Пошукова робота на тему:
Визначення та обчислення довжини дуги плоскої кривої в декартових та полярних координатах. Площа поверхні.
План
Довжина дуги кривої в декартових і полярних координатах
Площа поверхні
Площа поверхні обертання
Площа циліндричної поверхні
10.3. Довжина дуги
Це питання для кривої, заданої рівнянням />, вже розглядалося в п.9.1. Там була знайдена формула
/> (10.9)
Якщо крива задана параметрично, тобто у вигляді /> то
/> (10.10)
Для просторової кривої, заданої параметрично />, довжина дуги обчислюється за формулою
/> (10.11)
аналогічно формулі (10.10). Виведення цієї формули базується на розгляді елемента /> дуги, кінці якої збігаються з кінцями діагоналі паралелепіпеда, а саме, діагональ є хордою елемента дуги.
У випадку задання кривої в полярній системі координат /> , матимемо
/> (10.12)
Пропонується вивести цю формулу, узявши до уваги, що рівняння кривої в полярних координатах можна записати як параметричні з параметром q :
/> />
і використавши формулу (10.10).
Приклад 1. Обчислити довжину кривої, заданої рівнянням /> .
Р о з в ‘ я з о к.Досить обчислити довжину дуги, що обмежує зверху заштриховану на рис.10.7 фігуру, а потім помножити її на 8. Користуючись формулою (10.12), одержимо
/>
10.4. Площа поверхні
10.4.1. Площа поверхні обертання
Довжина дуги, що обмежує смужку зверху (рис.10.9),
/>
Ця дуга в разі обертання утворить поверхню обертання, площа якої дорівнюватиме бічній поверхні конуса, який має висоту />, а радіуси основ його />. Тоді площа поверхні цього конуса нескінченно малої висоти
/>
Нескінченно малою вищого порядку нехтуємо і в результаті одержимо /> звідки
/> (10.7)
10.4.2. Площа циліндричної поверхні
На рис. 10.10 зображено циліндричну поверхню />з твірними, паралельними осі />. Нехай ця поверхня задана рівняннями
/>
/>
Рис.10.9 Рис.10.10
Виділивши смужку так, як показано на рис. 10.10, знайдемо її площу
/>
/> (10.8)
Зауваження 1.При одержанні формул (10.1) – (10.2), (10.4) – (10.8) виділені елементи фігур вважалися прямокутниками (див. рис. 10.1, 10.4,10.5 ), сектором з центральним кутом /> ( рис. 10.2), тонким циліндричним шаром (рис. 10.3), що не вплинуло на остаточний результат, бо такі заміни реальних фігур здійснюються нехтуванням нескінченно малих величин вищих порядків. Цей факт можна було б строго довести.
Приклад . Еліпс із великою піввіссю /> і малою піввіссю /> робить один оберт навколо великої осі і вдруге – навколо малої осі. Визначити поверхню обертання еліпса в кожному з двох випадків.
Р о з в ‘ я з о к.Досить розглянути лише половину еліпса:
/>
В результаті обертання навколо великої осі одержимо за (11.7)
/>
/>
де /> — ексцентриситет еліпса.
За допомогою підстановки />матимемо
/>
У випадку обертання навколо малої осі для обчислення поверхні обертання одержуємо інтеграл
/>
/>/>
/>
В обох випадках поверхня еліпсоїда виразилась через елементарні функції.