 9,57. Для построения графика, иллюстрирующего ситуацию равновесия спроса и предложения на рынке, воспользуемся знанием равновесной цены и возьмем значения цен в некоторой окрестности от нее. например от 0 до 4 с шагом 0,1. Используя все возможности мастера диаграмм, получим следующую иллюстрацию решения задачи о равновесии на рынке. Рис.8.
Задание1
Найти ближайшее к начальному приближению решение следующих уравнений. Исследовать влияние начального приближения на найденное решение
10x-x+56=12
Задание 2
Подбором параметра... найти точку равновесия рынка некоторого товара, для чего решить систему уравнений, описывающих спрос и предложение этого товара. Построить и оформить график равновесия. Функция спроса Q=50e-3 Функция предложения Q=3p-4e 0


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Проблема нравственности в рассказах В.М.Шукшина
Реферат Активность и продуктивность основных словообразовательных моделей в истории английского языка
Реферат Изучение особенностей подготовки к школе слабослышащих детей
Реферат Dna Profiling Essay Research Paper Jenay GarretsonDNA
Реферат Государство и его формы как основные конституционно-правовые характеристики
Реферат Методики формирования и контроля знаний у учащихся начальных классов в обучении предмету "Физическая культура"
Реферат Влияние новых информационных технологий на создание современной семьи
Реферат Philadelphia Essay Research Paper PhiladelphiaThe movie Philadelphia
Реферат Психологические нарушения развития у детей
Реферат Основы антиглобализма
Реферат Розвиток самосвідомості і самооцінки
Реферат Obtaining PH Curves For Acidalkali Titrations Essay
Реферат Русская образованность в X - XVII веках
Реферат Донской курень
Реферат Кильские мирные договоры 1814