Реферат по предмету "Экология"


Извлечение свинца из лома аккумуляторных батарей

--PAGE_BREAK--экономических показателей производства от стоимости электроэнергии, периодическое появление настылей на стенках печи, что приводит к необходимости повышения температуры расплава, то есть к увеличению непроизводительного расхода электроэнергии, электродов, огнеупоров. Дальнейшее совершенствование этого процесса и конструкции печей позволит создать наиболее эффективную и наименее опасную для окружающей среды технологию переработки свинцовых батарей.

Еще одним перспективным процессом плавки вторичного свинцового сырья является использование технологии Ausmelt, в основе которой лежит использование вертикальной цилиндрической футеровочной печи с длинной фурмой, погруженной сверху в расплав. Через фурму непосредственно в расплав вводят топливо и воздух или кислород. Получается прямой нагрев расплава и его бурное перемешивание горящими газами. Переработка материалов происходит в две последовательные стадии: расплавление шихты, восстановительное обеднение шлака. Газы обеих стадий охлаждают и очищают с использованием традиционного оборудования для очистки газов.

Повышенные экологические показатели в процессе Ausmelt достигаются за счет полного укрытия печи, работающей под отрицательным давлением, и герметизации всех отверстий. Внутрипечное дожигание технологических газов при температуре выше 1 300 °С и последующее их быстрое охлаждение позволяют иметь очень низкое содержание диоксинов и фуранов. Недостатками процесса Ausmelt являются получение богатых и бедных по свинцу шлаков в одном агрегате, что ускоряет износ футеровки, и предположительно небольшой срок работы погружной фурмы из-за выгорания нижней части.

Рафинирование чернового свинца. При пирометаллургической восстановительной плавке получают черновой свинец, загрязненный сурьмой, оловом, мышьяком, медью. Черновой свинец из вторичного сырья рафинируют в основном пирометаллургическими способами, однако в ряде случаев используется электрорафинирование (после обезмеживания).

В процессе пирометаллургического рафинирования сначала проводят смягчение свинца (очистку от сурьмы, мышьяка, олова), а затем обезмеживание. Окислительное смягчение основано на большем сродстве сурьмы, мышьяка и олова к кислороду, чем у свинца. Щелочное рафинирование (Гаррис-процесс) опирается на способности оксидов сурьмы, мышьяка и олова образовывать со щелочью нерастворимые в свинце соединения.

Обезмеживание проводят в две стадии. Грубое обезмеживание расплава чернового свинца осуществляется ликвацией кристаллов меди и ее соединений за счет разности удельных весов и концентрирования их на поверхности расплава при охлаждении свинца с 700-900 °С до 330-335 °С. Остаточное содержание меди в черновом свинце после ликвационного обезмеживания составляет 0,05-0,1%. Для тонкого обезмеживания чернового свинца применяется сульфидирование меди смесями серы и гидроксида натрия, либо пирита и гидроксида натрия, либо серы, гидроксида натрия и соды. Остаточное содержание меди в свинце после обезмеживания составляет 0,005-0,006%.

Низкотемпературное рафинирование чернового свинца в обогреваемых газом или электричеством металлических котлах с механическим перемешиванием (иногда для окислительного рафинирования применяют маломасштабные отражательные печи) и ограниченное число операций делают рафинировочный передел заводов вторичного свинца сравнительно малозатратным, а отходящие газы не требуют охлаждения и могут быть очищены от свинецсодержащей пыли в рукавных фильтрах в одну ступень.

Электрорафинирование заключается в растворении свинца с анода, отлитого из чернового металла, и осаждении его на катоде в виде чистого марочного металла. Извлеченные из ванны катоды промывают водой и направляют в котлы для переплавки и дополнительного рафинирования от сурьмы. Расход электроэнергии на 1 т свинца составляет 120-170 кВт-ч. Электрорафинирование используют главным образом для очистки вторичного свинца от несвойственных ему примесей висмута и серебра.

Дальнейшее развитие процессов переработки отработавших свинцовых аккумуляторов связано с ужесточением экологических требований по свинцу, совершенствованием организации сбора аккумуляторного лома, более полной переработкой органических аккумуляторных отходов, снижением стоимости вторичного производства. Определенные надежды связывают с гидрометаллургическими методами переработки свинцового аккумуляторного лома, где капитальные затраты меньше, чем в пирометаллургии. В этих методах предотвращается загрязнение окружающей среды парами свинца и сернистыми газами.


Глава 3. ИЗВЛЕЧЕНИЕ СВИНЦА ИЗ ЛОМА АККУМУЛЯТОРНЫХ БАТАРЕЙ
Известные процессы для извлечения свинца из лома аккумуляторных батарей предусматривают использование отражательной печи или шахтной печи для плавки свинца. При осуществлении этих процессов происходит образование больших количеств S02, что представляет опасность для окружающей среды. Усиление контроля за составом отходящих газов приводит к значительному удорожанию процесса.

Было установлено, что проблема охраны окружающей среды может быть в значительной мере решена с помощью процесса, в котором проводится гидрометаллургическое превращение PbS04 в легко восстанавливаемое соединение РЬО без выделения значительных количеств S02. В начальной стадии этого процесса батарейный лом, основным компонентом которого является PbS04, реагирует с суспензией гидроокиси кальция. Образующийся при этом продукт представляет собой водную суспензию РЬО и CaS04-2H20, которую подвергают фильтрованию и сушке.

Следующей стадией процесса является восстановление РЬО до металлического свинца под действием углерода при температурах 600—650 °С. Однако было установлено, что наличие частиц сульфата кальция, попадающих с первой стадии процесса, препятствует коалесценции капель расплавленного свинца с образованием легко отделимой жидкой фазы, состоящей из свинца высокой чистоты.

Схема процесса представлена на рис. 1. Сырье 1 представляет собой обычный лом свинцовых батарей, как правило содержащий 61 % пастообразного материала и 39 % пластин из свинца, содержащего сурьму. В состав пасты входит ~41 % PbS04, а также РЬ02 и мелкодисперсный металлический, свинец.

Использованные аккумуляторы сначала измельчают в шаровой мельнице 2, мокрой или сухой, для высвобождения пасты и уменьшения размеров ее частиц до 100 меш. При этом материал металлических пластин остается в виде кусков металла. Из шаровой мельницы продукт подают в реактор 3, где его смешивают с суспензией Са (ОН)2 — 4. В качестве реактора может быть использован любой подходящий реактор или смеситель, например вращающийся барабан или двойной конический смеситель. Водная суспензия Са (ОН)а содержит 15—20 % СаО и добавляется к батарейному лому в таких количествах, чтобы обеспечить приблизительно стехиометрическую концентрацию Са (ОН)2, соответствующую уравнению PbS04 + + Са (ОН)2+ Н20-*РЬО + CaS04-2H20. Получаемую смесь оставляют на 2—5 мин; этого времени обычно бывает достаточно для практически полного протекания реакции. Реакцию обычно проводят при комнатной температуре, однако для сокращения времени реакции температуру можно повысить до 50 «С.

Затем реакционную смесь фильтруют иа фильтре 5, либо воду 6 удаляют каким-нибудь другим способом и остаток подают в сушилку 7, температура в которой составляет 150—200 °С и где происходит практически полное удаление остаточной влаги. Сухой продукт подают в смеситель 8, представляющий собой обычный смесительный аппарат, где происходит смешивание с углеродсодержащим восстановителем 9 и флюсом 10, состоящим из КС1 и NaCl.

Затем смесь направляют в печь //, в которой одновременно протекает взаимодействие с флюсом и восстановление. Углерод для восстановления может быть использован в любом удобном виде, например в виде древесного угля, кокса, сажи и т. п. Предпочтительно применять его в виде мелкого порошка, однако можно использовать и в виде гранул. Углерод добавляют в приблизительно стехиометрических количествах, требуемых для восстановления образовавшейся окиси свинца.

Смесь КС1 и NaClдобавляют в количестве достаточном для перевода в жидкое состояние образовавшегося сульфата кальция. В результате взаимодействия образуется жидкая смесь, из которой легко может быть выделен расплавленный свинец. Желательно, чтобы добавляемые количества КС1 и NaClбыли достаточны для образования тройной эвтектической смеси с сульфатом кальция. Эта смесь содержит, % (мол.): КС1 38,5, CaS04 19,0 и NaCl42,5; температура ее плавления составляет 605 °С. Однако для ожижения сульфата кальция, позволяющего проводить эффективное выделение свинца, как правило пригодны смеси, содержащие, % (мол.): КС1 32—54, CaSО4 21—19 и NaCl48—25.

Печь 11 представляет собой реактор обычной конструкции, позволяющий достигать требуемой температуры и устойчивый к действию применяемых реагентов. Рабочая температура составляет 605—700 °С, причем предпочтительно работать при 650 °С. Оптимальное время контакта зависит от специфических характеристик и количеств применяемых реагентов, а также от температуры реакции. Обычно время 1—2 ч является достаточным для практически полного превращения РЬО в расплавленный металлический свинец. Поскольку плотность углерода ниже, чем у флюса, в ходе реакции необходимо перемешивание падающей мешалкой для того, чтобы обеспечить эффективное восстановление РЬО. Образующийся расплавленный свинец 13 собирается на дне печи и может быть легко отделен от шлака 12 обычными методами, например сливанием, или с помощью насоса для расплавленных металлов.

В процессе производства аккумуляторных батарей неизбежно образуются дефектные или поврежденные готовые сухие пластины или элементы, которые попадают в отходы. Для снижения стоимости производства желательно проводить извлечение свинца и из этого материала. Известен способ для переработки дефектных или поврежденных пластин и элементов, в соответствии с которым последние подвергают плавлению в котле при температуре близкой к температуре плавления свинца. Около 50 % металла или ~20 % от общей массы пластины или элемента могут быть выделены по этому методу в виде металлического свинца. Остающиеся 50 % металла вместе с неметаллическими компонентами пластин собираются в виде шлака, который для дальнейшего выделения свинца подвергают дорогостоящему переплаву. В результате этого извлекается ~85 % РЬ, содержащегося в шлаке. После проведения двух стадий обработки ~12 % от массы исходного лома остаются нерегенерированными.

Горизонтальный и вертикальный разрез аппарата для разделения металлических и неметаллических компонентов в пластинах утильных аккумуляторных батарей

Помимо этого недостатка следует также отметить, что стоимость переплава составляет ~50 % общей стоимости исходных пластин и элементов. Таким образом возможность проводить выделение свинца без переплава является очень ценной для повышения экономичности этого процесса.

Процесс предназначен для выделения свинца из батарейных пластин без использования процессов плавления и переплавки. Достоинствами процесса являются его малая трудоемкость и возможность выделения активного материала из пластин в виде мелких гранул или порошка, пригодного для повторного использования путем непосредственного добавления в смесители для приготовления пасты.

Согласно этому процессу пластины кислотных аккумуляторов, поврежденные в процессе их производства, помещают в вибрирующий наклонный желоб. В результате вибрации происходит отделение металлических компонентов пластин от неметаллических, а также измельчение неметаллических компонентов. Последние выводятся из желоба в виде мелкого порошка через донные отверстия, а металлические компоненты поднимаются по желобу и выводятся с его верхнего конца. Горизонтальный и вертикальный разрез используемого аппарата приведены на рис. 2.

Спиральный желоб / имеет вертикальные стенки 2 и дно 10. Желоб / укреплен на раме 11, которая поддерживается пружинами 12 и основаниями 13. На раме 11 также укреплен мотор 14 с вертикальной осью 16, с которой соединены два эксцентрических груза 15. При работе мотора 14 грузы 15 придают круговую вибрацию желобу /. Дно желоба имеет равномерный наклон за исключением короткого крутого участка 8 у верхнего конца желоба. С этого крутого участка сырье попадает в выходной желоб 6. Через два отверстия 9, закрытые ситом с маленькими отверстиями, активный материал—в сухом или мокром виде — выходит из желоба. По желобам 17 активный материал попадает в поддон 18, в котором его собирают дляповторного использования. Во втором поддоне 19 собирают частицы пластин, выходящие через выходной конец 3 желоба 6.

В процессе работы поврежденные пластины батарей и другой лом подают в желоб / на участке, отмеченном цифрой 20. Пластины медленно перемещаются по желобу в направлении, указанном стрелкой и при этом из них вытрясается весь неметаллический материал. Перед наклонным участком 8 пластины распадаются на части, которые поднимаются по крутому участку 8 и через желоб 6 выходят в поддон 19. Частицы неметаллических материалов при движении сырья оседают и через отверстия 9 по желобам 17 попадают в поддон 18. При трении частиц неметаллического материала друг о друга и о металлические частицы происходит их измельчение с образованием порошка. Самые крупные частицы порошка имеют диаметр не более 500 мкм.

Было установлено, что процесс разделения пригоден как для мокрых, так и для сухих пластин, независимо от того, придана им правильная форма или нет. Однако при обработке сухих пластин наблюдается нежелательный процесс выделения пыли из аппарата. Небольшие добавки в желоб воды, место ввода которой отмечено цифрой 4, позволяют устранить проблему пылеобразования и повышают эффективность процесса.

Разделительный желоб не обязательно должен быть круглым. В некоторых случаях удобнее использовать прямой желоб. На схеме показаны отверстия 9 для вывода выделенного активного материала из желоба. В то же время дно 10 желоба может быть полностью или частично выполнено в виде сита с соответствующим размером отверстий.

Для повышения эффективности процесса разделения за счет уменьшения времени обработки в желобе / могут быть помещены измельчающие элементы, которые на схеме обозначены цифрой 5. Эти элементы могут быть выполнены из любого материала, твердость которого выше, чем у используемого сырья; в частности могут быть использованы шары или цилиндры из стали или оксида алюминия. Использование элементов из оксида алюминия более предпочтительно, поскольку они не вносят загрязнений. Измельчающие элементы позволяют ускорить превращение активного материала батарейных пластин в порошок и облегчают его отделение от пластин свинца.

Измельчающие элементы 5 поднимаются по крутому участку 8 вместе с частями пластин. Они проходят через сито 4, имеющееся в переднем конце 7 желоба 6 и возвращаются в нижнюю часть желоба /. Металлические частицы, собранные в поддоне 19, могут быть поданы в тигель для отливки пластин или в другое устройство для плавления свинца, а неметаллические продукты из поддона 18 могут быть направлены на стадию смешивания пасты.

Обычно желоб имеет наклон 2,4°. Спиральный желоб шириной 35 см, глубиной 41 сми средним диаметром 155 смс амплитудой вибрации 3 мм, работающий с мотором мощностью 14,72 кВт при 1750 об/мин позволяет разделять на металлические и неметаллические компоненты до 900 кгбатарейных пластин в час.

Процесс предусматривает непрерывную подачу целых или измельчённых кислотных аккумуляторов вместе с карбонатом натрия и водой во вращающийся барабанный сепаратор, в котором находятся шаровые измельчающие элементы. Перемешивание сырья, которому способствуют конструкционные элементы внутри барабана, приводит к дальнейшему измельчению и разрушению частей аккумулятора, нейтрализации привнесенного электролита и превращению мелких частиц сульфата свинца в карбонат свинца. В результате образуется тяжелая суспензия активного материала, в которой плавают органические фрагменты аккумуляторов.

Суспензия активного материала постоянно вытекает из одного конца барабана и вместе с органическими фрагментами поступает в первый промывочный барабан, а тяжелые части металлических пластин вместе с другими частями аккумуляторов, состоящими из свинцовых сплавов с малым содержанием сурьмы, тонут в суспензии и удаляются с противоположного конца барабана во второй промывочный барабан. Часть вытекающей суспензии перекачивается назад в барабан, куда подается также определенное количество воды. Оставшаяся часть суспензии подается в концентрирующий аппарат для дальнейшей переработки.

Установка состоит из обычного мокрого сепаратора 1, представляющего собой вращающийся барабан со спиралью 2, выходным отверстием 3, лопастями 4, желобом 5 и загрузочным отверстием 6. Вращающийся барабан 7, ось которого несколько наклонена относительно горизонтального направления, имеет несколько отверстий в стенках и разделен на две части 8 и 9; в нем также имеются трубки с отверстиями 10 для промывной воды, два бункера 18 и 19 для сбора и транспортировки жидкостей,


Рис. 2. Схема процесса разделения компонентов лома аккумуляторных батарей вытекающих из секций 8 и 9.
Установка также включает сито 11, концентрирующий аппарат 12, резервуар 13 для сбора воды декантируемой Из аппарата 12, резервуар 14 для сбора шлама, с мешалкой (на схеме не показана), а также насосы 15, 16 и 17. Свинцовые аккумуляторные батареи загружают в барабанную дробилку, в которую противотоком подается горячий газ. Куски разбитых батарей размером 2—15 см освобождаются от пасты на сите, имеющемся в дробилке, размер отверстий в котором составляет 2—30 мм. Затем куски сырья вместе со шламом в точке А подаются в загрузочное отверстие 6 сепаратора /. Шлам вместе с плавающим неактивным материалом вытекает из сепаратора через отверстие 6, а металлические компоненты транспортируются с помощью спирали 2 к отверстию

Неактивные материалы и шлам, выходящие из сепаратора 1, подают в барабан 7, выделенный шлам направляют в резервуар 14, а неактивный материал после промывки водой, подаваемой с помощью насоса 16 по трубке 10, выводится в точке Д. Металлические компоненты направляют на сито 11 и после промывки водой рециркулируемой из резервуара 13 и свежей водой В выводятся в точке С. Промывные воды из секции 9 барабана 7 и с сита 11 подаются в концентрирующий аппарат непрерывного действия 12, откуда жидкость стекает в резервуар 13, а сконцентрированный шлам возвращается насосом 15 в резервуар 14. Возможно присутствующий избыток пасты удаляют в точке Е, например путем фильтрования части сконцентрированного шлама, выходящего из аппарата 12.

Очевидно, что при использовании достаточно производительного концентрирующего аппарата 12, регулируя поток перекачиваемый насосом 16, можно в широком интервале изменять количество подаваемой промывной воды и таким образом в случае необходимости снижать количества активного вещества, прилипающего к тонущим и всплывающим продуктам.

Процесс предусматривает выделение свинца из шлама, получаемого из отработанных аккумуляторов путем нагревания его до 100—150 СС для удаления воды с последующим взаимодействием при температуре ~1000«С с порошком углерода в закрытой электрической печи. В процессе образуется относительно небольшой объем безводного отходящего газа, что позволяет заметно снизить энергоемкость процесса выделения. Пыль и S02 могут быть легко удалены из отходящих газов.

Процесс предназначен для выделения свинца из аккумуляторов при контактировании измельченного сырья с расплавом соли щелочного металла с последующим восстановлением соединений свинца до элементарного свинца, отделением расплавленного свинца от расплава соли и транспортировкой расплавленной соли вместе с продуктами обугливания в зону горения, где соль снова нагревается до требуемой температуры и вновь возвращается на контактирование с аккумуляторами. Часть соли щелочного металла выводится из системы и подвергается очистке для того, чтобы поддерживать приблизительно одинаковый состав соли в течение процесса.

Процесс 2 предназначен для выделения свинца из лома аккумуляторных батарей путем обработки последнего водным раствором хлорида щелочного металла и соляной кислотой при повышенной температуре. При этом происходит растворение свинца, содержащегося в сырье, с образованием хлорида свинца. Процесс включает также стадии отделения водного раствора хлористого свинца от нерастворимого гартблея, кристаллизации хлористого свинца из охлажденного раствора и отделения кристаллов от жидкости, а также электролиза хлористого свинца с получением металлического свинца. Отработанные аккумуляторы разбивают в устройстве 1 и корпуса аккумуляторов, перегородки и другие подобные материалы с малой плотностью отделяют от свинцовых деталей, используя разницу в их скоростях оседания в водной суспензии. После отделения материалов, содержащих свинец, оксид свинца и сульфат свинца их подвергают измельчению в ударной дробилке с получением кусков, размеры которых позволяют проводить их выщелачивание. Измельченный материал подают в горизонтальный реактор 2 для выщелачивания, оборудованный вращающийся мешалкой. В реактор противотоком подается водный раствор NaClи HCI.

Эксперименты показали, что эффективность выщелачивания при использовании смеси NaClи НС1 значительно выше, чем при использовании какого-либо из этих веществ в отдельности. Добавки серной кислоты существенно увеличивают эффективность процесса выщелачивания. Наиболее эффективным при выщелачивании является водный раствор, содержащий ~80 г/л соляной кислоты, ~ 160 г/л NaClи ~20—70 г/л серной кислоты. Оптимальной температурой проведения процесса является 70—80 °С.

В результате восстановления РЬ02, присутствующая в массе превращается в РЬО, которая переходит в раствор в виде хлорного комплекса; PbS04 также растворяется в виде хлорного комплекса. В процессе восстановления РЬ02 происходит выделение хлора. При проведении данного процесса большая часть образующегося хлора может быть использована для окисления поверхности металлического свинца, которая постоянно обновляется благодаря эффективному механическому перемешиванию; в результате этого увеличивается выход хлористого свинца.

Непрореагировавший хлор из реактора 2 направляют на стадию сжигания 10, где при сжигании в водороде образуется хлористый водород, возвращаемый в реактор 2. При эффективном проведении выщелачивания концентрация хлористого свинца в смеси составляет не менее 37 г/п, и достигается растворение 99 % сульфата и окиси свинца. Часть металлического свинца, присутствующего в исходном сырье, также превращается в хлорид свинца.

В процессе выщелачивания, несмотря на кислую реакцию среды, Происходит частичное высаживание растворенных примесей (металлов, менее активных, чем свинец) на поверхности свинца. В результате этого достигается двойной эффект: получается очень чистый хлористый свинец и металлический гартблей, имеющий такое высокое содержание, например сурьмы, что после стадии плавления 6 он может быть использован для изготовления сплавов.

Поскольку в процессе получается концентрированный раствор хлорида свинца, а растворимость РЬС12 сильно зависит от температуры, то большая часть РЬС12 может быть осаждена на стадии 3 в виде очень чистых кристаллов в результате снижения температуры до ~18 °С. Степень осаждения свинца в виде кристаллов в этом случае составляет ~84 %. После кристаллизации маточный раствор отфильтровывают и возвращают в процесс для дальнейшей переработки.

Полученные кристаллы РЬС12 сушат и сплавляют на стадии 4 с NaCl, КС1 или LiCl. При этом получается легкоплавкая смесь солей, из которой свинец может быть выделен на стадии электролиза 5 по известному методу. В результате электролиза получается свинец с чистотой 99,99 %. Маточный раствор, возвращаемый в процесс со стадии кристаллизации 3, содержащий примеси металлов и серной кислоты, перед рециркуляцией направляется для очистки на стадию 7.

На стадии 7 проводится экстракция из раствора ионов бисульфата и сульфата, например с помощью нерастворимого в воде третичного амина, в частности триоктиламина. Установлено, что при быстром и эффективном контакте выход в процессе экстракции выше, чем при длительном контакте, приводящем в конце концов к установлению равновесия. Для уменьшения вязкости и лучшего разделения фаз экстрагент разбавляют растворителем, например керосином или ксилолом. Для экстракции могут быть использованы не только третичные, но и другие амины.

Раствор третичного или другого амина, содержащий бисульфат, может быть регенерирован на стадиях 8, 9 для повторного использования на стадии экстракции. Для этой цели применяют Са(ОН)2, NaOHили NH4OH, добавляя СаС12 для поддержания в процессе требуемой концентрации хлоридов.

В состав металлических примесей в маточном растворе, получаемом после кристаллизации РЬС12. входят Fe3*-, Си2 +, Sb3+, Sbs+, Sn2+, Sn«+, As3+, Ass+, Bi3+, Bi5+, Ag+и Ni2+. Из этих ионов по меньшей мере Fe?+, Ag+и Ni2+в значительных количествах переходят в органическую фазу. Ионы Си, Sbи Biвысаживаются на поверхности металлического свинца в процессе выщелачивания свинцовых солей. Одновременно с высаживанием происходит переход соответствующих количеств чистого свинца в раствор.

Рециркулируемый раствор после вышеописанной очистки возвращается вместе с добавляемым свежим раствором на стадию выщелачивания 2. Выделение хлора происходит на стадии выщелачивания 2 и в особенности в процессе электролиза хлористого свинца 5. Хлор сжигают на стадии 10 с получением соляной кислоты, которая рециркулируется в процесс.

Процесс 3  предусматривает обработку компонентов свинцовых аккумуляторов, таких как металлические пластины и паста, в барабане, в котором между входом и выходом расположены сита, через которые мелкие частицы пасты выходят из барабана и попадают в окружающий его кожух, в который подается вода.

В кожухе и в самом барабане создается разрежение. Водная суспензия частиц пасты собирается в резервуаре, представляющем собой единое целое с нижней частью кожуха. Суспензия проходит через сепаратор циклонного типа. Водная фаза из сепаратора возвращается в барабан по трубопроводу, ведущему к жиклерам. Все отверстия в барабане находятся под разрежением.

Известные методы извлечения компонентов аккумуляторных пластин отличаются неудовлетворительными условиями труда, являются опасными и вредными для здоровья работающих. В результате расплескивания и разбрызгивания на рабочем месте всегда присутствует вода, содержащая частицы оксида свинца. Известно, что соединения свинца вредны для здоровья. Даже если рабочие используют водонепроницаемую одежду, на ней происходит отложение соединений свинца, что представляет опасность для здоровья.

Еще большую опасность представляют частицы оксида свинца, неизбежно попадающие в воздух даже при мокром проведении процесса. Размер частиц оксидаСвинца составляет 0,1—0,5 мкм, а размеры большинства частиц

Л. X. Джекуэй разработал аппарат, в который током воздуха, проходящим через трубки Вентури инжектируется мелкодисперсный высушенный батарейный шлам. Через отверстия в стенках трубопровода в поток последовательно вводятся восстанавливающий газ и кислород в количествах.
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Полимерные нанокомпозиты на основе органомодифицированных слоистых силикатов: особенности структуры, получение, свойства
Реферат Анию и контролю за изменениями рынка образовательных услуг, по стратегическому планированию системы подготовки и переподготовки кадров, ориентированной на спрос
Реферат Science Vs Religion Essay Research Paper SCIENCE
Реферат "Великая дидактика" Я.А. Коменского – первое научное обоснование педагогической теории
Реферат Методы и приемы обучения изобразительной деятельности в ДОУ.
Реферат Исследование способов защиты от компьютерных вирусов программными методами и выбор оптимального антивирусного клиента
Реферат Налоговая политика и налоговый механизм
Реферат Бухгалтерский учет контроль налогообложения и судебно-бухгалтерская экспертиза
Реферат Правовая отвественность юридического отдела предприятия
Реферат Hendrix Essay Research Paper Jimi HendrixJimi Hendrix
Реферат Глава государства США и Великобритании
Реферат Мятеж в Непале 1979
Реферат Искусство Византии времени Македонского возрождения IX X вв 2
Реферат Служебный этикет (Службовий етикет)
Реферат Особенности применения принципа компенсации хозяйственного риска и механизма стратегического управления деятельностью муниципальных предпринимательских структур