Узнать стоимость написания работы
Оставьте заявку, и в течение 5 минут на почту вам станут поступать предложения!
Реферат

Реферат по предмету "Химия"


Создание эпоксидных композиций пониженной горючести с антистатическими и диэлектрическими свойствами

На правах рукописи
ШИРШОВА Екатерина Сергеевна
СОЗДАНИЕ ЭПОКСИДНЫХ КОМПОЗИЦИЙ ПОНИЖЕННОЙ ГОРЮЧЕСТИ С АНТИСТАТИЧЕСКИМИ И ДИЭЛЕКТРИЧЕСКИМИ СВОЙСТВАМИ
Специальность 05.17.06 –
Технология и переработка полимеров и композитов
А в т о р е ф е р а т
диссертации на соискание ученой степени
кандидата технических наук
Саратов — 2007
Работа выполнена в ГОУ ВПО «Саратовский государственный технический университет»
Научный руководитель: доктор химических наук, профессор
Панова Лидия Григорьевна
Официальные оппоненты: доктор химических наук, профессор
Шантроха Александр Викторович
кандидат технических наук, доцент
Черемухина Ирина Вячеславовна
Ведущая организация ГУП «ГИТОС» (г. Шиханы,
Саратовская область)
Защита состоится « 18 » мая 2007 г. в 13 часов на заседании диссертационного совета Д 212.242.09 при ГОУ ВПО «Саратовский государственный технический университет» по адресу: 410054, г. Саратов, ул. Политехническая, 77.
С диссертацией можно ознакомиться в научно-технической библиотеке ГОУ ВПО «Саратовский государственный технический университет».
Автореферат разослан « » апреля 2007 г.
Ученый секретарь
диссертационного совета В. В. Ефанова
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность проблемы. Эпоксидные материалы представляются перспективными для применения в пропиточных и заливочных компаундах, для нанесения покрытий, удовлетворяющих соответствующим требованиям таких отраслей промышленности как строительная, приборостроительная, автомобилестроение, электротехническая и др. Вместе с тем многими отраслями промышленности предъявляется заданный уровень требований к материалам по пожарной безопасности, а эпоксидные смолы характеризуются высокими потерями массы при горении (78%) и низким значением показателя воспламеняемости – кислородным индексом (19-22% объем.). Однако при пиролизе эпоксидных смол в результате разрыва связей, сопровождающихся реакциями дегидрирования, сшивания, перегруппировки и образования конденсированных ароматических структур, образуется нелетучий карбонизированный слой с теплоизолирующими свойствами. Кроме того, эпоксидные смолы и материалы на их основе хрупки.
Поэтому разработка методов направленного регулирования свойств эпоксидных материалов путем модификации пластификаторами, замедлителями горения и введением наполнителей приобретает особую значимость и актуальность.
Практическая реализация этих исследований и разработок приведет к созданию эпоксидных компаундов с повышенным комплексом свойств, в том числе и пониженной горючестью, надежностью и долговечностью.
Цель работы: разработка составов, технологии и свойств эпоксидных композиций пониженной горючести с диэлектрическими и антистатическими свойствами, используемых в качестве компаундов и покрытий по дереву и металлу.
Для достижения поставленной цели решались следующие задачи:
анализ свойств применяемых компонентов;
изучение взаимодействия компонентов в составе композиции;
исследование влияния компонентов на кинетику отверждения эпоксидного олигомера;
изучение физико-механических, физико-химических и электрических свойств разработанных составов.
Научная новизна работы состоит в следующем:
— доказана возможность направленного регулирования структуры и свойств эпоксидных олигомеров. Пластификаторы и наполнители ускоряют процессы структурообразования. При этом уменьшается время гелеобразования и время отверждения; снижается экзотермика процесса отверждения, изменяется содержание сшитых структур;
— доказано влияние воздействия повышенных температур на процесс отверждения, приводящее к увеличению степени превращения;
— установлено химическое взаимодействие между пластификаторами ФОМ и ТХЭФ и эпоксидным олигомером и взаимодействие между ФД и ПЭПА и ФД и эпоксидным олигомером в наполненных и пластифицированных композитах;
— определено влияние химической природы пластификаторов на физико-химические процессы при пиролизе и горении эпоксидного полимера, на структуру и свойства кокса. При этом отмечено повышение термоустойчивости материала за счет повышения начальных температур деструкции на 70-100°C, выхода карбонизованного остатка на 2-11%, увеличение способности материалов к вспениванию в 3-4 раза, увеличение кислородного индекса с 19 до 35-40%, уменьшение потерь массы при горении с 78 до 1-6% по сравнению с немодифицированной смолой;
— установлено, что снижение горючести проявляется в конденсированной фазе полимера.
Практическая значимость работы заключается в разработке составов эпоксидных композиций пониженной горючести, используемых в качестве клеев, покрытий, герметиков с диэлектрическими, антистатическими свойствами для различных отраслей промышленности.
На защиту выносятся следующие основные положения:
комплексные исследования свойств используемых компонентов;
влияние компонентов на структурообразование эпоксидного олигомера;
исследование взаимодействия компонентов в составе композиции;
комплексные исследования физико-механических, физико-химических и электрических свойств разработанных составов.
Достоверность и обоснованность результатов исследования подтверждается комплексом независимых и взаимодополняющих методов исследования: термогравиметрического анализа (ТГА), инфракрасной спектроскопии (ИКС), дифференциально-интегрально-сканирующей калориметрии (ДИСК), эмиссионного спектрального анализа и стандартных методов испытаний технологических, физико-химических, физико-механических, теплофизических и электрических свойств.
Апробация результатов работы. Результаты работы доложены на международном симпозиуме восточно-азиатских стран по полимерным материалам и передовым технологиям «Композиты ХХI века» (Саратов, 2004), III Всероссийской научной конференции «Физико-химия процессов переработки полимеров» (Иваново, 2006).
Публикации. По теме диссертации опубликованы 4 печатные работы, в том числе 2 статьи в центральных изданиях.
Структура диссертации. Диссертация состоит из введения, трех глав, общих выводов и списка использованной литературы.
СОДЕРЖАНИЕ РАБОТЫ
Введение содержит обоснование актуальности темы, цели и задачи исследований, научную новизну и практическую значимость работы.
Глава 1. Литературный обзор
Проведен анализ литературы по современному состоянию проблемы создания эпоксидных полимеров пониженной горючести. Анализ и обобщение литературных данных показали, что, несмотря на значительное количество работ по модификации эпоксидных полимеров, еще имеются не решенные проблемы, особенно при использовании эпоксидных составов в качестве клеев, покрытий, герметиков. Не обеспечивается заданный комплекс свойств, предъявляемый к заливочным и пропиточным компаундам, применяемым во многих отраслях промышленности.
В связи с этим представленные исследования, направленные на придание эпоксидным композициям пониженной горючести и комплекса электрических и физико-механических свойств, приобретают особую значимость и актуальность.
Глава 2. Объекты, методики и методы исследования
В работе использовали: эпоксидный — диановый олигомер марки ЭД-20 (ГОСТ 10587-93), отвержденный полиэтиленполиамином (ПЭПА) (ТУ 6-02-594-85). В качестве модификаторов полифункционального действия, выполняющих одновременно роль пластификаторов и замедлителей горения, применялись: фосфорсодержащий диметилакрилат (ТУ 6-02-3-388-88), фосдиол А (ТУ 6-02-1329-86), трихлорэтилфосфат (ТХЭФ) (ТУ 6-05-1611-78). В качестве наполнителей, усиливающих взаимный эффект влияния, использовались: полифосфат аммония (ГОСТ 20291-80), представляющий собой аммониевую соль полифосфорной кислоты; хлористый аммоний (ГОСТ 3773-60); терморасширенный графит (ТРГ) (ТУ 5728-006-13267785) (ТРГ, являющийся отходом производства НПО «УНИХИМТЕК» и образующийся при изготовлении графитовой фольги «Графлекс»); графит тигельный (ГТ) (ГОСТ 17022-81); технический графит (сажа) (ГОСТ 18307-78).
Глава 3. Результаты эксперимента и их обсуждение--PAGE_BREAK--
В качестве замедлителей горения (ЗГ) для коксующихся полимеров, к которым относятся эпоксидные связующие, эффективнее использовать фосфорсодержащие ЗГ. В связи с этим в исследованиях применялись фосфорсодержащие соединения фосдиол (ФД) и фосфорсодержащий диметилакрилат (ФОМ), а также – три — (β — хлорэтилфосфат) (ТХЭФ).
Исследуемые ЗГ – малотоксичные нелетучие соединения, химически и гидролитически стойкие, имеют высокую температуру кипения.
Следовательно, в соответствии с требованиями по опасности химических продуктов и при наличии в составе данных соединений фосфора и хлора возможно их использование в качестве ЗГ для эпоксидных олигомеров.
Для последующей оценки взаимодействия компонентов в составе композиции установлен методом ИКС химический состав реакционноспособных пластификаторов.
В связи с тем, что ЗГ эффективны только в том случае, если они разлагаются в температурном интервале основных потерь массы защищаемого олигомера, исследовано методом ТГА поведение модифицирующих добавок при воздействии на них повышенных температур (табл. 1).
Пиролиз ТХЭФ, ФД и ФОМ проходит в температурном интервале, близком к температурам разложения эпоксидного полимера, что может обеспечивать эффективное влияние данных ЗГ на процессы его горения.
Таблица 1
Показатели пиролиза и горючести компонентов композиций
Состав, масс.ч. на 100 масс.ч. ЭД-20
Температура начала деструкции,
ТН, °С
Выход карбонизованного остатка по завершении основной стадии пиролиза, % (масс.)
Энергия
активации, ЕА,
кДж/моль
Потери массы при горении на воздухе, Dm,
% (масс.)
ЭД-20
200
53 (390оС)
95
78
Фосдиол
260
26 (350оС)
102
-
ФОМ
180
28 (380оС)
297
-
ТХЭФ
242
65 (320оС)
113
-
Для достижения необходимого комплекса свойств проводят модификацию эпоксидных смол (ЭС). При создании огнезащитных пожаробезопасных материалов, особенно покрытий, модифицирующие добавки должны выделять газы, обеспечивающие при нагревании вспучивание связующего и создание вспененного слоя. В качестве таких наполнителей в работе использовались хлористый аммоний (NH4Cl), полифосфат аммония (ПФА) в эпоксидных композициях с техническим углеродом (сажа), терморасширенным графитом (ТРГ), графитом тигельным (ГТ).
Существенное значение для межфазного взаимодействия, для формирования граничных слоев и комплекса механических свойств имеют размер частиц наполнителя и распределение по размерам. В связи с этим исследован гранулометрический состав наполнителей (ТРГ, ПФА, NH4Cl) (рис. 1). Показано, что все наполнители полидисперсны. Преобладающей фракцией ТРГ, ПФА, NH4Clявляются частицы с диаметром, равным 0,63 мм. Поэтому для улучшения электропроводности и повышения удельной поверхности, обеспечивающей увеличение протяженности границы раздела фаз и доли граничного слоя, проводили измельчение наполнителей на шаровой мельнице. В работе для наполнения использовали частицы с d=0,14 мм.
/>
Рис. 1. Гранулометрический состав наполнителей: 1- терморасширенный графит (ТРГ), 2 – полифосфат аммония, 3 – аммоний хлористый
В связи с тем, что модификаторы изменяют процессы структурообразования, а следовательно структуру и свойства композитов, исследовано их влияние на кинетику отверждения. Все исследованные пластификаторы и наполнители, введенные в композицию отдельно, инициируют процессы отверждения, уменьшая время гелеобразования и общее время отверждения (табл. 2).
Таблица 2
Параметры отверждения пластифицированных и наполненных эпоксидных композиций
Состав материала, масс. ч., на 100 масс. ч. ЭД-20
Время гелеобразования,
tгел, мин
Время отверждения, tотв, мин
Максимальная температура отверждения, оС
ЭД-20+15ПЭПА
60
75
121
ЭД-20+40ФД+15ПЭПА
30
50
64
ЭД-20+20ФОМ+15ПЭПА
20
29
142
ЭД-20+20ФД+20ФОМ+15ПЭПА
20
30
118
ЭД-20+30ТХЭФ+15ПЭПА
50
70
110
ЭД-20+30ПФА+15ПЭПА
30
45
120
ЭД-20+30 NH4Cl +15ПЭПА
45
87
72
ЭД-20+5ТРГ+15ПЭПА
30
44
126
ЭД-20+5сажа+15ПЭПА
25
32
146
При этом только в присутствии ФОМ достигается высокая степень отверждения без термообработки (табл. 3).
Таблица 3
Влияние состава композиции и параметров отверждения на степень превращения эпоксидного олигомера
Состав материала, масс. ч.,
на 100 масс. ч. ЭД-20    продолжение
--PAGE_BREAK----PAGE_BREAK----PAGE_BREAK----PAGE_BREAK----PAGE_BREAK----PAGE_BREAK--
ЭД-20+15ПЭПА
0,134
0,111
ЭД-20+30NH4Cl+15ПЭПА
0,244
0,072
ЭД-20+30ТХЭФ+15ПЭПА
0,166
0,089
ЭД-20+30NH4Cl+30ТХЭФ+15 ПЭПА
0,216
0,064
ЭД-20+5ТРГ+15ПЭПА
0,284
0,058
ЭД-20+5ТРГ+30ТХЭФ +15ПЭПА
0,368
0,049
ЭД-20+30NH4Cl+5ТРГ+30ТХЭФ+15ПЭПА
0,458
0,043
Придание эпоксидной композиции электропроводящих свойств осуществлялось введением наполнителей. Электропроводящие свойства в полимере проявляются при образовании в нем частичками наполнителя цепочечных структур. Облегчение образования таких структур достигается за счет уменьшения взаимодействия между макромолекулами полимера, между частицами наполнителя, между полимером и наполнителем. Для этих целей использовали гибридные наполнители, один из которых не является электропроводящим (ПФА, NH4Cl), а также введение пластификатоов. Это позволило даже при небольших количествах электропроводящего наполнителя (5 масс.ч.), добиться значительного снижения удельного сопротивления и отнести разработанные полимерные составы к классу антистатических материалов (табл. 14).
Таблица 14
Электрические свойства модифицированных эпоксидных композиций, отвержденных ПЭПА
№ п/п
Состав материала в масс. ч.
на 100 масс. ч. ЭД-20
Удельное сопротивление




ρυ, Ом·м
ρS, Ом
1
ЭД-20+15ПЭПА
2,16·1015
8,16·1014
2
ЭД-20+30NH4Cl+5ТРГ+30ФД+15ПЭПА
7,6·104
7,6·106
3
ЭД-20+30NH4Cl+5ТРГ+30ФОМ+15ПЭПА
3,4·104
8,0·106
4
ЭД-20+30ПФА+5ТРГ+30ФОМ+15ПЭПА
8,9·105
1,8·108
5
ЭД-20+30ПФА+5сажа+30ФОМ+15ПЭПА
2,4·108
4,5·109
6
ЭД-20+30NH4Cl+5ТРГ+20ФД+15ПЭПА
1·104
2,4·106
7
ЭД-20+30NH4Cl+5ТРГ+30ТХЭФ+15ПЭПА
3,9·103
3,3·105
8
ЭД-20+30ПФА+35ФОМ+15ПЭПА
1,8·108
3,8·1010
9
ЭД-20+30ПФА+5ГТ+25ФОМ+25ПЭПА
1,6·109
3,0·1011
Кроме того, из анализа показателей удельного сопротивления, очевидно, что имеет значение как природа второго (NH4Cl или ПФА), так и природа графитового наполнителя. Графитовые наполнители имеют слабо связанную слоистую структуру, способную образовывать слоистые соединения с соединениями «внедрения»: хлоридами металлов, щелочными металлами, галогенами, некоторыми окислами. При нагревании ионы соединения внедрения раздвигают слои кристаллической решетки графита, что приводит к увеличению объема графита.
В зависимости от химической природы наполнителей они могут оказывать ускоряющее или замедляющее влияние на формирование сетчатой структуры. Физические свойства наполнителей, такие как размер частиц, их структура, форма и распределение в материале, влияют на прочностные свойства наполненных композиций.
Терморасширенный графит (ТРГ) представляет собой пеноподобные чисто углеродные структуры. Графит тигельный – это бисульфат углерода, представляющий собой электролитическое соединение внедрения графита. Технический углерод (сажа) представляет собой турбостатическую (неупорядоченно-слоевую) форму углерода. Вследствие разности структур электропроводимость материалов существенно различается; так, у составов, содержащих сажу, она на 2-3 порядка меньше, чем содержащих в таком же количестве графит тигельный.
Таким образом, получены составы, обеспечивающие придание эпоксидным полимерам диэлектрических и антистатических свойств и пониженной горючести, которые предлагается использовать для огнезащиты дерева, для покрытия по металлу.
Разработана технологическая схема получения полимерных составов и технология нанесения покрытий.
Доказана экономическая эффективность разработанных составов в сравнении с аналогами.
На основании проведенных исследований выбраны композиции с оптимальным сочетанием свойств: эластичностью, хорошими диэлектрическими и антистатическими свойствами и пониженной горючестью.    продолжение
--PAGE_BREAK--
Таблица 15
Сравнительная характеристика компаундов
Свойства
ЭД-20 +
+25КПМ+40ГТ
ЭД-20 +
+25КПМ+60ГТ
ЭД-20 +30NH4Cl+5ТРГ + +30ТХЭФ +15ПЭПА
Начальная температура деструкции, Тн,°С
175
180
280
Потери массы при поджигании на воздухе, %
*
*
6,6
Кислородный индекс, %
-
-
35,5
Удельное объемное сопротивление, Ом·м
-
-
3,9·103
Коэффициент теплопровод-
ности, Вт/м·К
-
-
0,485
Кратность вспенивания, раз
21,16
38,63
49,6
Примечание: КПМ — кубовые производства морфолина (морфолин, диэтиленгликоль, полифункциональные амины); * — не горят после устранения пламени только при содержании 100 масс.ч. графита тигельного.
ОСНОВНЫЕ ВЫВОДЫ
Разработаны составы эпоксидных композиций пониженной горючести, с требуемыми диэлектрическими и антистатическими и физико-механическими свойствами;
доказана возможность направленного регулирования структуры и
свойств эпоксидных компаундов с применением модифицирующих фосфор- и хлорсодержащих замедлителей горения и наполнителей. При этом установ­лено наличие химического взаимодействия между замедлителями горения и эпоксидным олигомером и влияние замедлителей горения на процессы структурообразования, обеспечивающие формирование заданной структуры эпоксидного олигомера;
установлено влияние ЗГ на физико-химические процессы при пиролизе и горении эпоксидных композиций, про­являющиеся в повышении термоустойчивости материала, что подтверждается возрастанием температуры начала деструкции; повышается выход карбонизованного остатка по окончании основной стадии деструкции, соответственно, снижается количество летучих продуктов; увеличивается энергия активации процесса деструкции; снижаются скорости потерь массы.
изучены свойства применяемых наполнителей, определяющие
структурообразование эпоксидного олигомера. Исследован гранулометриче­ский состав наполнителей и рекомендуется использовать частицы с размером 0,14 мм, так как они характеризуются большей удельной поверхностью, обеспечивающей лучшее взаимодействие наполнителя и связующего;
исследовано поведение составов, содержащих наполнители и пластификаторы при воздействии повышенных температур, и их влияние на процессы при пиролизе и горении эпоксидных составов. Композиты характеризуются повышенной термоустойчивостью, большими коксообразующей способностью и способностью к вспениванию.
При определении скорости распространения пламени по поверхности образца древесины с нанесенным огнезащитным покрытием установлено отсутствие загорания и распространения пламени. Отмечено, что покрытие препятствует распространению пламени, возникшего на неогнезащищенной древесине. По комплексу показателей горючести разработанные материалы относятся к классу трудногорючих;
установлена возможность регулирования электропроводности за счет изменения природы наполнителя и их взаимодействия в композиции – от диэлектриков до материалов с антистатическими свойствами.
Основные положения и результаты диссертационной работы изложены в следующих публикациях:
1. Ширшова Е.С. Модифицированные эпоксидные композиции / Е.С. Ширшова, Е.В. Плакунова, Е.А. Татаринцева, Л.Г. Панова // Композиты XXI века: докл. Междунар. симпозиума. – Саратов: СГТУ, 2005. –
С. 125-130.
2. Ширшова Е.С. Использование гибридных наполнителей при создании эпоксидных компаундов пониженной горючести / Е.В. Плакунова, Е.С. Ширшова, Е.А. Татаринцева, В.Н. Олифиренко, Л.Г. Панова // Физико-химия процессов переработки полимеров: сборник материалов
III Всероссийской научной конференции. – Иваново: Ивановский государственный химико-технологический университет, 2006. – С. 54-55.
3. Ширшова Е.С. Огнезащитные покрытия для древесины / Е. С. Ширшова, Е. В. Плакунова, Е. А. Татаринцева, Л. Г. Панова // Вестник Саратовского государственного технического университета. – 2006. — №4 (16). — Вып.1. — С. 46-51.
4. Ширшова Е.С. Изучение влияния модификаторов на свойства эпоксидных композиций / Е.С. Ширшова, Е.А. Татаринцева, Е.В. Плакунова, Л.Г. Панова // Пластические массы. – 2006. — №12. – С. 34-36.
Подписано в печать 04.04.07 Формат60×84 1/16
Бум. офсет Усл. печ.л. 1,16 Уч.-издл.л. 1,0
Тираж 100 экз. Заказ 102 Бесплатно
Саратовский государственный технический университет
410054, Саратов, Политехническая ул., 77
Отпечатано в РИЦ СГТУ. 410054 Саратов, Политехническая ул., 77


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат FibreA Essay Research Paper GUT ISSUES
Реферат Led Zeppelin Essay Research Paper The band
Реферат Красная площадь
Реферат Можно ли наказывать детей?
Реферат Характеристика поведения потребителей как основа формирования потребительского спроса
Реферат Физическая культура в общекультурной и профессиональной подготовке студентов
Реферат Capital Punishment The Just Punishment For Serious
Реферат Informal And Formal Training Development Essay Research
Реферат Клин - старинный город
Реферат Использование оздоровительной аэробики на утренней гимнастике с детьми старшего дошкольного возраста
Реферат Сравнительная характеристика формирования политической карты Северной и Латинской Америки.
Реферат Холодная война: историческая ретроспектива
Реферат Правовий порядок регулювання земельних ділянок сільськогосподарських підприємств та фермерських
Реферат Сущность управления, его общие черты и свойства.
Реферат Имидж организации 2