--PAGE_BREAK--
3.4.
Перевод в двоичную систему счисления
из восьмеричной и шестнадцатеричной
Для перевода в двоичную систему из восьмеричной или шестнадцатеричной систем счисления необходимо каждое число заменить двоичным эквивалентом (см. табл.2 и 3). Например: 34.58 = 011 100.1012; A3.E16 = 1010 0011.11102.
3.5.
Перевод из восьмеричной системы в шестнадцатеричную
Для перевода из восьмеричной системы счисления в шестнадцатеричную систему счисления необходимо представить это число в виде двоичного числа. Затем объединить в группы по 4 бита и заменить соответствующим числом из шестнадцатеричной системы счисления (см. табл.2 и 3). Например: 3458 = 011 100 1012 = 0111001012 = Е516
3.6.
Перевод из шестнадцатеричной системы в восьмеричную
Для перевода шестнадцатеричной системы счисления в восьмеричную необходимо представить это число в виде двоичного числа. Затем объединить в группы по 3 бита и заменить соответствующим числом из восьмеричной системы счисления (см. табл.2 и 3). Например: В516 = 1011 01012 = 010 110 1012 = 2658
4.
Арифметические действия в позиционных системах счисления
Арифметические действия (сложение, вычитание, умножение и деление) над числами в двоичной, восьмеричной и шестнадцатеричной системах счисления выполняются с использованием таблиц сложения и умножения подобно тому, как это делается в десятичной системе счисления.
Таблицы 4 и 5 предназначены для выполнения сложения и умножения в двоичной системе счисления, таблицы 6 и 7 – в восьмеричной системе счисления, а таблицы 8 и 9 – в шестнадцатеричной системе счисления. Ниже приведены примеры сложения и умножения в различных системах счисления.
а) сложение и умножение в двоичной системе счисления
--PAGE_BREAK--
--PAGE_BREAK--