Реферат по предмету "Военное дело"


Ядерная опасность Семипалатинский полигон

--PAGE_BREAK--Пи-мезанное излучение — поток элементарных частиц, имеющих промежуточную массу между электроном и протоном. Пи-мезоны могут быть положительно заряженными частицами, отрицательно и нейтральные. Заряд положительных и отрицательных пи-мезонов равен заряду электрона, а масса составляет 273 массы электрона. Как и у протона плотность ионизации у пи-мезонов растет к концу пробега. Однако в отличие от протонов, отрицательные пи-мезоны захватываются ядрами атомов кислорода, углерода, азота, водорода, а затем расщепляются с высвобождением громадного количества энергии, образуя при этом максимум ионизации. При этом соотношение дозы в пике к дозе окружающих тканей достигает 10:1. Основным источником пи-мезонов являются ядерные реакторы.
Тормозное излучение высокой энергии (выше 1 Мэв) является электромагнитным колебанием, ионизирующее излучение, возникающее при изменении кинетической энергии заряженных частиц с непрерывным спектром.
Генерируется оно в ускорителях /линейный ускоритель или бетатрон/. Основным свойством их является способность проникать в плотные среды и вызывать процессы ионизации. Процесс ионизации лежит в основе биологического действия, относительная биологическая эффективность определяется плотностью ионизации в тканях.

ДЕЛЕНИЕ ЯДЕР
После открытия нейтрона в 1932 г., а затем искусствен­ной радиоактивности в 1934 г. ученые увлеклись «совре­менной алхимией», т. е. созданием новых радиоактивных элементов под воздействием нейтронов.
Молодой еще в то время Ферми, стремясь получить новый неизвестный миру 93-й элемент, попытался облу­чить нейтронами уран—92-й элемент таблицы Менде­леева. Однако в результате захвата нейтронов ядрами урана образовался не один искусственно радиоактивный элемент, а по крайней мере целый десяток.
Природа задала человеку новую задачу. Можно считать, что с этого момента начался новый этап в развитии ядер­ной физики — возможность использования энергии, таив­шейся в недрах атома, стала реальностью.
Объяснение новому явлению дали Фредерик Жолио-Кюри и Лизе Мейтнер. Они показали, что в процессе облу­чения урана нейтронами происходит новый тип ядерной реакции — деление ядра урана на две примерно равные части (осколки). Энергия, выделяемая при этой реакции, составляет около 200 Мэв, т. е. в десятки раз больше, чем при обычных известных в то время ядерных реакциях.
Теория деления урана была разработана одновременно и независимо друг от друга советским ученым Френкелем и датским ученым Бором.
Особенность реакции деления урана состоит в том, что при каждом акте деления, помимо двух осколков, образу­ются два-три нейтрона, которые могут вызвать деление других ядер. При каждом из этих процессов освобождаются новые нейтроны, которые в свою очередь вызывают деление последующих ядер (рис). Таким образом один нейтрон может положить начало целой цепочке делений, при этом количество ядер, подвергшихся делению, лавинообразно нарастает, т. е. реакция деления урана развивается как цепная реакция. Например, доли секунды достаточно для того, чтобы разделились все ядра, содержащиеся в 1 кг урана (примерно 3 • 1024 ядер). Энергия, выделяющаяся при этом, равна энергии, освобождаемой при взрыве 20 000 т тротила или при сжигании 2,5 тыс. т каменного угля.
При делении ядер урана примерно 83% энергии преоб­разуется в кинетическую энергию осколков; 3% связано с энергией g-квантов, которые образуются мгновенно при делении, и 3% уносится образующимися при делении нейт­ронами. Остальные 11% энергии выделяются постепенно в виде энергии (b-частиц и g-квантов в процессе радиоактив­ного распада ядер изотопов (осколков), образующихся при делении.

Рис. Цепная реакция деления урана.
На пути практического использования цепной реакции деления урана важное значение имело открытие советских физиков Г. Н. Флёрова и К- А. Петржака, которые в 1940 г. показали, что существует новый вид радиоактивности — самопроизвольное (спонтанное) деление ядер изотопа U235 с периодом полураспада Т— ~1017 лет. Таким образом для использования цепной реакции деления не нужны сто­ронние нейтроны: они образуются в уране вследствие спон­танного деления.
Цепная реакция деления может осуществляться под действием как быстрых, так и медленных нейтронов только при бомбардировке ядер изотопа U235. Природный уран представляет собой в основном смесь изотопов U238 и U238, причем содержание U235 составляет всего 0,7%. Ос­тальное — это изотоп U238. Поэтому для осуществления на практике цепной реакции необходимо разделить эти изото­пы, что является задачей хотя и разрешимой, но весьма сложной. Это связано с тем, что U238 может делиться толь­ко под действием нейтронов с энергией большей, чем энер­гия нейтронов, образующихся при делении U235. Таким образом, нейтроны, образующие при делении U236 с энергией порядка 1 Мэв, в основном рассеиваются ядрами U238, кото­рых значительно больше; энергия нейтронов постепенно убы­вает до тех пор, пока они не достигнут энергий, соответст­вующих так называемой резонансной области (примерно 1— 10 эв). В этой области энергий резко возрастает вероятность захвата нейтронов ядрами U238 по сравнению с U235. Начавшаяся в природном уране цепная реакция деления быстро затухает, поскольку нейтроны в основном захваты­ваются ядрами U238, не успев вызвать дальнейшего деле­ния ядер U235.   ,
При захвате нейтронов ядрами U238 образуется изотоп U239, который в процессе b-распада превращается в новый 93-й элемент Np239. Период полураспада U239 равен 23 мин.
Изотоп Np239 также является неустойчивым; в процессе b-распада (Т = 2, 3 дня) он превращается в элемент с атом­ным номером 94, названный плутонием:
Плутоний также радиоактивен: в процессе a-распада он превращается в изотоп U 23592. Период полураспада плу­тония равен 24 000 лет.
Плутоний интересен в том отношении, что в нем под действием нейтронов, так же как и в U235, может происхо­дить цепная реакция деления. Таким образом, плутоний, наряду с U235, является ядерным горючим, которое слу­жит для получения атомной энергии.
Ядра урана или плутония, захватив нейтроны, могут разделиться различными способами (до 30—40). Массовые числа образующихся продуктов деления имеют значения от 72 до 158. Например, при делении образуются изотопы стронция, бария, лантана, цезия, иода, циркония, ниобия, аргона, ксенона и других элементов. Наиболее вероятно деление ядра на осколки с массовыми числами 95 и 139.
Большинство образующихся продуктов деления явля­ются нестабильными и в результате одного, а иногда и трех последовательных р -распадов превращаются в стабиль­ный изотоп. У некоторых продуктов деления этот распад сопровождается g-излучением. Периоды полураспада раз­личных продуктов деления изменяются в очень широких пределах: от долей секунды до многих тысяч лет.

РАДИАЦИОННЫЙ КОНТРОЛЬ
В учреждениях, где проводятся работы с радиоактивными вещест­вами или источниками ионизирующих излучений, должен осуществлять­ся радиационный дозиметрический контроль. В зависимости от объема и характера работ контроль проводится либо штатной службой радиа­ционной безопасности(в каждой смене), либо специально выделенным лицом.
Радиационный контроль должен быть организован так, чтобы в по­мещениях, где ведутся работы на стационарных установках с источниками с керма-эквивалентом более 2000 нГр*м/с (1 г-экв. Ra) на ускорителях заряженных частиц, с нейтронными источниками с выходом более 109 нейтр./с, с делящимися материалами, а также на ядерных реакторах и критических сборках, были установлены дозиметрические приборы с автоматическими звуковыми и световыми сигнализирующими устройствами. При необходимости предусматривается сигнализация трех уровней: нормального, предварительного, аварийного.
При проведении оперативного дозиметрического контроля, согласно НРБ—76/87, следует руководствоваться допустимыми и контрольными уровнями. Объем контроля устанавливается в зависимости от до­зы b-, g-, n- и других излучений; содержанием газов и аэрозолей в воз­духе и радионуклидов в твердых и жидких отходах; выбросом радио­нуклидов в атмосферу; уровнем загрязнения радионуклидами поверхностей, кожных покровов и одежды, объектов внешней среды, транс­портных средств; индивидуальной дозой внешнего и внутреннего облу­чения. Результаты всех видов радиационного контроля должны храниться в течение 50 лет.
Персонал, работающий с делящимися веществами, на ядерных реакторах и критических сборках, а также в условиях непредвиденного аварийного облучения, должен быть обеспечен индивидуальными аварийными дозиметрами.
Персонал, для которого условия труда таковы, что доза не может превышать 1/3 ППД, не обязательно обеспечивать индивидуальными дозиметрами, позволяющими контролировать квартальную, годовую и дневную дозы внешнего облучения. Для этой группы осуществляется контроль мощности дозы внешнего излучения и объемной активности радионуклидов в воздухе рабочей зоны. Оценка облучения проводится по этим данным.

САНИТАРНЫЕ ПРАВИЛА ПРОЕКТИРОВАНИЯ И ЭКСПЛУАТАЦИИ АТОМНЫХ СТАНЦИИ, ИССЛЕДОВАТЕЛЬСКИХ ЯДЕРНЫХ РЕАКТОРОВ И КРИТИЧЕСКИХ СТЕНДОВ (СБОРОК)
Санитарные правила разработаны в развитие и дополнение к нор­мам радиационной безопасности и отражают специфику обеспечения радиационной безопасности соответствующих объектов и установок.
При проектировании, строительстве и вводе в эксплуатацию указан­ных объектов и установок следует руководствоваться также санитарны­ми нормами проектирования промышленных предприятий (СН 245—71).
ПРАВИЛА ДЛЯ АС (СП АС-88), ЯДЕРНЫХ РЕАКТОРОВ ИССЛЕДОВАТЕЛЬСКОГО НАЗНАЧЕНИЯ (СП ИР-89) И КРИТИЧЕСКИХ СТЕНДОВ (СП КС-88)
Санитарные правила для АС (СП АС-88) и исследовательских ядерных реакторов содержат несколько разделов: общие положения, основные требования к техническим средствам и организационным ме­роприятиям обеспечения радиационной безопасности, защите персонала, населения и охране окружающей среды; требования к выбору площадки размещения реакторов на местности и генеральному плану; радиацион­ному контролю, планировке и отделке производственных помещений; требования к организации работ, организации технологического процесса и к оборудованию, отдельным операциям при эксплуатации и выпол­нении ремонтных работ; требования к предупреждению радиационных аварий и проведению работ по ликвидации их последствий; требования в общеобменной и технологической вентиляции, очистке и удалению га­зообразных и жидких отходов, системам водоснабжения и канализации; требования к санитарно-бытовым помещениям, мерам индивидуальной защиты, правилам личной гигиены и организации медицинского обслу­живания; требования к персоналу и мерам повышения степени надеж­ности оперативного персонала, участвующего в эксплуатации; мероприя­тия по снятию реактора с эксплуатации; требования по транспортиро­ванию отработавшего ядерного топлива. Эти правила не распространя­ются на транспортные ядерные энергетические установки и реакторные установки специального назначения.
«Санитарные требования к проектированию и эксплуатации систем централизованного теплоснабжения от атомных станций» (СТ ТАС-84) являются дополнением к СП АС-88. В них изложены требования, кото­рые обусловлены спецификой атомного источника тепла к системе теп­лоснабжения: к системам централизованного теплоснабжения, присо­единяемым к системе отпуска тепла от АС; к системам безопасности отпуска тепла от АС; к оборудованию системы отпуска тепла от АС; к организации и объему радиационного и санитарного контроля.
Критический стенд—комплекс, включающий ядерную критическую сборку и оборудование, необходимое для проведения экспериментов, управления критсборкой и радиационной безопасности и позволяющий осуществлять управляемую реакцию деления ядер в заданных усло­виях.
В санитарных правилах СП КС—88 отражены дополнительные спе­цифические требования для критстендов. Они должны размещаться в специальном здании вне или внутри городской застройки. Каждая критсборка—в изолированном помещении (бокс, каньон), обеспечива­ющем локализацию и выдержку радиоактивных газов и аэрозолей в случае аварии с максимальными радиационными последствиями.
Ядерный реактор, как и критическая сборка, представляет собой устройство, в котором осуществляется управляемая цепная реакция де­ления тяжелых ядер (уран, плутоний, торий).
Процесс деления ядерного топлива в реакторе сопровождается ис­пусканием нейтронного излучения с образованием радиоактивных продуктов деления, а также радионуклидов активации нейтронами.
Реакторы классифицируются по типу активной зоны (гетерогенные, гомогенные), по режиму работы (стационарный, импульсный), по энер­гии нейтронов, используемых для деления топлива (реактор на тепло­вых, быстрых или промежуточных нейтронах), по виду замедлителя и теплоносителя (графитовые, тяжеловодные, водо-водяные, жидкометаллические, газовые, органические и др.), по режиму теплосъема (во­да под давлением или кипящая вода).
Основными видами радиационного воздействия на персонал в ус­ловиях нормальной работы и остановки реактора являются внешние b-, g- и нейтронные излучения (в основном g-излучение) и внутреннее облучение в результате поступления радиоактивных аэрозолей (глав­ным образом в период ремонтных работ). Как правило, на остановлен­ном реакторе нейтронное излучение отсутствует, за исключением реак­торов, имеющих в активной зоне бериллиевый отражатель [образуются быстрые фотонейтроны по реакции (g, n)].
Характерной особенностью энергетических реакторов для АЭС яв­ляется напряженный тепловой и гидравлический режим активной зоны, что может постепенно приводить к разгерметизации металлических оболочек небольшой доли твэлов, в которых заключено ядерное топли­во, и к выходу части продуктов деления в теплоноситель из ставших негерметичными твэлов Газообразные и летучие продукты деления (криптон, ксенон, иод, цезий и др.) вследствие небольших неорганизо­ванных протечек этого теплоносителя из контура теплосъема попадают в технологические помещения реактора, а затем удаляются в атмосфе­ру. Для АЭС вероятно незначительное загрязнение продуктами деления помещений и оборудования, а также окружающей среды.
Исследовательские реакторы, как правило, оборудованы экспери­ментальными каналами, проходящими через активную зону, для облу­чения в них различных образцов. Они имеют горизонтальные или вертикальные пучки выведенных нейтронов, содержат экспериментальные радиоактивные петли, в которых могут производиться испытания отдельных твэлов, или радиационные контуры для активации. теплоносителя с последующим использованием его в качестве высокоактивного облучателя и т. д. На исследовательских реакторах внешнее облучение более вероятно, нежели внутреннее. 
Безопасность АЭС и исследовательских реакторов обеспечивается за счет применения системы барьеров на пути распространения ионизирующих излучений и радиационных веществ за эти барьеры в обслуживаемые помещения и в окружающую среду и системы технических организационных мер по защите барьеров и сохранению их эффективности для защиты персонала и населения.
Система барьеров включает топливную матрицу, оболочки твэлов, границу контура теплоносителя, охлаждающего активную зону, герме­тичные помещения и локализующие системы безопасности для улавливания и удержания радиоактивных веществ (фильтры, барботеры, спринклерные установки и т п.).
В систему технических и организационных мер обеспечениябезопас­ности АЭС и исследовательских реакторов включается:
выбор площадки для размещения;
установление санитарно-защитной зоны вокруг реакторнойустанов­кис учетом требований НРБ—76/87, ОСП—72/87, СПАС—88;
разработку качественного проекта на основе консервативного под­хода с развитым свойством самозащищенности реакторной установки и применением систем безопасности;
обеспечение требуемого качества элементоввсех технологических систем и выполняемых работ;
эксплуатация в соответствии с нормативно-технической документа­цией по обоснованному технологическому регламенту и эксплуатацион­ным инструкциям;
поддержание в исправном состоянии важных для безопасности си­стем путем проведения профилактических мер и замены выработавшего ресурс оборудования;
своевременное диагностирование дефектов и обнаружение отклоне­ний от нормальной работы и принятие мер по их устранению;
предотвращение с помощью автоматизированных и/или автомати­ческих технических средств перерастания исходных событий в проектные аварии, а проектных аварий в запроектные и гипотетические аварии;     
    продолжение
--PAGE_BREAK--ослабление последствий аварий, которые не удалось предотвратить, д путем локализации выделяющихся радиоактивных веществ;
подготовка и четкое осуществление при необходимости планов аварийных мероприятийна площадке и за ее пределами; подбор и необходимый уровень подготовки эксплуатационного пер­сонала для действия в нормальных и аварийных условиях, формирова­ние культуры безопасности.
При нормальной эксплуатации все барьеры и средства их защиты должны находиться в работоспособном состоянии. При повреждении любого из барьеров или средств его защиты выше установленных пре­делов, согласно условиям безопасной эксплуатации, реактор должен быть остановлен.
Радиационное воздействие на персонал ядерных критических стен­дов невелико при соблюдении санитарных правил проектирования и эксплуатации критических стендов (СП КС—88) и положенияпоядерной безопасности (ПБЯ 02—90). Однако оно существенно возрас­тает при активационных измерениях и особенно при авариях — само­произвольных цепных реакциях (СЦР).
Критическая сборка отличается от реактора низкой мощностью (не более 100 Вт), достаточной лишь для уверенной работы системы управ­ления и защиты при проведении физических экспериментов, а также гибкостью конструкции, позволяющей легко менять, как правило, ди­станционно, но иногда вручную геометрию и состав активной зоны, уровень замедлителя и отражателя. В остальном критическая сборка — полномасштабный прототип ядерного реактора (по размеру и составу активной зоны), но не имеющий фундаментальной биологической за­щиты и системы принудительного охлаждения активной зоны.
Поскольку часть операций по перестройке активной зоны проводят вблизи критической сборки, часто без достаточного уровня водной за­шиты (вода является и замедлителем), на критических сборках веро­ятно внезапное аварийное облучение персонала, если в момент пере­стройки произойдет СЦР

ВИДЫ РАДИАЦИИ
Основную часть облучения население земного шара получает от естественных источников радиации. Боль­шинство из них таковы, что избежать облучения от них совершенно невозмож­но. На протяжении всей истории сущест­вования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя способа­ми. Радиоактивные вещества могут на­ходиться вне организма и облучать его снаружи; в этом случае говорят о внеш­нем облучении. Или же они могут ока­заться в воздухе, которым дышит чело­век, в пище или в воде и попасть внутрь организма. Такой способ облучения на­зывают внутренним.
Облучению от естественных источни­ков радиации подвергается любой житель Земли, однако одни из них получают большие дозы, чем другие. Это зависит, в частности, от того, где они живут. Уровень радиации в некоторых местах земного шара, там, где залегают особен­но радиоактивные породы, оказывается значительно выше среднего, а в других местах — соответственно ниже. Доза об­лучения зависит также от образа жизни людей. Применение некоторых строитель­ных материалов, использование газа для приготовления пищи, открытых угольных жаровен, герметизация помещений и даже полеты на самолетах — все это увеличивает уровень облучения за счет естест­венных источников радиации.
Земные источники радиации в сумме ответственны за большую часть облуче­ния, которому подвергается человек за счет естественной радиации. В среднем они обеспечивают более 5/6 годовой эффек­тивной эквивалентной дозы, получаемой населением, в основном вследствие внутреннего облучения. Остальную часть вносят космические лучи, главным обра­зом путем внешнего облучения. За последние несколько десятилетий человек создал несколько сотен искусст­венных радионуклидов и научился ис­пользовать энергию атома в самых разных целях: в медицине и для создания атомного оружия, для производства энергии и обнаружения пожаров, для изготовления светящихся циферблатов часов и поиска полезных ископаемых. Все это приводит к увеличению дозы облуче­ния как отдельных людей, так и населения Земли в целом.
Индивидуальные дозы, получаемые разными людьми от искусственных источ­ников радиации, сильно различаются. В большинстве случаев эти дозы весьма невелики, но иногда облучение за счет техногенных источников оказывается во много тысяч раз интенсивнее, чем за счет естественных.
Как правило, для техногенных источ­ников радиации упомянутая вариабель­ность выражена гораздо сильнее, чем для естественных. Кроме того, порождаемое ими излучение обычно легче контролиро­вать, хотя облучение, связанное с радио­активными осадками от ядерных взрывов, почти так же невозможно контролиро­вать, как и облучение, обусловленное космическими лучами или земными ис­точниками.
Источники, использующиеся в медицине
В настоящее время основной вклад в дозу, получаемую человеком от техногенных источников радиации, вносят медицин­ские процедуры и методы лечения, связан­ные с применением радиоактивности. Во многих странах этот источник ответствен практически за всю дозу, получаемую от техногенных источников радиации.
Радиация используется в медицине как в диагностических целях, так и для лечения. Одним из самых распространен­ных медицинских приборов является рентгеновский аппарат. Получают все более широкое распространение и новые сложные диагностические методы, опира­ющиеся на использование радиоизотопов.

Ядерные взрывы
За последние 40 лет каждыйиз насподвергался облучению от радиоактивных осадков, которые образовались в резуль­тате ядерных взрывов. Речь идет не о тех радиоактивных осадках, которые выпали после бомбардировки Хиросимы и На­гасаки в 1945 году, а об осадках, связан­ных с испытанием ядерного оружия в атмосфере.
Максимум этих испытаний приходится на два периода: первый на 1954-1958 годы, когда взрывы проводили Велико­британия, США и СССР, и второй, более значительный, на 1961-1962 годы, когда их проводили в основном Соединенные Штаты и Советский Союз. Во время первого периода большую часть испыта­ний провели США, во время второго-СССР.
Эти страны в 1963 году подписали Договор об ограничении испытаний ядер­ного оружия, обязывающий не испыты­вать его в атмосфере, под водой и в космосе. С тех пор лишь Франция и Китай провели серию ядерных взрывов в атмосфере, причем мощность взрывов была существенно меньше, а сами ис­пытания проводились реже (последнее из них в 1980 году). Подземные испытания проводятся до сих пор, но они обычно не сопровождаются образованием радиоак­тивных осадков.
Часть радиоактивного материала вы­падает неподалеку от места испытания, какая-то часть задерживается в тропо­сфере (самом нижнем слое атмосферы), подхватывается ветром и перемещается на большие расстояния, оставаясь при­мерно на одной и той же широте. Находясь в воздухе в среднем около месяца (рис. 4.8), радиоактивные вещества во время этих перемещений постепенно выпадают на землю. Однако большая часть радиоактивного материала выбра­сывается в стратосферу (следующий слой атмосферы, лежащий на высоте 10-50 км), где он остается многие месяцы, медленно опускаясь и рассеиваясь по всей поверхности земного шара.
Радиоактивные осадки содержат не­сколько сотен различных радионуклидов, однако большинство из них имеет ни­чтожную концентрацию или быстро рас­падается; основной вклад в облучение человека дает лишь небольшое число радионуклидов. Вклад в ожидаемую коллективную эффективную эквивалент­ную дозу облучения населения от ядерных взрывов, превышающий 1 %, дают только четыре радионуклида. Это углерод-14, цезий-137, цирконий-95 и стронций-90.
Дозы облучения за счет этих и других радионуклидов различаются в разные периоды времени после взрыва, поскольку они распадаются с различной скоростью. Так, цирконий-95, период полураспада которого составляет 64 суток, уже не является источником облучения. Цезий-137 и стронций-90 имеют периоды полу­распада ~ 30 лет, поэтому они будут давать вклад в облучение приблизительно до конца этого века. И только углерод-14, у которого период полураспада равен 5730 годам, будет оставаться источником радиоактивного излучения (хотя и с низкой мощностью дозы) даже в отдален­ном будущем: в 2000 годуон потеряет лишь 7% своей активности.
Годовые дозы облучения четко корре­лируют с испытаниями ядерного оружия в атмосфере: их максимум приходится на те же периоды (рис. 4.9, 4.10 и 4.11). В 1963 году коллективная среднегодовая доза, связанная с ядерными испытаниями, составила около 7% дозы облучения от естественных источников; в 1966 году она уменьшилась до 2%, а в начале 80-х-до 1 %. Если испытания в атмосфере больше проводиться не будут, то годовые дозы облучения будут становиться все меньше и меньше.
Все приведенные цифры, конечно, являются средними. На Северное полуша­рие, где проводилось большинство ис­пытаний, выпала и большая часть радио­активных осадков. Пастухи на Крайнем Севере получают дозы облучения от цезия-137, в 100-1000 раз превышающие среднюю индивидуальную дозу для ос­тальной части населения (впрочем, они получают большие дозы и от естественных источников — цезий накапливается в ягеле и по цепи питания попадает в организм человека). К несчастью, те люди, которые находились недалеко от испытательных полигонов, получили в результате значи­тельные дозы; речь идет о части населения Маршалловых островов и команде япон­ского рыболовного судна, случайно проходившего неподалеку от места взрыва.
Суммарная ожидаемая коллективная эффективная эквивалентная доза от всех ядерных взрывов в атмосфере, произве­денных к настоящему времени, составляет 30000000 чел-Зв. К 1980 году человечест­во получило лишь 12% этой дозы,
остальную часть оно будет получать еще миллионы лет.
Атомная энергетика
Источником облучения, вокруг которого ведутся наиболее интенсивные споры, являются атомные электростанции, хотя в настоящее время они вносят весьма незначительный вклад в суммарное об­лучение населения. При нормальной работе ядерных установок выбросы ра­диоактивных материалов в окружающую среду очень невелики.
К концу 1984 года в 26 странах работало 345 ядерных реакторов, выра­батывающих электроэнергию. Их мощ­ность составляла 13% суммарной мощ­ности всех источников электроэнергии и была равна 220 ГВт (рис. 4.12). До сих пор каждые ~ 5 лет эта мощность удваива­лась, однако, сохранится ли такой темп роста в будущем, неясно. Оценки пред­полагаемой суммарной мощности атом­ных электростанций на конец века имеют постоянную тенденцию к снижению. Причины тому — экономический спад, реализация мер по экономии электро­энергии, а также противодействие со стороны общественности. Согласно по­следней оценке МАГАТЭ (1983г.), в 2000 году мощность атомных электростанций будет составлять 720-950 ГВт.
Атомные электростанции являются лишь частью ядерного топливного цикла, который начинается с добычи и обогаще­ния урановой руды. Следующий этап-производство ядерного топлива. Отрабо­танное в АЭС ядерное топливо иногда подвергают вторичной обработке, чтобы извлечь из него уран и плутоний. Заканчи­вается цикл, как правило, захоронением радиоактивных отходов.
На каждой стадии ядерного топлив­ного цикла в окружающую среду по­падают радиоактивные вещества. НКДАР оценил дозы, которые получает население на различных стадиях цикла за короткие промежутки времени и за многие сотни лет. Заметим, что проведение таких оценок очень сложное и трудоемкое мы по атомной энергетике. Однако полученные оценки, конечно же, нельзя безоговорочно применять к какой-либо конкретной установке. Ими следует поль­зоваться крайне осторожно, поскольку они зависят от многих специально огово­ренных в докладе НКДАР допущений.
Примерно половина всей урановой руды добывается открытым способом, а половина — шахтным. Добытую руду ве­зут на обогатительную фабрику, обычно расположенную неподалеку. И рудники, и обогатительные фабрики служат источ­ником загрязнения окружающей среды радиоактивными веществами. Если рас­сматривать лишь непродолжительные периоды времени, то можно считать, что почти все загрязнение связано с местами добычи урановой руды. Обогатительные же фабрики создают проблему долговременного загрязнения: в процессе пере­работки руды образуется огромное коли­чество отходов—«хвостов». Вблизи дейст­вующих обогатительных фабрик (в основ­ном в Северной Америке) уже скопилось 120 млн. т отходов, и если положение не изменится, к концу века эта величина возрастет до 500 млн. т.
Эти отходы будут оставаться радио­активными в течение миллионов лет, когда фабрика давно перестанет сущест­вовать. Таким образом, отходы являются главным долгоживущим источником об­лучения населения, связанным с атомной энергетикой. Однако их вклад в облучение можно значительно уменьшить, если отвалы заасфальтировать или покрытьихполивинилхлоридом. Конечно, покрытия необходимо будет регулярно менять.
Урановый концентрат, поступающий с обогатительной фабрики, подвергается дальнейшей переработке и очистке и на специальных заводах превращается в ядерное топливо. В результате такой переработки образуются газообразные и жидкие радиоактивные отходы, однако дозы облучения от них намного меньше, чем на других стадиях ядерного топлив­ного цикла.
Теперь ядерное топливо готово к использованию в ядерном реакторе. Су­ществует пять основных типов энергети­ческих реакторов: водо-водяные реакторы с водой под давлением (Pressurised Water Reactor, PWR), водо-водяные кипящие реакторы (Boiling Water Reactor, BWR), разработанные в США и наиболее распро­страненные в настоящее время; реакторы с газовым охлаждением, разработанные и применяющиеся в Великобритании и Франции; реакторы с тяжелой водой, широко распространенные в Канаде; водо-графитовые канальные реакторы, которые эксплуатируются только в СССР. Кроме реакторов этих пяти типов в Европе и СССР имеются также четыре реактора-размножителя на быстрых ней­тронах, которые представляют собой ядерные реакторы следующего поколе­ния.
Величина радиоактивных выбросов у разных реакторов колеблется в широких пределах: не только от одного типа реактора к другому и не только для разных конструкций реактора одного и того же типа, но также и для двух разных реакторов одной конструкции. Выбросы могут существенно различаться даже для одного и того же реактора в разные годы, потому что различаются объемы текущих ремонтных работ, во время которых и происходит большая часть выбросов.
В последнее время наблюдается тен­денция к уменьшению количества выбро­сов из ядерных реакторов, несмотря на увеличение мощности АЭС. Частично это связано с техническими усовершенствова­ниями, частично — с введением более стро­гих мер по радиационной защите.
В мировом масштабе примерно 10% использованного на АЭС ядерного топ­лива направляется на переработку для извлечения урана и плутония с целью повторного их использования. Сейчас имеются лишь три завода, где занимают­ся такой переработкой в промышленном масштабе: в Маркуле и Ла-Аге (Франция) и в Уиндскейле (Великобритания). Самым «чистым» является завод в Маркуле, на котором осуществляется особенно стро­гий контроль, поскольку его стоки по­падают в реку Рону. Отходы двух других заводов попадают в море, причем завод в Уиндскейле является гораздо большим источником загрязнения, хотя основная часть радиоактивных материалов попада­ет в окружающую среду не при переработ­ке, а в результате коррозии емкостей, в которых ядерное топливо хранится до переработки.
За период с 1975 по 1979 год на каждый гигаватт-год выработанной энер­гии уровень загрязнений от завода в Уиндскейле по b-активности примерно в 3,5 раза, а по a-активности в 75 раз превышал уровень загрязненийот завода в Ла-Аге.
С тех пор ситуация на заводе в Уиндскейле значительно улучшилась, однако в пересчете на единицу пере­работанного ядерного горючего это пред­приятие по-прежнему остается более «грязным», чем завод в Ла-Аге. Можно надеяться, что в будущем утечки на перерабатывающих предприятиях будут ниже, чем сейчас. Существуют проекты установок с очень низким уровнем утечки в воду, и НКДАР взял в качестве модельной установку, строительство ко­торой планируется в Уиндскейле.
Проблемы, связанные с последней стадией ядерного топливного цикла — захороне­нием высокоактивных отходов АЭС. Эти проблемы находятся в ведении прави­тельств соответствующих стран. В неко­торых странах ведутся исследования по отверждению отходов с целью последую­щего их захоронения в геологически стабильных районах на суше, на дне океана или в расположенных под ними пластах. Предполагается, что захоронен­ные таким образом радиоактивные отхо­ды не будут источником облучения насе­ления в обозримом будущем. НКДАР не оценивал ожидаемых доз облучения от таких отходов, однако в материалах по программе «Международная оценка ядер­ного топливного цикла» за 1979 год сделана попытка предсказать судьбу радиоактивных материалов, захоронен­ных под землей. Оценки показали, что заметное количество радиоактивных ве­ществ достигнет биосферы лишь спустя 105-106 лет.
    продолжение
--PAGE_BREAK--По данным НКДАР, весь ядерный топливный цикл дает ожидаемую кол­лективную эффективную эквивалентную дозу облучения за счет короткоживущих изотопов около 5,5 чел-Зв на каждый гигаватт-год вырабатываемой на АЭС электроэнергии. Из них процесс добычи руды дает вклад 0,5 чел-Зв, ее обогащение-0.04 чел-Зв, производство ядерного топлива-0,002 чел-Зв, эксплу­атация ядерных реакторов — около 4 чел-Зв (наибольший вклад) и, наконец, про­цессы, связанные с. регенерацией топлива, -1 чел-Зв. Как уже отмечалось, данные по регенерации полученыизоценок ожидаемых утечек на заводах, которые предполагается построить в будущем. На самом же деле для современных установок эти цифры в 10-20 раз выше, но эти установки перерабаты­вают лишь 10% отработанного ядерного топлива, таким образом, приведенная выше оценка остается справедливой.
90% всей дозы облучения, обусловлен­ной короткоживущими изотопами, насе­ление получает в течение года после выброса, 98%-в течение 5 лет. Почти вся доза приходится на людей, живущих не далее нескольких тысяч километровотАЭС.
Ядерный топливный цикл сопровож­дается также образованием большого количества долгоживущих радионукли­дов, которые распространяются по всему земному шару. НКДАР оценивает кол­лективную эффективную ожидаемую эк­вивалентную дозу облучения такими изотопами в 670 чел-Зв на каждый гигаватт-год вырабатываемой электро­энергии, из которых на первые 500 лет после выброса приходится менее 3%.
Таким образом, от долгоживущих радионуклидов все население Земли получает примерно такую же средне­годовую дозу облучения, как и население, живущее вблизи АЭС, от короткоживу­щих радионуклидов, при этом долго-живущие изотопы оказывают свое воз­действие в течение гораздо более длитель­ного времени-90% всей дозы население получит за время от тысячи до сотен миллионов лет после выброса. Следова­тельно, люди, живущие вблизи АЭС, даже при нормальной работе реактора по­лучают всю дозу сполна от короткоживущих изотопов и малую часть дозы от долгоживущих.
Эти цифры не учитывают вклад в облучение от радиоактивных отходов, образующихся в результате переработки руды, и от отработанного топлива. Есть основания полагать, что в ближайшие несколько тысяч лет вклад радиоактив­ных захоронений в общую дозу облучения будет оставаться пренебрежимо малым, 0,1-1% от ожидаемой коллективной дозы для всего населения. Однако радиоактив­ные отвалы обогатительных фабрик, если их не изолировать соответствующим образом, без сомнения, создадут серьез­ные проблемы. Если учесть эти два дополнительных источника облучения, то для населения Земли ожидаемая кол­лективная эффективная эквивалентная доза облучения за счет долгоживущих радионуклидов составит около 4000 чел-Зв на каждый гигаватт-год вырабатывае­мой энергии. Все подобные оценки, однако, неизбежно оказываются ориенти­ровочными, поскольку трудно судить не только о будущей технологии переработ­ки отходов, численности населения и местах его проживания, но и о дозе, которая будет иметь место через 10000 лет. Поэтому НКДАР советует не слиш­ком полагаться на эти оценки при приня­тии каких-либо решений.
Годовая коллективная эффективная доза облучения от всего ядерного цикла в 1980 году составляла около 500 чел-Зв. Ожидается, что к 2000 году она возрастет до 10000 чел-Зв, а к 2100 году-до 200000 чел-Зв. Эти оценки основаны на пес­симистическом предположении, что ны­нешний уровень выбросов сохранится и не будут введены существенные технические усовершенствования. Но даже и в этом случае средние дозы будут малы по сравнению с дозами, получаемыми от естественных источников, в 2100 году они составят лишь 1% от естественного фона.
Люди, проживающие вблизи ядерных реакторов, без сомнения, получают гораз­до большие дозы, чем население в сред­нем. Тем не менее в настоящее время эти дозы обычно не превышают нескольких процентов естественного радиационного фона. Более того, даже доза, полученная людьми, живущими около завода в Уиндскейле, в результате выброса це­зия-137 в 1979 году была, по-видимому, меньше 1/4 дозы, полученной ими от естественных источников за тот же год.
Все приведенные выше цифры, конеч­но, получены в предположении, что ядерные реакторы работают нормально. Однако количество радиоактивных ве­ществ, поступивших в окружающую среду при авариях, может оказаться гораздо больше. В одном из последних докла­дов НКДАР была сделана попытка оценить дозы, полученные в результате аварии в Тримайл-Айленде в 1979 году и в Уиндскейле в 1957 году. Оказалось, что выбросы при аварии на АЭС в Тримайл-Айленде были незначительными, однако, согласно оценкам, в результате аварии в Уиндскейле ожидаемая коллективная эффективная эквивалентная доза состави­ла 1300 чел-Зв. Комитет, однако, считает, что нельзя прогнозировать уровень ава­рийных выбросов на основании анализа последствий этих двух аварий.
Профессиональное облучение
Самые большие дозы облучения, источ­ником которого являются объекты атом­ной промышленности, получают люди, которые на них работают. Профес­сиональные дозы почти повсеместно являются самыми большими из всех видов доз.
Попытки оценить профессиональные дозы осложняются двумя обстоятельства­ми; значительным разнообразием усло­вий работы и отсутствием необходимой информации. Дозы, которые получает персонал, обслуживающий ядерные реак­торы, равно как и виды излучения, сильно варьируют, а дозиметрические приборы редко дают точную информацию о значе­ниях доз; они предназначены лишь для контроля за тем, чтобы облучение пер­сонала не превышало допустимого уровня.
Оценки показывают, что доза, которую получают рабочие урановых рудников и обогатительных фабрик, составляет в среднем 1 чел-Зв на каждый гигаватт-год электроэнергии. Примерно 90% этой дозы приходится на долю рудников, причем персонал, работаю; в шахтах, подвергается большему облучению. Коллективная эквивалентная от заводов, на которых получают ядерное топливо, также составляет 1 чел-Зв г гигаватт-год.
НОРМЫ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ
При работе с радиоактивными веществами в открытом виде возможно загрязнение рук, одежды, оборудования, воздуха, поэтому обязателен радиационный контроль. Цель его — следить за соблюдением норм радиационной безопасности в отделениях и комнатах лучевой терапии и диагностики, а также за облучением лиц, профессионально связанных с работой в сфере действия ионизирующих излучений. Национальной комиссией радиационной зашиты /ПКРЗ/ еще при Минздраве СССР были установлены нормы радиационной безопасности /нормы РБ/.
Нормы РБ предусматривают соблюдение следующих принципов:
1\ не превышение установленного дозового предела;
2\ исключение всякого необоснованного излучения;
3\ снижение дозы излучения до возможно низкого уровня.
С целью ограничения облучения и дозиметрического контроля за ним введены понятия: предельно допустимая доза, предел дозы, категория облучаемых лиц и группа критических органов.
Установлены следующие категории облучаемых лиц: категория А-персонал, непосредственно работающий с источниками ионизирующих излучений; категория Б — ограниченная часть населения; лица, которые непосредственно не работают с источниками излучений, но по условиям расположения рабочих мест, либо проживания могут быть подвержены облучению; категория В — населения в целом.
Предельно допустимая доза /ПДД/ — наибольшее значение индивидуальной дозы за год, которая при равномерном воздействии в течение 50 лет не вызывает у человека каких-либо неблагоприятных изменений, обнаруживаемых современными методами исследования. По мере расширениянаших знаний величина предельно допустимой дозы может уточняться. ПДД является основным дозовым пределом для категории А.
Предел дозы /ПД/ — предельная доза за год, устанавливаемая для предотвращения необоснованного облучения ограниченной части населения, но связанной с источниками ионизирующих излучений профессиональной деятельностью. Эта доза обычно в несколько раз меньше ПДД. Она является основным дозовым пределом для лиц категории Б.
ПДД и ПД устанавливаются с учетом категории облучаемых лиц и современных представлений о радиочувствнтельности критических органов.
Критический орган — орган, ткань и все село, облучение которого в конкретных условиях может причинить наибольший ущерб данному лицу или его потомству. В зависимости от радиочувствительности различают три группы критических органов:
1 группа — все тело, половые органы и красный костный мозг;
2 группа — мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, пищеварительный тракт, легкие, хрусталик глаза и другие органы, за исключением тех, которые относятся к 1 и 3 группам;
3 группа — кожный покров, костная ткань, кисти, предплечья, лодыжки и стопы. Данные с ПДД и ПД для различных категорий облучаемых лиц и групп критических органов в таблице.
Для лиц, длительно работающих с источниками ионизирующих излучений (персонал отделений лучевой терапии и рентгентерапевтических кабинетов), суммарные эквивалентные дозы, за все годы профессиональной деятельности, не должны превышать для женщин 37,5 бэр и мужчин 50 бэр.
В целях радиационной безопасности осуществляется дозиметрический контроль.

КРИТЕРИИ, ИСПОЛЬЗУЕМЫЕ В РАДИАЦИОННОЙ ЗАЩИТЕ
Опасность ионизирующих излучений впервые была обнаружена, когда стали известны случаи заболевания среди радиологов и про­мышленных рабочих, имевших дело с люминесцентными красками, со­державшими радиоактивные вещества. Необходимость строгого контро­ля условий труда заставила Международный конгресс по радиологии учредить в 1928 г. Международную комиссию по защите от излучений радия и рентгеновских лучей. Работа этой комиссии зало­жила фундамент, на котором спустя 15 лет был основан кодекс правил по защите, когда с подобного рода проблемами в гораздо более широ­ких масштабах столкнулись при создании атомной промышленности. В 1950 г. эта комиссия была переименована b Международную комиссию по радиационной защите (МКРЗ). Она стала признанным между­народным руководящим органом: ею были подготовлены подробные доклады в 1955 и 1959 гг., а позднее—в 1964 г. МКРЗ изложила свои взгляды по некоторым аспектам еще более детально.
В этот период комиссия интересовалась в основном вопросами защиты лиц, которые подвергаются профессиональному облучению. Но некоторое внимание уделялось и тем ра­ботникам, которые, не работая постоянно с источниками ионизирующих излучений, по роду своей деятельности могут периодически подвер­гаться облучению. Принято также во внимание население, прожива­ющее в непосредственной близости от атомных энергетических уста­новок. Были разработаны некоторые руководящие принципы по защите населения в целом. Обзор МКРЗ по этому вопросу, опубли­кованный в 1959 г., был посвящен разработке рекомендаций в Связи с развитием ядерной энергетики и индустрии, а не оценке последствий глобальных выпадений. Это вполне объяснимо. Когда собирали данные для доклада 1959 г., выпадения только начинались и не привлекали серьезного внимания. Но вполне естественно, что, после того как ре­комендации МКРЗ были опубликованы, их широко использовали для оценки новой ситуации. Однако, как было отмечено в последнем док­ладе МКРЗ (1964 г.), проблемы, возникающие при загрязнениях боль­ших территорий от неконтролируемых источников, могут сильно отли­чаться от тех проблем, которые возникают при промышленном облучении.

ПРОФЕССИОНАЛЬНОЕ ОБЛУЧЕНИЕ
При защите работников, подвергающихся профессиональному об­лучению, загрязнение пищевых продуктов обычно не рассматривается. Основной интерес представляют внешнее облучение и вдыхание радио­активных веществ. Хотя специфические проблемы защиты от профес­сионального облучения выходят за рамки этой книги, целесообразно рассмотреть выработанные здесь критерии,- так как они положены воснову общепринятых норм, используемых при оценке загрязнения окружающей среды.
В докладе МКРЗ за 1959 г. введено понятие предельно допусти­мые дозы облучения (ПДД). Ранее использовали термин допусти­мая доза, который был признан неточным, так как облучение в лю­бой дозе, какой бы малой она ни была, не может не вызывать биологические эффекты. Принципы, принятые МКРЗ за основу в определении ПДД, изложены в соответствующих параграфахее рекомен­даций.
Предельно допустимые уровни (ПДУ) ионизирующих излучений, определенные таким способом, не являются абсолютной нормой. Какая-то небольшая степень риска все же считается допустимой, однако МКРЗ приняла предельное значение дозы настолько низким, что в нор­мальных условиях наличие опасности констатировать практически невозможно. Таким образом, хотя облучение в любых малых дозах в принципе нельзя считать безопасным, употреблять это слово в приложении к термину предельно допустимая доза, введенному МКРЗ, более разумно, чем к принятым гарантиям против многих других видов опасности, которые иногда популярно характеризуются такими словами. МКРЗ были предложены новые нормы для промыш­ленных предприятий и высказаны пожелания, чтобы ее рекомендации рассматривались в качестве обязательных.
Для контроля над профессиональным облучением МКРЗ установи­ла средние дозы, которые могут быть получены в течение 13 недель, и.ввела специальные ограничения на некоторые типы облучения для лиц моложе 18 лет. Если выразить соответствующие величины в годо­вых дозах при длительном облучении, то по отношению к 'рассматри­ваемым здесь наиболее важным.случаям рекомендации были следующими:  
все тело, гонады и кроветворные органы - 5 бэр/год
кости и щитовидная железа — 30 бэр/год
большинство других органов —15 бэр/год
Для лиц, которые не работают непосредственно с источниками из­лучений, но могут оказаться в зонах, где такие работы проводятся, предложены более низкие предельные значения. Более жесткие огра­ничения в подобных случаях обусловлены менее строгим контролем за здоровьем этих людей. Рекомендации МКРЗ, относящиеся к разра­ботке мероприятий по защите населения, рассматриваются в после­дующих разделах этой главы.
Для оценки роли заглатывания или вдыхания радиоактивных ве­ществ МКРЗ ввела физиологические характеристики стандартного человека. Предельно допустимые концентрации (ПДК) различных ра­дионуклидов, соответствующие ПДУ ионизирующих излучений, были рассчитаны в предположении, что человек потребляет 2,2 л/сутки воды, а объем вдыхаемого воздуха составляет 20 мз/cyткu.
Кроме ПДУ для случая непрерывного профессионального облуче­ния МКРЗ дала также рекомендации на случай промышленных аварий. Для этих ограниченных периодов вполне обоснованно предложены значительно более высокие значения мощности дозы, по сравнению с ПДУ профессионального облучения.

ОБЛУЧЕНИЕ НАСЕЛЕНИЯ
О любых мерах предосторожности можно судить, исходя из ве­роятности их осуществления и возможного влияния на благосостояние населения при всех мыслимых обстоятельствах. Следует предусмотреть
Облучение от неконтролируемых источников Необходимые критерии Большая часть дозы облучения, которому подвергается население в мирное время, как правило, обусловлена загрязнением пищевых продуктов, хотя в начальный период после аварийных случаев важную роль могут играть вдыхание радиоактивных веществ или внешнее об­лучение. Следовательно, если источник загрязнения не поддается конт­ролю, то для защиты населения может потребоваться либо изменение. источников снабжения пищевыми продуктами, либо эвакуация. Подоб­ные мероприятия грозят населению новыми опасностями, связанными с социальными переменами и порождением тревоги или с переключе­нием службы быта на более первоочередные нужды. Эти опасности можно рассматривать как «общественные издержки защиты». Иногда общественные издержки оказываются небольшими, например, в случае, когда чрезвычайная ситуация возникает в связи с загрязнением моло­ка I131 в стране, хорошо обеспеченной пищевыми продуктами и имею­щей хорошо развитый транспорт. Если чрезвычайная ситуация возни­кает на относительно ограниченной территории, то ее последствия мож­но предотвратить доставкой свежего молока из других районов, а в случае возникновения угрозы облучения детей (группы населения, под­вергающейся наибольшей опасности) в масштабах всей страны эту опасность можно было бы уменьшить, обеспечив детей сухим молоком… Последствия первой ситуации были успешно преодолены в Англии после — аварии в Уиндскейле в 1957 г.Подготовка к соответствую­щим мероприятиям более широкого масштаба была осуществлена, когда глобальные выпадения привели в конце1961 г. к увеличению уровня загрязнения молока.
Можно рассмотреть и другие ситуации, при которых общественные издержки защиты будут гораздо больше, например в случае загрязне­ния Sr90. Без существенной перестройки всего сельскохозяйственного производства в этой ситуации было бы нельзя добиться значительного снижения загрязнения рациона детей, подростков и взрослых людей.
    продолжение
--PAGE_BREAK--О целесообразности тех или других оздоровительных мероприя­тий можно судить на основании оценки возможных последствий облуче­ния, с одной стороны, и общественных издержек защиты — с другой. Од­нако нельзя рассчитывать на точность подобных оценок. Наряду с не­возможностью точных оценок опасности от облучения в малых дозах, нельзя предвидеть и размеры общественных издержек на оздорови­тельные мероприятия. Как и во многих других проблемах, связанных с благосостоянием человека, здесь необходим тщательный анализ всей доступной информации, и его невозможно заменить какой-либо прос­той формулой. Тем не менее, соответствующие радиобиологические кри­терии все же необходимы: во-первых, нужны рекомендации относи­тельно наименьших значений доз, начиная с которых следует что-то предпринимать для ограничения облучения, если общественные издерж­ки невелики; во-вторых, следует выработать принципы оценки размеров радиационной опасности при данных уровнях облучения»
Облучение от контролируемых источников
Если источник облучения контролируется, например ядерный реак­тор при нормальных условиях работы, то регулированием режима работы оборудования можно добиться того, чтобы дозы облучения на­селения не достигали неприемлемых уровней. Можно было бы исклю­чить любое вмешательство в привычный образ жизни населения и в снабжение его продовольствием, если бы контрольная система давала соответствующее предупреждение об изменениях мощности выбросов.
В ситуациях такого рода имеется много общего с защитой населе­ния, от неконтролируемых источников и защитой персонала, работающе­го с излучениями. Методы определения размеров загрязнения окру­жающей среды одинаковы независимо от того, является источник контролируемым или неконтролируемым. Опасность, связанная с дан­ным уровнем облучения, не зависит от типа источника, поэтому для оценки биологических последствий облучения человека пригодны одни и те же критерии (т. е. рекомендуемые пределы облучения). Однако, когда уровни облучения становятся такими, что требуются решительные меры по защите населения, то эти два типа ситуаций будут резко раз­личаться. Если источник не поддается контролю, то соответствующие меры заключаются в оценке опасности от облучения по сравнению с общественными издержками по защите. В случае контролируемого ис­точника оператор установки обязан следить за тем, чтобы уровень об­лучения не превысил предела, установленного для профессионального облучения.
Рекомендуемые пределы дозы облучения в окружающей среде
Рекомен­дуемые пределы облучения в окружающей среде можно определить как уровни облучения, которые не следует превышать без тщательной оценки возможных размеров опасности облучения по сравнению с об­щественными издержками по ее ликвидации. Эти общественные издерж­ки оцениваются как своего рода новая «опасность», сопряженная с осуществлением специальных мероприятий по здравоохранению.

БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ. МЕХАНИЗМ БИОЛОГИЧЕСКОГО ДЕЙСТВИЯ ИЗЛУЧЕНИЯ
Действие излучения на организм человека начинается с физического процесса — взаимодействия излучения с веществом, т.е. атомами и молекулами тканей и органов. При этом взаимодействии энергия квантов и частиц расходуется на ионизацию и возбуждение атомов и молекул. В зависимости от вида излучения и величины энергии механизм взаимодействия различен.
Протоны, а-частицы и электроны постепенно теряют свою энергию при столкновении с ядрами атомов и внешними электронами. Так как масса а-частиц и протонов значительна по сравнению с массой электронов атомов, с которыми они соударяются, то траектория а-частнц и протонов прямолинейна. Путь же электрона в веществе извилист, поскольку он обладает малой массой, легко изменяет направление под действием электрических полей атомов. Поэтому начальный пучок электронов в тканях имеет тенденцию к расхождению /рассеяние электронов/.
Биологическое действие ионизирующего излучения условно можно подразделить на; 1) первичные физико-химические процессы, возникаю­щие в молекулах живых клеток и окружающего их субстрата; 2) нару­шений функций целого организма как следствие первичных процессов.
В результате облучения в живой ткани, как и в любой среде, погло­щается энергия и возникают возбуждение и ионизация атомов облучае­мого вещества. Поскольку у человека (и млекопитающих) основную часть массы тела составляет вода (около 75 %), первичные процессы во многом определяются поглощением излучения водой клеток, ионизацией молекул воды с образованием высокоактивных в химическом отноше­нии свободных радикалов типа ОН или Н и последующими цепными каталитическими реакциями (в основном окислением этими радикала­ми молекул белка). Это есть косвенное (непрямое) действие излучения через продукты радиолиза воды. Прямое действие ионизирующего излу­чения может вызвать расщепление молекул белка, разрыв наименее проч­ных связей, отрыв радикалов и другие денатурационные изменения.
Необходимо заметить, что прямая ионизация и непосредственная передача энергии тканям тела не объясняют повреждающего действия излучения. Так, при абсолютно смертельной дозе, равной для человека 6 Гр на все тело, в 1 см3 ткани образуется 1015 ионов, что составляет одну ионизованную молекулу воды из 10 млн. молекул.
В дальнейшем под действием первичных процессов в клетках воз­никают функциональные изменения, подчиняющиеся уже биологическим законам жизни и гибели клеток.
Наиболее важные изменения в клетках: а) повреждение механиз­ма митоза (деления) и хромосомного аппарата облученной клетки. При­чем самые ранние эффекты в клетках вызываются не митотической ги­белью, а обычно связаны с повреждением мембран; б) блокирование процессов обновления и дифференцировки клеток; в) блокирование процессов пролиферации и последующей физиологической регенерации тканей.
Наиболее радиочувствительными являются клетки постоянно обновляющихся (дифференцирующихся) тканей некоторых органов (костный мозг, половые железы, селезенка и т. п.) Причем стволовые и пролиферативные клетки, претерпевающие множество делений, наиболее радиочувствительны. Изменения на клеточном уровне, гибель клеток приводят к таким нарушениям в тканях, в функциях отдельных орга­нов и в межорганных взаимосвязанных процессах организма, которые вызывают различные последствия для организма или гибель организма.

ВОЗМОЖНЫЕ ПОСЛЕДСТВИЯ ОБЛУЧЕНИЯ ЛЮДЕЙ
Соматические (телесные) эффекты — это последствия воздействия облучения на самого облученного, а не на его потомство. Соматические эффекты облучения делят на стохастические (вероятностные) и нестохастические.
К нестохастическим соматическим эффектам относят поражения, вероятность возникновения и степень тяжести которых растут по мере увеличения дозы облучения и для возникновения которых существует дозовый порог. К таким эффектам относят, например, локальное незлокачественное повреждение кожи (лучевой ожог), катаракта глаз (потемнение хрусталика), повреждение половых клеток (кратковременная или постоянная стерилизация) и др. Время появления максимального эффекта также зависит от дозы: после более высоких доз он наступает раньше.

ЛУЧЕВАЯ БОЛЕЗНЬ ЧЕЛОВЕКА
Гибель клетки и утрата функций тканей и органов приводят к по­явлению клинических симптомов у облученного человека, называемых радиационными синдромами. В связи с различием в радиочувствитель­ности клеток, структуре и функциях каждой ткани дисфункция органов начинается в разные сроки и после различных доз. Теоретически при од­нородном облучении всего тела дозой, превышающей некоторый порог, можно выделить три основных синдрома; нервно-васкулярный, желудочно-кишечный и гематологический. На практике эти синдромы часто сливаются и их трудно распознать в отдельности.
Лучевую болезнь подразделяют на острую и хроническую. Течение лучевой болезни различной степени тяжести может проходить в стертой или явно выраженной форме, что зависит от суммарной дозы и ритма облучения.
В выраженной форме лучевой болезни четко различают период пер­вичной реакции, скрытый (латентный) период формирования болезни, восстановительный период и период отдаленных последствий и исходов заболевания.
Первоначальные явные симптомы облучения всего тела проявляются в течение первых 48 ч. К ним относятся желудочно-кишечные (анорексия, тошнота, рвота, диарея, кишечные спазмы, повышенное слюноотде­ление, дегидратация) и нервно-мышечные (чувство усталости, апатия, повышенное потоотделение, головные боли, гипотензия). Вероятность н длительность до момента проявления этих симптомов зависят от до­зы. Например, доза, вызывающая рвоту у 50 % облученных, составляет около 2 Гр, а период до ее появления примерно 3 ч; доза 3 Гр вызы­вает рвоту у 100 % облученных через 2 ч.
Дозы порядка нескольких грей приводят к костно-мозговому син­дрому и лейкопении. Концентрация лимфоцитов — самый ранний чувст­вительный симптом поражения крови, причем дозы 1—2 Гр снижают в их концентрацию примерно до 50 % нормы через 48 ч после облучения.
Время проявления первичной реакции зависит от дозы облучения. Лучевая болезнь возникает при дозе более 1 Гр у большинства постра­давших.
Латентный период—кажущееся клиническое благополучие—ко­леблется у человека от 14 до 32 сут в зависимости от тяжести поражения. При дозе существенно большей 10 Гр после первичной реакции почти сразу наступает последняя фаза болезни. При дозе менее 1 Гр клинические симптомы острой лучевой болезни не развиваются.
В период кажущегося клинического благополучия, как правило, уменьшается общая слабость, исчезает сонливость, улучшается аппетит, самочувствие становится вполне удовлетворительным. Однако эти улучшения находятся в явном противоречии с состоянием кроветворных ор­ганов (снижается число лейкоцитов и тромбоцитов в крови, опустоша­ется костный мозг), кожи, желудочно-кишечного тракта и гонад.
По степени тяжести острая лучевая болезнь разделяется на ряд групп в зависимости от дозы на все тело: I—легкая (1—2 Гр), И—средняя (2—1 Гр), III—тяжелая (4— 6 Гр), крайне тяжелая (6 Гр и более).
Радионуклиды, попавшие в организмчеловека, вызывают различные последствия, схожие с последствиями от внешнего облучения пр равных поглощенных дозах.
В зависимости от природы нуклида и особенностей его локализации в организме могут возникать радиационные поражения (гипопластическая анемия, пневмосклерозы, гепатиты, остеиты, опухоли различной локализации, лейкозы и т. п.).
Острая форма местного лучевого поражения (от локального облу­чения) характеризуется большой длительностью течения заболевания и может приводить к образованию рецидивирующих отеков, раку кожи.
Хроническая лучевая болезнь формируется постепенно при длительном облучении дозами, значительно превышающими предельно до­пустимые для профессионального облучения. Эта форма болезни может возникнуть как при общем облучении (внешнем или внутреннем) всего тела, так и при преимущественном поражении отдельных органов или систем организма. Период формирования хронической лучевой болезни совпадает со временем накопления дозы облучения. После снижения об­лучения до допустимого уровня или полного прекращения наступает пе­риод восстановления, а затем следует длительный период последствий хронической болезни.
Хроническая лучевая болезнь от общего облучения подразделяется на следующие степени:
I степень (легкая) характеризуется нерворегуляторными нарушени­ями сердечно-сосудистой системы и нестойкой умеренной лейкопенией и реже тромбоцитопенией.
При II степени (средней) наблюдается углубление нерворегуляторных нарушений с появлением функциональной недостаточности пище­варительных желез, сердечно-сосудистой и нервной системы, нарушение некоторых обменных процессов: стойкая умеренная лейко- и тромбоцитопения.
При III степени (тяжелой) появляется резкая лейко-, тромбоцитепения, развивается анемия, возникают атрофические процессы в слизис­той ЖКТ.
При длительном облучении отдельных органов хроническая лучевая болезнь характеризуется той или иной степенью их поражения. Только в наиболее тяжелых случаях в связи с недостаточностью функций по­раженного органа возникает комплекс вторичных изменений других ор­ганов и систем.
Отдаленными последствиями хронической лучевой болезни мот быть лейкоз, опухоли, гипопластическая анемия.
БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ РАДИОНУКЛИДОВ, ПОПАВШИХ ВНУТРЬ ОРГАНИЗМА, И ДОЗА ВНУТРЕННЕГО ОБЛУЧЕНИЯ
Повышенная опасность радионуклидов, попавших внутрь организ­ма, обусловлена несколькими причинами. Одна из них — способность некоторых нуклидов избирательно накапливаться в отдельных органах тела, называемых критическими (например, до 30 % иода депонируется в щитовидной железе, которая составляет только 0,03 % массы тела), и, таким образом, отдавать свою энергию относительно небольшому объему ткани. Другая причина — значительная продолжительность облучения до момента выведения нуклида из органа или уменьшения ак­тивности вследствие радиоактивного распада нуклида. Скорость биологического выведения (при допущении, что выведение радиоактивных ве­ществ из органов происходит по экспоненциальному закону) характери­зуется постоянной lб, а эффективная скорость—суммой постоянных lэф = lб + lр, где lр—постоянная радиоактивного распада. Тогда эф­фективный период полувыведения нуклида из организма равен
Тэф = 0,693/lэф == Tб Т1/2 / Тб + T1/2,
Третья причина — рост опасности воздействия высокоионизирующих a- и b-излучений, которые не действенны или малодейственны для внутренних органов при внешнем облучении ввиду низкой проникаю­щей способности.
Рассматриваются три пути проникновения радиоактивных веществ в организм: через органы дыхания, через ЖКТ и через кожу или по­вреждения кожи. Этими путями нуклиды вначале попадают в кровь, а затем током крови разносятся по всему телу или преимущественно в критические органы.
В некоторых случаях критическим органом становится ЖКТ, его от­дельные участки, а также легкие. Наиболее опасен первый путь, поскольку за рабочую смену человек, как это рекомендуют принимать в расчетах НРБ —76/87, вдыхаетза 6 рабочих часов 9 м3 воздуха (в целом за 1 сут 20 м3), а с пищей по­требляет только 2,2 л воды.
Кроме того, усвоение и отложение в организме нуклидов, попадаю­щих через органы дыхания, как правило, выше, чем при заглатывании. Усвоение через неповрежденную кожу в 200—300 раз меньше, чем че­рез ЖКТ, и не имеет существенного значения по сравнению с первыми двумя путями. Только оксид трития, а также нитрат уранила и изотопы иода легко проникают через кожу и всасываются в кровь.

ФОНОВОЕ ОБЛУЧЕНИЕ ЧЕЛОВЕКА
Фоновое облучение человека создается космическим излучением, естественными и искусственными радиоактивными веществами, содержащимися в теле человека и в окружающей среде. Облучение от естественных источников превосходит облучение от многих других источников и является важным фактором мутагенеза, существенного дляэволюции живых организмов в биосфере,

ДОЗА КОСМИЧЕСКОГО ИЗЛУЧЕНИЯ
Космическое излучение подразделяют на галактическое излучение в солнечное, которое связано с солнечными вспышками. Солнечное кос­мическое излучение играет важную роль за пределами земной атмосфе­ры, но из-за сравнительно низкой энергии (примерно до 40 МэВ) не приводит к заметному увеличению дозы излучения на поверхности зем­ли. Следует различать первичные космические частицы, вторичные и фотонные излучения, которые образуются в результате взаимодействия первичных частиц с ядрами атомов атмосферы.
Первичные космические частицы составляют в основном протоны, а также более тяжелые ядра, обладающие чрезвычайно высокой энер­гией (отдельные частицы до 1019 эВ). Взаимодействуя с атмосферой Земли, эти частицы проникают до высоты 20 км над уровнем моря и об­разуют вторичное высокоэнергетическое излучение, состоящее из мезо­нов, нейтронов, протонов, электронов, фотонов и т. п.
Интенсивность космического излучения зависит от солнечной актив­ности, географического расположения объекта и возрастает с высотой над уровнем моря. Для средних широт на уровне моря до­за на открытой местности на мягкие ткани вследствие космического излучения (без нейтронной компоненты) составляет 0,28 мГр/год, ней­тронная компонента дает дополнительную дозу 3,5*10-6 Гр/год. Если коэффициент качества облучения нейтронами при­нять равным шести то эффективная эквивалентная доза космического излучения составляет примерно 300 мкЗв/год.

ДОЗА ОТ ПРИРОДНЫХ ИСТОЧНИКОВ
В биосфере Земли содержится более 60 естественных радионукли­дов, которые можно разделить на две категории; первичные и космогенные. Первичные подразделены на две группы: радионуклиды уранорадиевого и ториевого рядов (табл. 3.2 и 3.3) и радионуклиды, нахо­дящиеся вне этих радиоактивных рядов.
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.