Реферат по предмету "Медицина"


Возбудитель туберкулеза

--PAGE_BREAK--Микобактерии можно классифицировать по Sneath – методу. Он заключается в том, что классифицируемые штаммы располагают в таблицах по индексам их сходства (под сходством понимают отношение свойств, общих для двух организмов. Индексы сходства S вычисляют по формуле:
   nS 100
  S=            ;
    nS + nd
   где в числителе число сходств (nS) двух штаммов, умноженное на 100, а в знаменателе число сходств плюс число различий (nd) у двух штаммов. Результат получают в процентах. Чем больше испытано свойств, тем точнее определены штаммы.
Предложенные классификации не ре9ают проблему атипичных микобактерий. И хотя многие из них широко пользуются до настоящего времени (группировка Раньона), необходима дальнейшая работа по идентификации микобактерий и рациональной систематизации с целью установления их видовой принадлежности (Головлев, Скрябин, 1972; Зыков, Ильина, 1978).
 3. Возбудители туберкулеза.
Истинными микобактериями туберкулеза являются M.bovis, M.tuberculosis, M.avium, причем последняя лишь как возбудитель туберкулеза птиц; если M.avium выделяют от свиней и крупного рогатого скота, то речь идет об атипичных микобактериях.
M.bovis относится к основному возбудителю туберкулеза крупного рогатого скота. Однако он патогенен и для других домашних и диких жвачных, человека и приматов, плотоядных, а также попугаев, и возможно некоторых других хищных птиц.
 M.bovis – слегка изогнутые или прямые, короткие или умеренно длинные, тонкие с закругленными концами палочки (0,3 – 0,6 мкм в ширину, 1,5 – 4 мкм в длину). Внутри палочки иногда находят зерна (зерна Муха), обычно расположены на концах микобактерий. Как размер, так и число находящихся в них гранул зависит от возраста культуры и условий ее роста (Драбкина, 1963). Однако полиморфизм микобактерий отмечают не только в культуре, но и патологическом материале, где наряду с коккоподобными формами   могут присутствовать и  более длинные формы. В патологическом материале микобактерии туберкулеза бычьего вида расположены параллельно или под углом, или кучками. 
Микобактерии туберкулеза неподвижны, спор не образуют, жгутиков не имеют. Оптимальная температура роста М.bovis -  37-38 С. Добавление глицерина к яичным средам замедляет рост микобактерий или он вообще не проявляется. При высеве патологического материала на среду Левенштейна – Иенсена вырастают круглые, маленькие, влажные, почти прозрачные колонии цвета слоновой кости (дисгонический рост).  Культура M.bovis – микроаэрофильна. Поэтому посев в жидких  или полужидких средах дает рост в глубине среды. При пересевах культура адаптируется к аэробному росту.
M.tuberculosis – основной возбудитель туберк4леза человека, однако он патогенен и для приматов, собак, попугаев и некоторых животных, контактирующих с человеком. Мало патогенен для кроликов, кошек, коз, крупного рогатого скота и домашней птицы.
M.tuberculosis – прямые или слегка изогнутые тонкие палочки, иногда встречаются очень короткие или длинные, а иногда ветвящиеся формы. Таким образом, бактериям туберкулеза свойственен полиморфизм. Особенно часто полиморфизм микобактерий описывают при антибактериальной терапии. Молодые особи микобактерий – длиннее, а  более зрелые – короче, появляются кокковые формы. В старых культурах иногда бывают ветвистые формы микобактерий. Микобактерии содержат гранулы,  количество которых различны и  зависит от многих факторов.
M.tuberculosis дает рост на искусственных питательных средах быстрее, чем M.bovis. добавление глицерина к питательным средам улучшает и ускоряет рост M.tuberculosis.микобактерии туберкулеза человеческого вида на плотных яичных средах растут в виде сухих, крошковатых, матовых колоний неправильной формы, иногда напоминающих цветную капусту.  На бычьей сыворотке, глицериновом картофеле и 5%-ной глицериновой сыворотке они растут медленно, пышно,  толстыми складчатыми краями (эугонический рост). Обычно колонии имеют цвет слоновой кости, однако при старении приобретают кремовую или даже желтую окраску. В воде плохо суспензируются. Культура M.tuberculosis высокоаэробна; посев в жидкую или полужидкую питательную среду дает рост на поверхности среды. Оптимальная температура роста 37 С, но растет, хотя значительно хуже, при 30-34 С (рН 6,4 – 7,0). При комнатной температуре и повышенной температуре (45 С), как и M.bovis, роста не дает.
M.avium – основной возбудитель туберкулеза домашних и диких птиц. Он патогенен и для свиней, в меньшей степени для крупного рогатого скота. У людей может вызвать туберкулез нередко с тяжелым течением (Благодарный, 1980).
M.avium – тонкие, прямые или изогнутые, с округленными концами, сплошные или зернистые палочки. Размер непостоянен, зависит от условия их обитания и др. факторов. Сильно развит полиморфизм, вследствие чего в препаратах – мазках отмечают как коккоподобные, так и длинные палочки. Рост культуры микобактерий туберкулеза птичьего вида на плотных яичных средах появляется раньше, чем у культур микобактерий бычьего и человеческого видов. Колонии влажные, гладкие, блестящие; имеют вид закругленных бляшек цвета слоновой кости. На твердых питательных средах иногда образуются кольцеобразные колонии с валикоподобными краями. Такие колонии на средах дают обычно культуры старше 1,5 мес. штаммы M.tuberculosis и M.bovis кольцеобразных колоний не образуют. При старении штаммы M.avium иногда приобретают желтый цвет. Редко выявляют сухие, шероховатые колонии (R – форма).
M.avium не так требовательны к питательным средам, как возбудитель туберкулеза бычьего и человеческого вида. Поэтому он растет и на обычном и на сахарном агаре. На глицериновом агаре дает быстрый рост в виде рыхлого плоского налета; на глицериновом бульоне образует поверхностную пленку. Хорошо суспензируется в физиологическом растворе. Оптимальная температура роста 40 С, но дает рост и при 45 С, и в большинстве случаев при комнатной температуре, но значительно медленнее и скуднее.
На основании изучения белкового состава микобактерий, который специфичен для представителей каждого вида и обусловлен наследственным кодом, связанным со структурой ДНК, обнаружено близкое сходство денситограмм M.avium и М.intracellularae. Данные о сходстве белкового комплекса служат дополнительным основанием для отнесения M.avium к нехромогенным  атипичным микобактериям по классификации Раньона (Фадеева с соавторами, 1981). 
а) Атипичные микобактерии.
Интерес к проблеме атипичных микобактерий возник в начале 50-ых годов 20 века, когда были выявлены заболевания людей клинически и рентгенологически сходные с туберкулезом, но возбудители которых отличались от микобактерий туберкулеза. Атипичные микобактерии не отличаются от возбудителя туберкулеза по морфологическим и тинкториальным свойствам, но существенно различаются по культуральным, биохимическим и вирулентным свойствам для лабораторных животных (Каграманов, 1963). Их называют также неклассифицируемыми, анонимными микобактериями.
Относительно сущности микобактерий имеются различные точки зрения. Некоторые исследователи считают их мутантами туберкулезных микобактерий (Каграманов, 1967; Дыхно с соавторами, 1966; Тогунова, 1966). Эта точка зрения связана с тем, что почти все атипичные микобактерии были выделены от больных туберкулезом. Под влиянием процессов заживления микобактерии теряют свои основные или же приобретают другие свойства. Решающим фактором, доказывающим происхождение атипичных микобактерии от истинных микобактерий туберкулеза, считали возможность перехода их  перехода в типичный вирулентный штамм возбудителя туберкулеза (Каграманов, 1963; Клебанов, 1966). Генетическое родство атипичных микобактерий с туберкулезными, подтверждает их способность вызывать у подопытных животных специфические или параспецифические для туберкулеза клеточные реакции, а также сенсибилизировать лабораторных животных к туберкулину (Каграманов, 1963 и др.).
После внедрения в практику туберкулостатических препаратов атипичные микобактерии из патологических препаратов стали выделять чаще. Ряд авторов причиной возникновения глубоких и подчас необратимых изменений у микобактерий туберкулеза считают химиотерапию, подтверждением этого послужило выделения ряда атипичных микобактерий на средах, содержащих фтивадиз (Драбкина, Макарова, 1965; Дыхно, 1966).
В настоящее время атипичные микобактерии считают самостоятельным видом бактерий. На основании анализа нуклеиновых кислот и серологического исследования микобактерий, а также количественной таксономии доказано, что атипичные микобактерии являются самостоятельным видами, а не мутантами M.tuberculosis (Wayne,1971). Установлена специфичность белкового комплекса для различных групп и видов микобактерий (Фадеева с соавторами, 1984).  Условно – патогенные атипичные микобактерии более сходны с микобактериями туберкулеза, чем с сапрофитами (Фадеева  с соавторами, 1981).
С помощью таких методов исследования, как газожидкостная хроматография, масс – спектрометрия и ядерный магнитный резонанс, получена более точная информация о составе и строении микробных липидов, которая подтверждает самостоятельность видов атипичных микобактерий.
У разных видов микобактерий обнаружены как специфические видовые, так и межвидовые антигенные связи. Tuboly (1967), изучая восемь антигенных компонентов M.bovis определил что, M.avium было четыре, а у видов сапрофитных микобактерий – лишь 2-3 антигенных компонента, идентичных с M.bovis. все это свидетельствует о неидентичности атипичных микобактерий возбудителям туберкулеза.

 4. Антигенная структура микобактерий.
У микобактерий установлены как специфические видовые, так и межвидовые и даже межродовые антигенные связи. У отдельных штаммов микобактерий выявлены различные антигены (Kniker, 1965). Все без исключения микобактерии содержат вещество, устойчивое к нагреванию и протеолитическим ферментам (Castelnuovo, Morellini, 1965). Это вещество – полисахарид, который и служит общим антигеном. Кроме того, различные виды микобактерий имеют специфические антигены.
В штаммах M.tuberculosis – 10, в штаммах M.bovis, M.avium и атипичных микобактериях – 8-10, а в сапрофитных видах микобактерий – 4-6 антигенных компонентов. У M.avium найдено четыре, видов сапрофитных микобактерий – лишь 2-3 идентичных с M.bovis имеют идентичный антигенный спектр из восьми антигенов, из которых 5-6 были общеродовыми и реагировали с антисыворотка – ми к микобактериям и других видов: шесть – с M.tuberculosis ,3-5 — с  M.kansasii,  2-4 – с M.marium, 2-4 – с M.scrofulaceum, 1-3 – с M.avium,1-4 – с  M.intracellularae, 3-4 – с  M.xeponi,1-2 – с  M.fortuitum. В культурных фильтратах M.bovis обнаружено до 20, а у  M.tuberculosis – 17 антигенов (Лысенко, 1984, 1987).
Антигены различных видов микобактерий (M.bovis, M.tuberculosis, M.avium) неидентичны между собой по количественному и качественному содержанию химических веществ (Шарифуллин, 1981). 
5. Химический состав.
В состав микобактерий входит вода (80-80,9%), зольные (2,6%) и органические вещества (11,6%), в то числе липиды, белки, полисахариды и др.Из зольных веществ в микобактериях обнаружены фосфор, кальций, магний, натрий, калий, железо, цинк и марганец. В микобактериях туберкулеза человеческог7го вида фосфор занимает 74% зольных веществ.
 Белки и ДНК. Белки составляют 57-84% сухой массы микобактерий. Они имеют ряд характерных свойств. Каждому виду микобактерий характерен свой набор белковых фракций, которые можно использовать для идентификации различных видов микобактерий. Белки микобактерий содержат от 18 до 20 аминокислот, в основном аргинин, гистидин и лизин. Из микобактерий туберкулеза выделены туберкулопротеиды, которые у здоровых животных не вызывают поражения тканей. При введение таких туберкулопротеидов в организм экспериментального животного развивается чувствительность замедленного типа или кожная реакция типа Артюса. При соединении туберкулопротеидов с липополисахаридами  или другими компонентами микобактерий в организме экспериментальных животных развивается состояние повышенной чувствительности замедленного типа. В сенсибилизированном организме туберкулопротеиды вызывают кожные и общие туберкулиновые реакции. Туберкулопротеиды – это единственные компоненты микобактерий. Которые продуцируют in vitro реакции. Считающиеся аналогами кожной пробы повышенной чувствительности замедленного типа.
Туберкулопротеиды являются полными антигенами, вызывая в организме животных специфические антитела. Они также активны и специфичны в серологических реакциях. ДНК микобактерий относится к гуанин – цитозин (ГЦ) –типу ДНК
Полисахариды. Составляют до 15 % сухой массы микобактерий туберкулеза. Они присутствуют в микобактериях как в свободном, так и связанном состоянии с фосфотидами, воском, нуклеиновыми кислотами и белками.
Липиды. В отличие от других микроорганизмов микобактерии туберкулеза характеризуются повышенным содержанием липидов, достигающих 10-40% сухого веса микобактерии. Содержание липидов в микробной клетке не стабильно, А колеблется в зависимости от вида микобактерий, возраста культуры и среды, на которой их выращивают.
В микобактериях большая часть липидов сосредоточена в клеточной стенке. Так, в стенках M.bovis сосредоточено до 66% вех липидов.
В клетках глицерин образует сложные эфиры не только с обычными жирами, но и с миколовыми кислотами. Воск в большинстве случаев представляет собой гликолипиды, пептидолипиды и гликопептидолипиды. Истинный воск хроматографически обнаружен  в липидах клеточной стенке патогенных микобактерий (1966г.). Глицериды и воск служат запасными клеточными веществами.
Кроме того, в микобактериях присутствуют миколовые кислоты, которые имеют 58-87 атомов углерода в молекуле, а алифатическая цепь содержит 22-24 углеродных атома. Миколовые кислоты входят в состав клеточных стенок микобактерий, образуя арабиногалактанмукопептидный комплекс,    а также находятся в стенках в свободном состоянии, в составе воска Д и корд-фактора. Кислотоустойчивость микобактерий непосредственно связана с присутствием в клетках миколовых кислот.
Разветвленные жирные кислоты (фтиеновые, микоцеразиновые и миколовые и их эфиры) вызывают образование туберкулезных бугорков. Особенно токсичным липидным соединениям оказался корд-фактор 6,6 –димиколат трегалозы, содержащийся во всех микобактериях. Корд – фактор подавляет миграцию лейкоцитов, что в конечном счете защищает внедрившееся в макроорганизм  микобактерии от разрушения их лейкоцитами. Липиды играют важную биологическую роль в повышении резистентности к неблагоприятным условиям внешней среды и макроорганизма. Благодаря им микобактерии устойчивы к кислотам, щелочам, антисептическим веществам, высушиванию и т.д.
Липиды микобактерий обладают комплексным биологическим действием, которое выражается в их токсичности, образовании специфических изменений вы тканях, от них зависит вирулентность микобактерий, а также формирование чувствительности повышенного типа.

6.  Изменчивость микобактерий.
Один из видов изменчивости микобактерий туберкулеза – образование фильтрующихся форм (Тогунова, 1927; Хоменко с соавт. 1982). Это очень мелкие, невидимые при обычной микроскопии формы, обладающие весьма слабой вирулентностью. Их можно выявить лишь в случае реверсии, используя для этого повторные пассажи на морских свинках. В этих случаях иногда обнаруживаются  кислотоустойчивые палочки, обладающие весьма низкой вирулентностью.
Фильтрующиеся формы  следует рассматривать как мельчайшие фрагменты микобактерий туберкулеза, образующиеся в неблагоприятных условиях существования и способны к реверсии.
Хотя этому вопросу посвящено много работ отечественных и зарубежных авторов, природа данных форм, их структура, а также значение в патогенезе туберкулеза до сих пор окончательно не установлены.
L – формы микобактерий туберкулеза получены и описаны впервые в 1942 году Alexander – Jackson, в Советском Союзе – в 1972-1974 гг. Шмелевым и Дорожковой. Это дефектные в отношении клеточной стенки или полностью утратившие  ее варианты микобактерий. Для  L – форм характерны резко измененная морфология бактериальной клетки и пониженный метаболизм.  Они имеют низкую вирулентность и быстро разрушаются во внешней среде. Из – за отсутствия или повреждения клеточной стенки они не воспринимают обычно применяемые красители для окраски микобактерий, вследствие чего их не удается обнаружить бактериоскопически в мазках из пораженных органов. Превращение микобактерий туберкулеза в L – формы происходит не только под действием противотуберкулезных препаратов, но и под влиянием защитных сил макроорганизма, и, возможно, других факторов (Земскова, Дорожкова, 1984).
    продолжение
--PAGE_BREAK--L – формы микобактерий туберкулеза могут находиться в макроорганизме в стабильном и нестабильном состоянии, т.е. реверсировать в исходный микробный вид с восстановлением вирулентности. При этом вирулентные свойства стабильных  L – форм микобактерий резко понижены по сравнению с вирулентностью нестабильных форм. Последние вызывают у морских свинок генерализованный туберкулез, в то время как стабильные L – формы обуславливают лишь морфологические изменения, близкие к вакцинному процессу. Стабильные L – формы микобактерий в преобладающем большинстве случаев находят в неактивных очагах туберкулеза. Предполагают, что эти очаги способствуют возникновению у здоровых инфицированных людей противотуберкулезного нестерильного иммунитета (Земскова, Дорожкова, 1984).
В современных крупных хозяйствах на фоне использования  химиотерапии создаются благоприятные условия для образования L – форм микобактерий туберкулеза в организме у крупного рогатого скота (Байтерякова, Макаров, 1982). Применении изониазида с лечебно – профилактической целью  при   туберкулезе телят способствует образованию в организме L – форм микобактерий. Эти L – формы вызывают скрытое течение болезни (Федосеев с соавт., 1985).
Присутствие в организме КРС микобактерий туберкулеза объясняет латентное течение животных в тех хозяйствах, где причину туберкулеза обычным методами исследования установить не удается (Байтерякова с соавт., 1982).
L – трансформация микобактерий туберкулеза изучена еще не достаточно, так же как и патогенетическая роль L – форм микобактерий туберкулеза.
Лекарственную устойчивость микобактерий туберкулеза следует рассматривать как одну из форм  проявление из изменчивости. В частности, в присутствии, туберкулостатического препарата как фактора отбора может произойти изменение значительной части клеток в популяции или доминирующее размножение лекарственно устойчивых микроорганизмов. Лекарственная устойчивость у различных штаммов микобактерий не постоянна, а колеблется в широких пределах. В основе возникновения лекарственной устойчивости лежит спонтанная мутация. Вследствие спонтанной мутации возможны изменения в морфологии колоний штамма микобактерий.
Кроме того, описан ряд мутагенных факторов: УФЛ, радиация, различные химические вещества и др., вызывающие у микобактерий образование пигментных, лекарственно устойчивых, ауксотрофных и других измененных мутантов.
7.Патогенность и вирулентность различных видов микобактерий.
Под патогенностью микобактерий подразумевается их способность преодолевать естественные защитные силы организма, проникать в него, размножаться в нем и вызывать патологические изменения, а под вирулентностью  – степень болезнетворности микобактерий.
Патогенность микобактерий не является стабильным признаком, а меняется в зависимости от многих признаков. Так, вид микобактерий, обладающий выраженной вирулентностью для одного вида животных, безвреден для других. Например, микобактерии патогенны для птиц, однако не патогенны для морских свинок, лошадей и редко вызывают туберкулез у крупного рогатого скота.
Один и тот же штамм микобактерий может иметь различную вирулентность в отношении различных животных одного и того же вида (Драбкина,1963). Поэтому для определения вирулентности изучаемого штамма микобактерий следует использовать несколько видов опытных животных. Кроме того, на вирулентность влияют пути их введения в организм, доза вводимого штамма, возраст изучаемого штамма и, конечно, животное, подвергающееся заражению.
Виды возбудителей туберкулеза наиболее патогенны для тех животных, на которых они адаптировались. Так, M.bovis – наиболее патогенен для крупного рогатого скота, M.tuberculosis – для человека, а M.avium – для птиц.
Возбудитель туберкулеза КРС патогенен и для других домашних и диких жвачных и плотоядных животных,  человека и обезьян, однако степень патогенности для них различна.
Возбудителем  туберкулеза бычьего вида заражаются и верблюды, причем процент их зараженности  больше в тех хозяйствах, где более широко распространен туберкулез крупного рогатого скота (Кибасов, 1980). Хотя овцы более устойчивы к M.bovis по сравнению с КРС, но в условиях обширного заражения последних высоковирулентным возбудителем и овцы заболевают туберкулезом (Данко, 1983). У пушных зверей к возбудителю туберкулеза КРС особенно чувствительны норки и нутрии, несколько меньше – песцы и серебристо – черные лисицы (Хайкин, 1983). У свиней регистрировали туберкулез, вызванный M.bovis. Наибольшую заболеваемость свиней отмечали в хозяйствах неблагополучных по туберкулезу КРС. Частота заболеваемости у кошек и собак  зависит от  степени контактирования их с крупным рогатым скотом больных туберкулезом (Басыбеков с соавторами, 1985). Кроме вышеназванных животных туберкулезом бычьего вида заболевают лошади, козы, ослы, обезьяны, кролики, морские свинки и другие виды животных.
M.avium – основной возбудитель туберкулеза диких и домашних птиц. Чаще он вызывает туберкулез у кур и отряда куриных, реже – у уток, гусей, индюков, лебедей и других видов птиц. Представители отряда Куринных заражаются как спонтанно, так и экспериментально при любом способе инфицирования,   причем заражение возбудителем приводит к развитию туберкулеза, которое заканчивается гибелью птиц.
Возможно и заражение сельскохозяйственных животных тубе5ркулезом птичьего вида. При инфицировании КРС микобактериям птичьего вида обычно не развивается типичных патоморфологических изменений, однако названный возбудитель вызывает у КРС кратковременную сенсибилизацию организма к туберкулину. У КРС, сенсибилизированного M.avium, отсутствовали типичные изменения, однако в лимфатических узлах кишечника был обнаружен M.avium (Кочмарский, 1983).
Крупный рогатый скот заражается возбудителем туберкулеза птичьего вида через корм и воду, загрязненными испражнениями кури других птиц, в том числе и голубей. Но не исключена возможность инфицирования здоровых животных от зараженного M.avium скота (Доронин, 1961; Щербань, 1968).
При заражении КРС M.avium иногда поражены вымя, мезентеральные лимфатические узлы и серозные покровы грудной и брюшной полостей при нормальных легких, что несвойственно туберкулезу M.bovis. Из домашних птиц к возбудителю туберкулеза птиц наиболее восприимчивы свиньи. Источником заражения свиней M.avium могут быть больные куры (Щуревский, 1972). От клинически здоровых свиней с туберкулезоподобными изменениями в лимфатических узлах M.avium выделили Анищенко с соавторами (1970), Лиепиньш (1973), Юдин (1977), Солоненко (1980), Акберов (1986) и др.
В странах, где еще не ликвидирован туберкулез птиц, свиньи заражаются от  домашней птицы. Однако ликвидация туберкулеза птиц и содержание свиней в промышленных комплексах отдаленно от домашней птицы незначительно уменьшило число реагирующих на туберкулин свиней.
В данном случае источником заражения могли быть голуби, воробьи, зараженные M.avium, а также почва и вода, где M.avium могут находиться длительное время.
Кроме вышеназванных видов животных возбудителем туберкулеза птиц заражаются лошади, козы, овцы, обезьяны, кролики и другие виды животных.
В медицинской литературе описаны случаи легочной и внелегочной формы туберкулеза у людей, вызванные микобактериями птичьего вида (Ченских с соавторами, 1986; Шмелев, 1973; Зыков, 1978). У ослабленных людей с нарушением сопротивляемости организма M.avium может стать причиной тяжелых легочных заболеваний (Зыков, Ильина, 1978).
Виды M.avium M.intracellulare по бактериологическому и биохимическому исследованиям практически неразличимы, то в последнее время их рассматривают  как микобактерии комплекса avium – intracellulare. Возбудителями микобактериоза свиней почти без исключения являются микобактерии комплекса avium – intracellulare (Рудайтис, 1974; Зерен, 1975; Козлов, 1983; Нечваль, 1986).
Виды быстрорастущих микобактерий  в основном сенсибилизируют животных к туберкулину, поскольку их выделяют их неизмененных лимфатических узлов КРС, реагировавшего на туберкулин.
Однако имеются случаи описания тяжело протекающих  маститов коров, вызванных M.fortuitum и M.smegmatis.
Виды быстрорастущих микобактерий (M.fortuitum, M.chelonei) в единичных случаях были  выделены из содержимого абсцессов собак и кошек (Басыбеков с соавторами, 1985).
Атипичными микобактериями заражаются и птицы. Описаны  в основном случаи выделения атипичных микобактерий от кур, в том числе скотохромогенные  и быстрорастущих микобактерий. От диких птиц также изолированы культуры атипичных микобактерий (Мартма, Тяхнас, 1974; Михайлова, 1976).
8. Механизм передачи возбудителя.
 Перемещения возбудителя туберкулеза от зараженного организма в восприимчивый здоровый является для него биологической необходимостью, так как это обеспечивает сохранение возбудителя в природе как вида. Бесконечное пребывание возбудителя в организме невозможно, т.к. продолжительность жизни животного ограничена, а сего смертью погибает и возбудитель.
Попав из зараженного организма во внешнюю среду,  возбудитель лишается естественных условий существования. Следовательно, срок его пребывания во внешней среде тоже ограничен. Микобактерии должны вновь внедриться в организм восприимчивого животного. Весь процесс перемещения возбудителя из зараженного организм в восприимчивый здоровый называют механизмом передачи. Он состоит из трех фаз: выведение возбудителя из зараженного животного, пребывание во внешней среде, внедрение в организм здорового животного. 
Механизмом передачи возбудителя инфекции называют эволюционно сложившуюся видовую приспособленность патогенного микроорганизма к перемещению источника возбудителя инфекции к здоровому восприимчивому животному, что обеспечивает новые случаи заражения и непрерывность эпизоотического процесса.  Характер передачи зависит от локализации возбудителя в зараженном организме и путей его выделения, а внедрения в новый организм – от нахождения ворот инфекции (Бакулов, 1979; Конопаткин, Бакулов, 1984).
Выведение возбудителя туберкулеза из организма зараженного  животного осуществляется при физиологических процессах (дыхание, молокоотдача, дефекация, мочеиспускание, десквамация эпителия) и при патологических явлениях (кашель, носовые истечения, понос и т.д.).
В организм животного возбудитель внедряется через слизистую оболочку дыхательных путей или желудочно – кишечного тракта.
В корм микобактерии туберкулеза попадают с выделениями больных животных. Загрязнение почвы происходит при выпасе больных животных,  орошении полей необеззараженным жидким навозом  и сточными водами предприятий, перерабатывающих животное сырье и продукты (мясокомбинаты, убойные станции, молочные пункты и т.д.). Скорость санации зависит от типа самой почвы и входящих  в нее органических и минеральных  веществ, а также температуры, влажности, рН и других факторов. Корма могут загрязняться в помещениях (скотных дворах, свинарники, птичники), где содержатся больные животные, на территории фермы. Известны случаи заноса возбудителя в благополучные хозяйства с зараженным сеном, соломой.
В навозе микобактерии туберкулеза бычьего вида могут сохранять жизнеспособность от 5 до 24мес. (Самоволов, Жаров, 1973).
Трупы павших от туберкулеза животных и пораженные органы вынужденно убитых животных при определенных условиях также могут быть факторами передачи возбудителя. В труппах и пораженных органах микобактерии туберкулеза могут выживать до 2мес. и даже до 2 лет. Гниение и разложение трупов слабо действует на возбудителя туберкулеза. Несвоевременная уборка трупов и пораженных органов убитых животных  ведет к заражению почвы, пастбищ, водоемов.
В мясе замороженном, хранящемся в холодильнике, возбудитель туберкулеза сохраняет жизнеспособность до 1 года, в соленом мясе – до 45-60дн. Поэтому использование необеззараженного мяса животных, больных туберкулезом, может привести к заражению пушных зверей, собак, кошек.
Яйца кур, больных туберкулезом, могут содержать возбудитель туберкулеза и способствовать его передачи.
Совокупность факторов и механизмов передачи возбудителя инфекции называют путями его распространения. Туберкулез может передаваться аэрогенным и алиментарным путем.
У людей возможно проникновение возбудителя через кожу, например при разделке мяса убитых животных и при вскрытии трупов животных, павших туберкулеза. В звероводстве люди могут заразиться подобным образом при вскрытии зверей, больных туберкулезом, и при съемке шкурок, когда при разрыве брюшной стенки происходит контакт пораженных органов с незащищенными руками (Хайкин, 1976).
Таким образом, пути передачи возбудителя туберкулеза чрезвычайно разнообразны. При проведении противотуберкулезных мероприятий большое значение имеют выявление этих путей и разрыв механизма передачи возбудителя.
9. Влияние химических факторов на микобактерии.
Микобактерии туберкулеза весьма устойчивы ко многим химическим веществам. Их высокая устойчивость связана со строением клеточной стенки, которая обеспечивает им механическую осмотическую защиту (Ерохин, 1982).
В отношение кислот микобактерии довольно резистентны.  Так, в 5-10%-ном растворе соляной и серной кислот они становятся жизнеспособными в течение 24ч. В 5%-ном растворе фенола они не погибают в течение 24 ч. (Благодарный, 1980). Высокой бактерицидностью в отношении микобактерий 1%-ный раствор хлорамина  с добавлением 1%-ного раствора хлористого аммония (Вашков, 1977). 0,5%-ный раствор этостерила убивает микобактерии туберкулеза в течение 30 мин., 5%-ный раствор карболовой кислоты – в течение 5 ч. и  3%-ный раствор лизола – в течение 1ч. Однако, по другим данным, даже 10%-ный раствор лизола убивает микобактерии туберкулеза только в течение 12ч. (Благодарный, 1980).
M.avium сохраняет вирулентность в патологическом материале, хранящемся в 30%-ном растворе глицерина при температуре 5 С в течение 2 месяцев, а выживаемость в течение 3 месяцев.
Довольно быстро микобактерии убивают 50-70% алкоголь (Lindner, 1971). Соление и кипячение лишь незначительно обезвреживает микобактерии.
Возбудители туберкулеза довольно чувствительны к действию кратковолнового УФ излучения, и при  облучении их в течение 30с. Погибало 92,3% микобактерий (Шахбанов с соавт., 1972). Возбудитель бычьего вида погибал при инфракрасном электронагреве при температуре 75 С в течение 60с., человеческого и птичьего видов при 77 С – 3с. M.intracellulare при 75 С – 30с. Однако значительно устойчивее  к инфракрасному излучению и электронагреву M.scrofulaceum, которая погибла при температуре  75 С только через 5мин. (Позднякова, 1985).
Устойчивость микобактерий к химическим и физическим факторам обусловлена как их видовой принадлежностью, так и условиями в которых они находятся. Атипичные микобактерии пор сравнению с M.bovis и  M.avium более устойчивы к 3%-ному щелочному раствору формальдегида и 8%-ной эмульсии феносмолина, особенно M.intracellulare и M.gordonae (Колычев, 1984).
 10. Иммунизирующие свойства микобактерий.
Со времени открытия возбудителя туберкулеза были проведены многочисленные исследования по изучению иммуногенности живых и убитых туберкулезных и атипичных микобактерий.
Иммунопрофилактика туберкулеза с помощью вакцин гетерогенного типа, изготавливаемых из микобактерий, патогенных для холоднокровных, оказалась неэффективной.
Иммунизация животных микобактериями туберкулеза, убитыми физичес — кими или химическими методами (тепло, солнечный свет, хлор, йод, олеиновая кислота, мочевина, ацетоном, бензином и др.), не дала удовлетворительных результатов (Кальметт, 1929).
 При использовании в качестве вакцин возбудителя туберкулеза птичьего, человеческого, мышиного видов микобактерий, выделенных из медяницы, водяной черепахи, а также эмульсии, приготовленной из лимфатических узлов туберкулезных животных, были установлены их иммуногенные свойства.
Вакцина БЦЖ способствует образованию иммунитета у телят, но не обеспечивает надежной защиты от туберкулеза. Кроме того, появление аллергии у вакцинированных животных и отсутствие пригодных для практики методов дифференциации поствакцинальных реакций на туберкулин от постинфекционных затрудняет ее применение.
  Как метод борьбы с туберкулезом иммунизацию КРС в ветеринарной практике не проводят (Шишков с соавт., 1986). Некоторые отечественные исследователи рекомендуют использовать вакцину БЦЖ в общем комплексе противотуберкулезных мероприятий.
Изучение вакцинного штамма микобактерий человеческого вида В-115 показало его высокую остаточную вирулентность. Из штамма «Валле» микобактерий туберкулеза бычьего вида получен новый авирулентный вакцинный штамм «БК — Харьков» (Черкасс, Кандыба, Дикий, 1974).
    продолжение
--PAGE_BREAK--Изученные иммунизирующие свойства вакцины из штамма БЦЖ, жидкой вакцины «БК – Харьков», жидкой вакцины из штамма В-115 (Вейсфлейер, 1975) и из штамма «К» (Говоров, Кассич с соавт. ,1978) на КРС в экспериментальных и производных условиях. Прививка телят не дала образования иммунитета достаточной напряженности. При контакте с больными коровами телята заболевали туберкулезом.
  11. Диагностика.
Для успешной борьбы с туберкулезом важное значение имеет своевременное выявление больных и зараженных животных. Диагноз на туберкулез у животных устанавливают на основание патологоанатомических, бактериологических, включая биологическую пробу, и аллергическ5их исследований с учетом эпизоотологических данных и клинических признаков болезни.  В качестве дополнительных способов при диагностике туберкулеза у животных применяют серологические исследования и симультанную аллергическую пробу.
При проведении бактериологического исследования используют бактериоскопический, культуральный и биологический методы.
 Для исследования необходимы кусочки печени, селезенки, легких и лимфоузлы от убитых или павших животных. При наличии туберкулезных изменений в органах берут пробы из пораженных участков. При пересылке взятый материал консервируют в 30%-ном растворе глицерина. От живых животных исследуют молоко, мокроту, слизь, гной и фекалии.
Для бактериоскопии из материала делают мазки, фиксируют их на пламени, окрашивают по Циль-Нильсену и исследуют под микроскопом. Микобактерии обнаруживаются не в каждом случае, поэтому просматривают100-200 или даже 500 полей зрения.
Иногда в материале, присланном в лабораторию, туберкулезных микобактерий мало и обнаружить их трудно. Тогда прибегают к методам обогащения: центрифугированию либо флотации. Для этого материал измельчают, растирают в ступке, заливают 1%-ным раствором едкого натра, размешивают и переносят в колбу, которую встряхивают 10-15 мин. Затем содержимое центрифугируют 10 мин., надосадочную жидкость сливают и, осадок нейтрализуют кислотой и из него делают мазки. Метод флотации основан на адсорбции углеводородами (ксилолом, бензином, лигроином) микобактерий туберкулеза и всплывании последних вместе с ними. Его используют чаще всего при исследовании молока и мокроты, бронхиальной слизи, экссудата.
  Пи исследовании молока 30 мл его наливают в стерильные флаконы с узким горлом емкостью 100 мл и добавляют равное количество 5%-ного раствора едкого натра. Смесь встряхивают в течение 2-3 мин., а затем флаконы ставят в водяную баню при температуре 50-60 С на 1час. Затем к содержимому флакона добавляют 1 мл ксилола, и снова встряхивают в течение 15 мин.  в шуттель-аппарате. После встряхивания во флакон добавляют дистиллированную воду, пока его содержимое не поднимется до узкой части горлышка. После отстаивания в течение 1-2 ч. в нем образуется сливкообразное кольцо. 3-4 капли из него наносят пастеровской пипеткой на слегка подогретое предметное стекло. По мере подсыхания наносят на предметное стекло по 3-4 капли еще 2-3 раза, чтобы получить толстый мазок. Мазки высушивают в сушильном шкафу, обезжиривают эфиром, фиксируют на пламени, окрашивают по Циль-Нильсену и микроскопируют.
 Для получения культур микобактерий материал перед посевом подвергают обработке по методу Гона, Левенштейна-Сумиоши или Аликаевой. При обработке, по Гону, кусочки органов и тканей измельчают и растирают в ступке, затем заливают 3-10%-ным раствором серной кислоты и  центрифугируют 10-15 мин. при 3 тыс.оборотов в минуту. Период воздействия кислотой не должен превышать 20-30 мин. Затем надосадочную жидкость сливают, в осадок добавляют несколько капель стерильного физраствора и делают посевы на питательные среды, а также готовят мазки. Применяя метод Левенштейна-Сумиоши, матеал обрабатывают  таким же образом, но перед посевом осадок отмывают от серной кислоты 1-2 раза физиологическим раствором с помощью центрифуги. По методу А.П. Аликаевой материал разрезают на кусочки, помещают в ступку и заливают 3-6%-ным раствором серной кислоты на 10-20 мин. Затем кусочки тканей промывают 5 мин. физраствором  и растирают.
Для получения культур микобактерий делают посевы на питательные среды (Петраньяни, Гельберга и др.). Каждый материал высевают на 5-10 пробирок о средой. Пробирки заливают расплавленным парафином. Посевы просматривают не реже одного раза в неделю и выдерживают в термостате не менее трех месяцев. В случае отсутствия роста с поверхности среды делают соскоб платиновой петлей, готовят мазок для бактериоскопии и в случае обнаружения в нем микобактерий делают посев на свежую среду.
Для биологического исследования используют тот же материал, который был приготовлен для посева, а наличие в нем серной кислоты нейтрализуют 10%-ным раствором двууглекислой соды.
Заражают кроликов, трех морских свинок, а при необходимости трех кур и ведут за ними наблюдение.
 12. Дифференциальная диагностика.
Микобактерии различаются между собой по скорости и характеру роста на питательных средах, по  морфологии, по патогенности и другим свойствам. Раньше определение вида их называли типированием, поскольку они делились на типы. Для определения вида микобактерий туберкулеза предложено немало методов: бактериоскопический, культуральный, биохимический и тд.
Для определения вида чаще всего используют биологический метод. С этой целью ставят биопробу на трех морских свинках и трех кроликах, а если необходимо, тои на трех курах. Культуру микобактерий вводят животным в дозе 1мг сырой бактериальной массы, суспендированной в 1мл стерильного физиологического раствора, морским свинкам подкожно в области паха, кроликам – внутривенно в краевую вену уха, курам – в подкрыльцевую вену. У морских свинок при развитии туберкулезного процесса через 2-4 недели на месте введения культуры образуется язва, а также увеличение и уплотнение регионарного лимфатического узла. Свинки прогрессивно худеют. У кроликов и кур при развитии туберкулеза наблюдают истощение и снижение аппетита. Кур исследуют туберкулином. Через три месяца морских свинок, кур и кроликов убивают, вскрывают и проводят бактериологическое исследование паренхиматозных органов.
Принадлежность исследуемой культуры к тому или иному виду определяют по таким данным:
— при генерализованном процессе у морских свинок и кроликов – M.bovis;
— при генерализованном процесс6е у морских свинок, а у кроликов отсутствие поражения или единичные очажки в легких – M. Tuberculosis;
— при генерализованном процессе у кур и сепсисе у кроликов – M.avium.
 М.М. Иванов и Л.В. Кириллов предложил для определения M.avium исследуемую культуру вводить двум курам внутрикожно в бородку в дозе 0,1 мг. На месте введения M.avium вызывают припухлость, а к 25 – 30-му дню язву. Иногда наблюдается перфорация бородки.
Серодиагностика. Для этой цели изучали реакции преципитации, агглютинации, диффузной преципитации, связывания комплемента, гемагглютинация и гемолиза. Реакция преципитации и реакция агглютинации у млекопитающих животных оказались неэффективными. Лишь у кур кровокапельная реакция агглютинации дала обнадеживающие результаты.
Наиболее изучена реакция связывания комплемента (РСК). Ее применяют как дополнительный метод при отборе животных для диагностического убоя среди реагирующих на туберкулин. В РСК большую роль играет качество антигена. Лучшим из них ранее считали метиловый антиген Негр и Бокэ. В последние годы более эффективны были признаны сложносмешанный антиген Т.А. Луценко и комплексный антиген Ю.Я.Кассича. В основу сложносмешанного антигена был взят полисахаридный комплекс, полученный из микобактерий туберкулеза. В состав комплексного антигена Ю.Я. Кассича входит полисахаридный комплекс, метиленовый экстракт туберкулезных микобактерий и водный экстракт легочной ткани здорового крупного рогатого скота.
Для постановки реакции исследуемые сыворотки инактивируют в водяной бане при 60 С в течение 30мин. Антиген и комплемент титруют. В пробирки разливают испытуемые сыворотки в разведениях: 1:5, 1:10, 1:20, 1:40 и 1:80 по 0,25мл и добавляют антиген и комплемент тоже по 0,25мл. Затем штативы с пробирками ставят на 30мин. в водяную баню при 37 – 38 С, потом вынимают и добавляют в каждую пробирку гемолитическую систему, которая состоит из 0,25мо 2%-ной взвеси эритроцитов барана и 0,25мл гемолизина в рабочем титре. Затем штативы снова помещают в водяную баню на 15мин. Реакцию учитывают предварительно после бани и окончательно через 16-18 часов. Оценку производят по задержке гемолиза. Получение положительной РСК в титре 1:20 и выше указывает на наличие у животного туберкулезного процесса.
Реакцию гемагглютинации предложил Мидлбрук и Дюбо. Сущность ее заключается в Ом, что антиген, содержащийся в вытяжках микобактерий, обладает способностью адсорбироваться на поверхности эритроцитов и сенсибилизировать их к сыворотке крови туберкулезных животных, которая вызывает агглютинацию таких эритроцитов.
Реакция гемолиза заключается в том, что после учета реакции гемагглютинации в каждую пробирку добавляют комплемент. В пробирках, где содержалась сыворотка туберкулезных животных, наступает гемолиз.
Аллергическая диагностика. У животных, зараженных туберкулезом, через 15-20 дней появляется аллергия, что выражается повышением чувствительности к продуктам жизнедеятельности микобактерий (токсинам).
На протяжении многих лет для аллергической диагностики применяли только альттуберкулин Коха. В настоящее время у млекопитающих животных и птиц применяют альттуберкулин и сухой очищенный туберкулин (ППД – протеин пурифиед дериват).
Альттуберкулин готовят на биофабриках, выращивая культуры микобактерий туберкулеза бычьего и человеческого вида на мясо – пептонном глицериновом бульоне в течение 6-8 недель, после чего культуру взбалтывают и стерилизуют в автоклаве при 120 С 30мин., а затем выпаривают при 80-90 С до 1/10 первоначального объема, отстаивают и фильтруют через фильтр Зейтца. Полученный таким образом туберкулин прозрачен, коричневого цвета, имеет специфический запах. Он содержит около 40-50% глицерина.
ППД готовят, выращивая культуры микобактерий туберкулеза на синтетической среде. В фильтрат 8-недельной культуры добавляют трихлоруксусную кислоту для осаждения протеинов. Осадок обрабатывают, очищая от следов этой кислоты и высушивают. Полученный препарат представляет собой аморфную массу светло  коричневого цвета с сероватым оттенком. К сухому очищенному туберкулину биофабрики выпускают растворитель, который представляет собой  бесцветную прозрачную жидкость с легкой опалесценцией. Туберкулин и растворитель выпускают в ампулах и флаконах.
Применяют туберкулин для внутрикожной и глазной пробы.
Для внутрикожной туберкулинизации млекопитающих животных (кроме свиней и обезьян) применяют сухой очищенный туберкулин либо альттуберкулин для млекопитающих, для свиней – одновременно сухие очищенные туберкулины для млекопитающих и птиц, птицам – сухой очищенный туберкулин для птиц. Учитывают реакцию у КРС, буйволов, верблюдов через 72ч. после введения препарата, у коз, свиней, собак, пушных зверей через 48ч., а у птиц через – 30-36ч. у животных реакция на месте введения туберкулина проявляется в виде разлитого отека тестоватой или мягкой консистенции, не имеющей, как правило, четких границ с окружающей тканью. Что сопровождается местным повышением температуры, а иногда болезненностью. При учете реакции место введения препарата пальпируют, а при обнаружении изменения толщину кожной складки измеряют кутиметром, сравнивая ее с толщиной складки неизмененной кожи вблизи места введения туберкулина. Крупный рогатый скот, верблюдов и оленей считают реагирующими на туберкулез при утолщении кожной складки на 3мм и более; коз, овец, собак, свиней, пушных зверей, кур – при образовании припухлости в месте введения туберкулина, норок – при опухании века.
Глазную туберкулинизацию (офтальмопробу) применяют у лошадей. А иногда у крупного рогатого скота одновременно с внутрикожной пробой. Ее проводят двукратно с интервалом в 5-6 дней. Глазной пипеткой на конъюнктиву нижнего века наносят 3-5 капель туберкулина. Учитывают реакцию через 6, 9, 12, 24ч. после первого и через 3, 6, 9, 12ч. после второго введения. Реакция выражается в выделении слизисто-гнойного или гнойного секрета и гиперемии конъюнктивы.
Эпизоотологический метод. При  подозрении на заболевание животного туберкулезом проводят эпизоотологическое обследование. При этом обобщают и анализируют статистические данные ветеринарной отчетности о туберкулезе крупного рогатого скота и других видов животных не менее чем за пять лет. Учитывают данные боенской статистики. Выясняют когда и по каким ветеринарным документам поступили в хозяйство животные, условия их размещения в карантине, дату и результаты исследования в период профилактического карантина; возможность контакта животных этого хозяйства на пастбищах, водоемах и скотопрогонных трактах с животными неблагополучных хозяйств. Возбудитель туберкулеза может быть занесен в благополучные стада с необеззараженным обратом, доставленным с молочного завода, куда поступило молоко из неблагополучной фермы. При этом заболевание обычно регистрируют у телят.
Человек также может заражать крупный рогатый скот возбудителем туберкулеза бычьего вида, если он сам болеет туберкулезом, вызванным бактериями этого вида. Возбудитель туберкулеза человеческого вида сенсибилизирует КРС к туберкулину и лишь изредка вызывает ограниченные изменения, преимущественно в лимфатических узлах, регионарных местам проникновения микобактерий в организм животного. У свиней при заражении этим видом микобактерий обнаруживают патологоанатомические изменения, характерные для туберкулеза. Поэтому выясняют также наличие больных туберкулезом людей, работающих на ферме. Анализ этих данных способствует своевременному установлению диагноза.
Клинический метод. Течение туберкулеза у животных обычно хроническое, с постоянно нарастающими симптомами.  С момента заражения до появления признаков болезни может пройти несколько месяцев или лет. Клинические признаки туберкулеза у животных не всегда типичны. У одних больных животных они могут вообще отсутствовать, у других наблюдаются неяркие симптомы, по которым можно лишь подозревать заболевание туберкулез.
При нормальных условиях кормления и содержания туберкулез у крупного рогато скота  может протекать без видимых клинических признаков. Они проявляются только при далеко зашедшем патологическом процессе. Чаще поражаются легкие, кишечник, вымя, а также подчелюстные, заглоточные, околоушные, бронхиальные, брыжеечные и другие лимфатические узлы. Каким бы путем не возникло заболевание, оно поначалу носит ограниченный характер в виде мелких очагов, преимущественно в легких. При легочной форме сначала повышается температура (40 С), появляется резкий короткий сильный кашель (особенно по утрам), который потом становится слабым, частым и сопровождается болями. Больные животные постепенно худеют, стоят сгорбленно, понуро опустив голову; передвигаются с трудом, редко ложатся, поднимаются со  стоном. Шерстный покров взъерошен, теряет блеск, кожа теряет эластичность. Через рот и носовые отверстия иногда выделяется слизисто – гнойное истечение. Если поражена плевра, то животное ощущает боль при надавливании между ребрами.
Подчелюстные и заглоточные лимфатические узлы увеличиваются в размерах, становятся болезненными, малоподвижными. Кожа над ними постепенно истончается и, при прогрессировании болезни,
лимфатические узлы расплавляются, а образующийся в них гной прорывается наружу и длительное время выделяется через свищи.
Туберкулез кишечника протекает хронически и сопровождается прогрессирующим исхуданием и перемежающимися поносами, неподдающимися лечению.
Поражение вымени характеризуется местным процессом с поражением одной или обеих задних долей, иногда передних. Пораженная доля увеличена, диффузно или гнездно уплотнена. В глубине железистой ткани после сдаивания молока прощупываются   туберкулезные очаги разной величины и консистенции. Надвымянные лимфатические узлы увеличены до размера куриного яйца, на ощупь плотные бугристые.
Поражение матки и яичников сопровождается абортами, яловостью.
 Болезнь может протекать генерализованно, т.е. с поражением многих органов и лимфатических узлов.
Больные куры становятся вялыми, худеют. Бледнеет и сморщивается гребень. Птицы малоподвижны, яйценоскость снижается, грудные мышцы атрофируются. Генерализация процесса сопровождается поражением кишечного тракта. Отмечают понос, вызывающий резкое истощение птиц, иногда поражаются кости, суставы, развивается хромота. 
    продолжение
--PAGE_BREAK--Клиническое проявление болезни у  других видов животных недостаточно характерно.
Из клинических методов диагностики при туберкулезе применяют осмотр, пальпацию, перкуссию, аускультацию и термометрию.
При осмотре определяют упитанность животного, состояние кожи, лимфатических узлов, слизистых оболочек, количество дыхательных движений, их ритм, силу и симметричность, тип дыхания. Также исследуют прием корма и питья. Полость рта, глотки. Кишечник, акт дефекации экскременты.
Пальпацией устанавливают повышенную чувствительность гортани и грудной клетки. С помощью аускультации определяют состояние легких, желудка и кишечника. Перкуссией выявляют физическое состояние легких и плевры.
Осмотр проводят при дневном свете, чаще утром, когда животные поднимаются. При расстройстве тех или иных функций необходимо исследовать соответствующие системы организма. При наличии плохого аппетита, отсутствии жвачки или, наоборот, при длительных поносах особое внимание обращают на органы пищеварения, а при наличии кашля, истечений из носа – на дыхательную систему.
В начале заболевания перкуссия и аускультация не дают отклонений от нормы. С развитием процесса при аускультации слышны хрипы, ослабленное везикулярное дыхание или дыхательные шумы на отдельных участках легкого  не прослушиваются  совсем. Перкуссией обнаруживают очаги притупления.
При надавливании или перкуссии грудной клетки животные стараются отклониться и кашляют; шум трения плевры указывает на шероховатость плевральных листков или наличие жемчужных узлов.
Нормальная температура тела у крупного рогатого скота колеблется в пределах 37,5 – 39,5  С. по мере развития болезни температура временами повышается на 0,5 – 1,5  С.
Большое диагностическое значение имеет исследование лимфатических узлов методами осмотра и пальпации. При этом следует учитывать, что размер лимфатических узлов значительно колеблется в зависимости от размера и возраста животного. При исследовании обращают внимание на величину, строение, форму, консистенцию, температуру кожи, покрывающей узел, чувствительность, четкость отграничения от окружающих тканей, подвижность самого узла и находящейся под ним кожи.   
У крупного рогатого скота легко прощупываются подчелюстные, предлопаточные, коленной складки, надвымянные, околоушные и заглоточные лимфатические узлы. При прощупывании подчелюстных лимфатических узлов одной рукой животное удерживают за рог, а  другой пальпируют, предлопаточных – становятся рядом с шеей животного, лицом к задней части его  тела, и, охватив шею обеими руками, просовывают пальцы под передний край лопатки. Надвымянные лимфатические узлы пальпируют после  сдаивания молока обеими  руками, стоя сзади животного и захватив пальцами справа и слева задние доли вымени в верхней трети последнего и постепенно пропуская их между пальцами.  При туберкулезе лимфатические узлы обычно бугристые, плотные, безболезненные и малочувствительные и обыкновенно не сросшейся с находящейся над ними кожей. Иногда они достигают опухоли величиной почти с кулак и более, обычно малоподвижны, круглой или яйцевидной формы.
В некоторых случаях при переходе патологического процесса на серозный покров внутренних половых органов у коров повышается половая возбудимость, вследствие чего у них ежемесячно или с меньшими промежутками проявляются симптомы охоты. В позднейшей стадии болезни половое возбуждение становится почти беспрерывным («нимфомания»).
На плановом проведении профилактических и оздоровительных мероприятий можно предотвратить развитие клинических признаков туберкулеза у крупного рогатого скота, заразившегося возбудителем туберкулеза бычьего вида. Клинически больных животных чаще выявляют в стадах хозяйств, длительно неблагополучных по туберкулезу. Необходимо учитывать, клинически больные животные нередко находятся в состоянии анергии и на туберкулин не реагируют. Поэтому в неблагополучных по туберкулезу хозяйствах одновременно с туберкулинизацией необходимо проводить клиническое обследование животных.
13. Иммунитет и аллергия при туберкулезе.
При заражении животных туберкулезом в организме развиваются аллергия и иммунитет. Иммунитет следует рассматривать как невосприимчивость (чаще относительную) к первичному инфицированию, а в дальнейшем к суперинфекции, в результате чего организм либо не инфицируется вообще (что наблюдается крайне редко), либо заболевание протекает бессимптомно, организм преодолевает его самостоятельно.
Относительная врожденная резистентность к туберкулезной инфекции, более или менее выраженная, свойственна многим представителям животного мира. Из позвоночных наибольшей резистентностью обладают   хладнокровные: рыбы, амфибии и рептилии. Среди наиболее высокоорганизованных представителей позвоночных – птиц и млекопитающих – одни виды высокорезистентны, другие менее резистентны или очень чувствительны к туберкулезу.
Инфекция у насекомых протекает по типу простого симбиоза, при котором микобактерии живут в теле насекомых на протяжении более или менее длительного времени, не вызывая туберкулезных изменений и не причиняя им никакого вреда.
Хладнокровные не восприимчивы к микобактериям человеческого, бычьего и птичьего вида, восприимчивы только к микобактериям хладнокровных.
Наиболее чувствительны попугаи, которые подвержены спонтанному заражению микобактериями птичьего, бычьего и человеческого вида. Гуси и утки проявляют большую резистентность к туберкулезу.
Среди млекопитающих к возбудителю туберкулеза восприимчивы   обезьяны, морские свинки, крупный рогатый скот, кролики, а также человек.
К туберкулезной инфекции слабо восприимчивы крысы,  Р. Кох скармливал крысам мясо павших от туберкулеза животных, и крысы оставались здоровыми.
Организм человека и крупного рогатого скота обладает известной степенью природного иммунитета. Но врожденный иммунитет недостаточен для того, что бы уберечь крупный рогатый скот и человека в случае массивного заражения.
Реактивность как свойство организма отвечать изменением жизнедеятельности на воздействия окружающей среды и нарушения деятельности систем организма обусловлена генетическими особенностями вида и отдельного организма. Реактивность микроорганизма отражает его способность предупреждать и преодолевать инфекцию и поэтому может служить состоянием показателем состояния организма на любо1й стадии эволюции туберкулеза.
О том, что видовая реактивность имеет решающее значение для возникновения и течения туберкулезной инфекции, известно давно. Но лишь в 40 – 50 гг. установлены пороговые дозы микобактерий туберкулеза, способные вызвать состояние инфицированности, переходящее в заболевание.  Так, для возникновения специфических изменений в виде туберкулезного бугорка в легком морской свинки необходимо до 23 туберкулезных микобактерий (Lurie, Abromson, 1948).
Крупный рогатый скот обладает видовой специфической сопротивляемостью, выработавшейся и закрепившейся в поколениях в результате многовекового контакта с этой инфекцией. Без естественной устойчивости, вероятно, животные не могли бы устоять против эпизоотий.  Степень индивидуальной врожденной устойчивости у животных неодинакова: одни тесно и длительно сталкиваются с бактериовыделителем и не заражаются, другие, заражаются, но не болеют, третьи – заражаются и болеют.
Резистентность организма к туберкулезу с возрастом колеблется. Заражение для новорожденных телят очень опасно, т.к. оно в этот период может перейти в заболевание. Но в большинстве случаев у животных, заразившихся в молодом возрасте, болезнь проявляется при первых, вторых, третьих отелах.
Организм животных располагает защитными реакциями в отношении туберкулезной инфекции, но его возможности самозащиты ограничены.
Если микобактерии туберкулеза, тем или иным путем попали в организм животного, приживаются в нем,  то размножаются и вызывают тканевые изменения в различных органах  в виде отдельных или множественных бугорков или более крупных туберкулезных поражений.
О наступившем поражении можно судить по ряду признаков. Один из них – реакция на туберкулин. Другой признак заражения – наличие в легких и лимфатических узлах туберкулезных изменений, которые обнаруживают при убое или гибели животного.
Весьма важная роль, как установил И.И. Мечников, принадлежит белым кровяным тельцам, клеткам печени, селезенки, лимфатических узлов, костного мозга. Они фагоцитируют, разрушают и выводят из организма микобактерии и образуемые ими ядовитые вещества (токсины). Но даже если микобактерии и остаются в каком – либо органе, то образующи6е5ся при этом повреждения постепенно отграничиваются или рубцуются.
Механизм иммунитета при туберкулезной болезни во многом до конца еще не изучен, и некоторые вопросы его остаются спорными. У инфицированного микобактериями туберкулеза крупного рогатого скота развиваются все типы иммунологических реакций. Иммунный ответ при туберкулезе характеризуется не только выработкой различных антител и развитием клеточного иммунитета (фагоцитоза), но и появлением повышенной чувствительности замедленного типа (ПЧЗТ). Установлено, что ПЧЗТ на ряду с антителообразованием представляет неотъемлемую часть иммунных реакций организма и может рассматриваться как основное звено в развитии противотуберкулезного иммунитета.
В иммунном ответе организма участвуют лимфоидные клетки, среди которых выделяют В и  Т – лимфоциты, отличающиеся организацией и условиями функционирования рецепторов, реагирующих с антителами. В – лимфоциты ответственны за гуморальные формы иммунного ответа организма.   Т – лимфоциты не продуцируют антитела, но выполняют очень важную роль в клеточных иммунных реакциях в виде ПЧЗТ, 4участвуют в межклеточной кооперации в процессе синтеза антител.
Иммунная защита при туберкулезе связана главным образом с макрофагами и Т – лимфоцитами. Процесс начинается со взаимодействия микобактерий с макрофагами. Результатом чего могут быть как активация, так и супрессия специфического воспаления. Исходы взаимодействия микобактерий с макрофагами могут быть различны – от внутриклеточной деструкции до размножения и персистенции в организме, что зависит как и от биологических свойств микобактерий, так и от активации макрофагов, определяемой интенсивностью протекающих в них метаболических процессов.
Своеобразие противотуберкулезного иммунитета заключается в развитии комплекса иммунных процессов – клеточно-опосредованного иммунитета, ПЧЗТ и антителообразования. Но если клеточный иммунитет и замедленную гиперчувствительность рассматриваю как основные механизмы противотуберкулезного иммунитета, то в отношении биологической роли антител ясности нет.  Их выявляют в низких титрах, они не обладают протективными свойствами и, как правило, не только корректируют, но часто конкурируют с выраженностью клеточного иммунитета. В связи с тем, что синтезируются антитела разных типов и разных классов, выполняющие различные функции, простого выявления в серологических реакциях титров циркулирующих антител явно не достаточно.
Туберкулез – инфекция, при которой с исключительной яркостью выражены все типы аллергических и парааллергических реакций при непосредственной зависимости клинико-анатомических признаков этого заболевания от состояния общей и иммунологической реактивности зараженного организма (Здродовский, 1969).
Аллергия – компонент специфического приобретенного иммунитета (поскольку она включается иммунологическими механизмами), который развивается в ответ на введение антигена (Авербах с соавт., 1976). Однако аллергия по сравнению с другим большинством иммунных реакций при взаимодействии с антигеном вызывает большое повреждение клеток макроорганизма. Это не специфическое повреждение по отношению к тканям. Т.к. оно обусловлено не наличием общих антигенных детерминант с чужеродным веществом, на котором развился иммунитет в тканях, а неспецифической фиксацией антител – реагинов ИМЛИ комплексов антиген – антитело на клетках. Аллергические реакции могут быть до определенного предела полезными и становятся вредными, когда повреждение тканей достигает больших размеров. Аллергические реакции могут быть как местными  (локализованными), так и общими (например, анафилаксия).
В основе местных аллергических явлений при введении туберкулина лежит реакция между антигеном и антителом.
Туберкулезная аллергия связана с проникновением в организм туберкулезных микобактерий и характеризуется повышенной чувствительностью к повторному введению последних или их продуктов. Р.Кох (1891) наблюдал классический аллергический феномен (феномен Коха), в котором он установил, что туберкулезные свинки иначе реагируют на введение туберкулина, нежели здоровые. У здоровых животных первичное подкожное введение микобактерий вызывает в течение нескольких дней местное воспаление, которое сопровождается абсцессом и аденитом, инфекция генерализуется, а изъязвление не заживает до самой смерти животного. У туберкулезных же свинок происходит другая реакция: вслед за повторным введением микобактерий возникает местное аллергическое воспаление с дальнейшим изъязвлением поражения: уже через 2-3 дня кожа покрывается засыхающей коркой, через некоторое время последняя спадает и происходит последующее заживление рубцом, регионарные железы не вовлекаются в воспалительный процесс. Таким образом, в феномене Коха ярко выражена повышенная  чувствительность туберкулезных животных к повторному введению микобактерий и в то же время резистентность к реинфекции. Интенсивность феномена Коха изменяется в зависимости от индивидуальности животного, от вида и вирулентности микобактерий, дозы реинфекции и времени промежутка между первичной инфекцией  и реинфекцией (Драбкина,  Равич – Щербо, 1959).
Туберкулиновые реакции отражают состояние аллергена в организме в связи с инфицированностью возбудителем туберкулеза. После открытия возбудителя был изыскан и применен как диагностикум туберкулин (Гельман, 1888, 1890). Для выявления аллергического ответа на туберкулин предложено большое количество проб: подкожная, внутрикожная, пальпебральная, глазная и т.д.В месте внутрикожного введения образуется припухлость, достигающая наибольшего размера через 48 – 72ч., т.е. это время необходимое для подхода и скопления иммунокомпетентных клеток, взаимодействия их с антигенами развития воспалительного процесса. По степени внешнего проявления реакции подразделяют на нормэргические, умеренные, гипеэргические – сильные и гипоэргические – слабые. Отсутствие реакции на туберкулин называют анергией. Аллергический ответ организма при поражении возникает через 5 – 10 или 42 – 60 дн. и более.
На проявление аллергических реакций влияет кормление, содержание животных, климато-географические условия, природа и доза вводимого раздражителя, место его введения, степень выраженности туберкулезного процесса в организме, анатомо-физиологические свойства места введения аллергена, индивидуальные особенности сам ого исследуемого организма, сопутствующие заболевания и др. факторы.
Термин «аллергия» остается широко распространенным, но нередко используется в извращенном представлении о патогенезе заболевания.
Так, например, до сих пор многие врачи считают положительную туберкулиновую пробу типичным проявлением аллергии при  туберкулезе,  тогда как реакция кожи на туберкулин – классическое проявление феномена ПЧЗТ, выраженное миграцией в кожу сенсибилизированных лимфоцитов и последующим воспалением этого участка. Механизм развития этой реакции при внутрикожной пробе такой же как при введении туберкулина, вакцины БЦЖ, аллергенов из атипичных микобактерий.
Кроме туберкулиновых проб для определения повышенной чувствительности замедленного типа in vitro применяют методы, основанные на воздействии специфических антигенов на иммунокомпетентные лимфоидные клетки.  Наиболее широко используются реакции бласттрансформации лимфоцитов, торможение миграции макрофагов и лейкоцитов, повреждения нейтрофильных клеток крови и т.д. Однако широкого применения они не нашли.
14. Специфическая профилактика.
На начальном этапе внедрения противотуберкулезной вакцинации были предприняты различные способы изготовления и применения вакцин на лабораторных животных и на крупном рогатом скоте. Испытывали вакцины из убитых микобактерий туберкулеза, а также живые и ослабленные разными способами. Предохранительные вакцины разрабатывали Мисснер, Климмер, Кох, Беринг, Зельтер и др. Все эти вакцины в настоящее время представляют только исторический процесс.  
В начале прошлого столетия была создана вакцина, приготовленная из культур микобактерий туберкулеза  человеческого вида, ослабленных путем высушивании в безвоздушном пространстве (Беринг, Ремель и Руппель). Затем Климмер  предложил для прививки крупного рогатого скота вакцину под названием «антифиматоль». Были попытки применить в качестве вакцины культуру микобактерий туберкулеза холоднокровных, выделенные от черепахи. Однако все эти вакцины не обладали достаточной иммуногенностью.
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Виховання учнів у науковій літературі
Реферат Повреждение костей и суставов. Каплан 1
Реферат "Молот ведьм" или "Hexenhammer" (1-е издание 1486г.) бесспорно, основной и самый мрачный из всех трудов по демонологии
Реферат Особенности тематики и проблематики в рассказах Ф. Абрамова. Типология героев
Реферат Культура Древнего мира. Первобытная культура.
Реферат В.И. Ленин
Реферат Завдання і організаційні основи побудови Цивільної оборони України та права і обов’язки працівників, службовців та населення по Цивільній обороні
Реферат Формирование профессиональной компетентности будущего учителя в области рациональной организации учебной деятельности
Реферат Возможности и особенности судебно-медицинского исследования трупов новорожденных, при скоропостижной смерти, расчлененных трупов и трупов, находящихся в состоянии сильно выраженных посмертных изменений. Эксгумация трупов
Реферат Адвокат Пьер Патлен
Реферат Мирская ересь (психоантропологические заметки о философии анархизма)
Реферат Про танкові підрозділи іноземних армій у військових конфліктах 2
Реферат Противоречия Конституции субъекта РФ Федеральному закону РФ "об общих принципах организации представительных и исполнительных органов государственной власти"
Реферат Характеристика внебюджетных фондов
Реферат Загадка русской души в творчестве В.М. Шукшина