--PAGE_BREAK--Следующие за аргоном калий и кальций имеют на внешнем уровне 4s-электроны (четвертый период). Появление 4s-электронов при наличии свободных 3d-орбиталей обусловлено экранированием ядра плотным 3s23p6-электронным слоем. В связи с отталкиванием от этого слоя внешних электронов для калия и кальция реализуются [Ar]4s1 — и [Ar]4s2-состояния. Сходство K и Ca с Na и Mg соответственно, кроме чисто «химического» обоснования, подтверждается также электронными спектрами. При дальнейшем увеличении заряда у следующего за кальцием скандия 3d-состояние становится энергетически более выгодным, чем 4p, поэтому и заселяется 3d-орбиталь (см. приложение 3). Из анализа зависимости энергии электрона от порядкового номера элемента В. М. Клечковский сформулировал правило, согласно которому энергия атомных орбиталей возрастает по мере увеличения суммы (n + l). При равенстве сумм сначала заполняется уровень с меньшим n и большим l, а потом с большим n и меньшим l. Так у K и Ca заполняется 4s-орбиталь (4 + 0 = 4), а потом у Sc заполняется 3d-орбиталь (3 + 2 = 5).
Приведенные рассуждения подтверждаются экспериментальными данными об изменении энергии s-, p-, d- и f-орбиталей в зависимости от порядкового номера элемента. Как следует из рис. 1.3, значения энергии различных состояний зависит от заряда ядра Z, и чем больше Z, тем меньше различаются эти состояния по энергиям. Характер этого различия таков, что кривые, выражающие изменение энергии, пересекаются. Так для элементов K и Ca (Z = 19 и 20) энергия 3d-орбиталей выше, чем 4p, а для элементов с Z ≥ 21 энергия 3d-орбиталей ниже, чем 4p. Начиная со скандия (Z = 21) заполняется 3d-орбиталь, а во внешнем слое остаются 4s-электроны. Поэтому в четвертом периоде в ряду от Sc до Zn все десять 3d-элементов – металлы с низшей степенью окисления, как правило, 2, за счет внешних 4s-электронов. Общая электронная формула этих элементов – 3d1–104s1–2. Для хрома и меди наблюдается проскок (или провал) электрона на d-уровень: Cr – 3d54s1, Cu – 3d104s1. Такой проскок с ns- на (n – 1)d-уровень наблюдается также у Mo, Ag, Au, Pt и у других элементов и объясняется близостью энергий ns- и (n – 1)d-уровней и стабильностью наполовину и полностью заполненных уровней.
Образование катионов d-элементов связано с потерей, прежде всего внесших ns- и только затем (n – 1)d-электронов. (см приложение 4)
Дальше в четвертом периоде после десяти d-элементов появляются p-элементы от Ga (4s24p1) до Kr (4s24p6).
Пятый период повторяет четвертый – в нем также 18 элементов, и 4d-элементы, как и 3d образуют вставную декаду (4d 1–105s 0–2).
В шестом периоде после лантана (5d16s2) – аналога скандия и иттрия следуют 14 4f-элементов – лантаноидов. Свойства этих элементов очень близки, поскольку идет заполнение глубоколежащего (n – 2)f-подуровня. Общая формула лантаноидов 4f 2–145d 0–16s 2. (см. приложение 5)
После 4f-элементов заполняются 5d- и 6p-орбитали.
Седьмой период отчасти повторяет шестой. 5f-элементы называются актиноидами. Их общая формула 5f 2–146d 0–17s2. Далее следуют еще 6 искусственно полученных 6d-элементов незавершенного седьмого периода.
Периодическая система элементов.
2.2. История создания Периодической системы.
Зимой 1867-68 года Менделеев начал писать учебник «Основы химии» и сразу столкнулся с трудностями систематизации фактического материала. К середине февраля 1869 года, обдумывая структуру учебника, он постепенно пришел к выводу, что свойства простых веществ (а это есть форма существования химических элементов в свободном состоянии) и атомные массы элементов связывает некая закономерность.
Менделеев многого не знал о попытках его предшественников расположить химические элементы по возрастанию их атомных масс и о возникающих при этом казусах. Например, он не имел почти никакой информации о работах Шанкуртуа, Ньюлендса и Мейера.
Решающий этап его раздумий наступил 1 марта 1869 года (14 февраля по старому стилю). Днем раньше Менделеев написал прошение об отпуске на десять дней для обследования артельных сыроварен в Тверской губернии: он получил письмо с рекомендациями по изучению производства сыра от А. И. Ходнева — одного из руководителей Вольного экономического общества.
В Петербурге в этот день было пасмурно и морозно. Под ветром поскрипывали деревья в университетском саду, куда выходили окна квартиры Менделеева. Еще в постели Дмитрий Иванович выпил кружку теплого молока, затем встал, умылся и пошел завтракать. Настроение у него было чудесное.
За завтраком Менделееву пришла неожиданная мысль: сопоставить близкие атомные массы различных химических элементов и их химические свойства. Недолго думая, на обратной стороне письма Ходнева он записал символы хлора Cl и калия K с довольно близкими атомными массами, равными соответственно 35,5 и 39 (разница всего в 3,5 единицы). На том же письме Менделеев набросал символы других элементов, отыскивая среди них подобные «парадоксальные» пары: фтор F и натрий Na, бром Br и рубидий Rb, иод I и цезий Cs, для которых различие масс возрастает с 4,0 до 5,0, а потом и до 6,0. Менделеев тогда не мог знать, что «неопределенная зона» между явными неметаллами и металлами содержит элементы — благородные газы, открытие которых в дальнейшем существенно видоизменит Периодическую систему.
После завтрака Менделеев закрылся в своем кабинете. Он достал из конторки пачку визитных карточек и стал на их обратной стороне писать символы элементов и их главные химические свойства. Через некоторое время домочадцы услышали, как из кабинета стало доноситься: «У-у-у! Рогатая. Ух, какая рогатая! Я те одолею. Убью-у!». Эти возгласы означали, что у Дмитрия Ивановича наступило творческое вдохновение. Менделеев перекладывал карточки из одного горизонтального ряда в другой, руководствуясь значениями атомной массы и свойствами простых веществ, образованных атомами одного и того же элемента. В который раз на помощь ему пришло доскональное знание неорганической химии. Постепенно начал вырисовываться облик будущей Периодической системы химических элементов. Так, вначале он положил карточку с элементом бериллием Be (атомная масса 14) рядом с карточкой элемента алюминия Al (атомная масса 27,4), по тогдашней традиции приняв бериллий за аналог алюминия. Однако затем, сопоставив химические свойства, он поместил бериллий над магнием Mg. Усомнившись в общепринятом тогда значении атомной массы бериллия, он изменил ее на 9,4, а формулу оксида бериллия переделал из Be2O3 в BeO (как у оксида магния MgO). Кстати, «исправленное» значение атомной массы бериллия подтвердилось только через десять лет. Так же смело действовал он и в других случаях.
Постепенно Дмитрий Иванович пришел к окончательному выводу, что элементы, расположенные по возрастанию их атомных масс, выказывают явную периодичность физических и химических свойств. В течение всего дня Менделеев работал над системой элементов, отрываясь ненадолго, чтобы поиграть с дочерью Ольгой, пообедать и поужинать.
Вечером 1 марта 1869 года он набело переписал составленную им таблицу и под названием «Опыт системы элементов, основанной на их атомном весе и химическом сходстве» послал ее в типографию, сделав пометки для наборщиков и поставив дату «17 февраля 1869 года» (это по старому стилю).
Так был открыт Периодический закон, современная формулировка которого такова: Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядер их атомов.
Отпечатанные листки с таблицей элементов Менделеев разослал многим отечественным и зарубежным химикам и только после этого выехал из Петербурга для обследования сыроварен.
До отъезда он еще успел передать Н. А. Меншуткину, химику-органику и будущему историку химии, рукопись статьи «Соотношение свойств с атомным весом элементов» — для публикации в Журнале Русского химического общества и для сообщения на предстоящем заседании общества.
18 марта 1869 года Меншуткин, который был в то время делопроизводителем общества, сделал от имени Менделеева небольшой доклад о Периодическом законе. Доклад сначала не привлек особого внимания химиков, и Президент русского химического общества, академик Николай Зинин (1812-1880) заявил, что Менделеев делает не то, чем следует заниматься настоящему исследователю. Правда, через два года, прочтя статью Дмитрия Ивановича «Естественная система элементов и применение ее к указанию свойств некоторых элементов», Зинин изменил свое мнение и написал Менделееву: «Очень, очень хорошо, премного отличных сближений, даже весело читать, дай Бог Вам удачи в опытном подтверждении Ваших выводов. Искренне Вам преданный и глубоко Вас уважающий Н. Зинин»[3]. Не все элементы Менделеев разместил в порядке возрастания атомных масс; в некоторых случаях он больше руководствовался сходством химических свойств. Так, у кобальта Co атомная масса больше, чем у никеля Ni, у теллура Te она также больше, чем у иода I, но Менделеев разместил их в порядке Co — Ni, Te — I, а не наоборот. Иначе теллур попадал бы в группу галогенов, а иод становился родственником селена Se.
2.3. Периодический закон Д.И.Менделеева.
Закон открыт и сформулирован Д.И.Менделеевым: «Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от атомных весов элементов». Закон создан на основе глубокого анализа свойств элементов и их соединений. Выдающиеся достижения физики, главным образом разработка теории строения атома, дали возможность раскрыть физическую сущность периодического закона: периодичность в изменении свойств химических элементов обусловлена периодическим изменением характера заполнения электронами внешнего электронного слоя по мере возрастания числа электронов, определяемого зарядом ядра. Заряд равен порядковому номера элемента в периодической системе. Современная формулировка периодического закона: «Свойства элементов и образуемых ими простых и сложных веществ находятся в периодической зависимости от заряда ядра атомов». Созданная Д.И.Менделеевым в 1869-1871 гг. периодическая система является естественной классификацией элементов, математическим отражением периодического закона.
Менделеев не только первый точно сформулировал этот закон и представил содержание его в виде таблицы, которая стала классической, но и всесторонне обосновал его, показал его огромное научное значение, как руководящего классификационного принципа и как могучего орудия для научного исследования.
Физический смысл периодического закона. Был вскрыт лишь после выяснения того, что заряд ядра атома возрастает при переходе от одного химического элемента к соседнему (в периодической системе) на единицу элементарного заряда. Численно заряд ядра равен порядковому номеру (атомному номеру Z) соответствующего элемента в периодической системе, то есть числу протонов в ядре, в свою очередь равному числу электронов соответствующего нейтрального атома. Химические свойства атомов определяются структурой их внешних электронных оболочек, периодически изменяющейся с увеличением заряда ядра, и, следовательно, в основе периодического закона лежит представление об изменении заряда ядра атомов, а не атомной массы элементов. Наглядная иллюстрация периодического закона — кривые периодические изменения некоторых физических величин (ионизационных потенциалов, атомных радиусов, атомных объёмов) в зависимости от Z. Какого-либо общего математического выражения периодического закона не существует. Периодический закон имеет огромное естественнонаучное и философское значение. Он позволил рассматривать все элементы в их взаимной связи и прогнозировать свойства неизвестных элементов. Благодаря периодическому закону многие научные поиски (например, в области изучения строения вещества — в химии, физике, геохимии, космохимии, астрофизике) получили целенаправленный характер. Периодический закон — яркое проявление действия общих законов диалектики, в частности закона перехода количества в качество.
Физический этап развития периодического закона можно в свою очередь разделить на несколько стадий:
1. Установление делимости атома на основании открытия электрона и радиоактивности (1896-1897);
2. Разработка моделей строения атома (1911-1913);
3. Открытие и разработка системы изотопов (1913);
4. Открытие закона Мозли (1913), позволяющего экспериментально определять заряд ядра и номер элемента в периодической системе;
5. Разработка теории периодической системы на основании представлений о строении электронных оболочек атомов (1921-1925);
6. Создание квантовой теории периодической системы (1926-1932).
2.4. Предсказание существования неизвестных элементов.
Самое же важное в открытии Периодического закона — предсказание существования еще не открытых химических элементов. Под алюминием Al Менделеев оставил место для его аналога «экаалюминия», под бором B — для «экабора», а под кремнием Si — для «экасилиция». Так назвал Менделеев еще не открытые химические элементы. Он даже дал им символы El, Eb и Es.
По поводу элемента «экасилиция» Менделеев писал: «Мне кажется, наиболее интересным из, несомненно, недостающих металлов будет тот, который принадлежит к IV группе аналогов углерода, а именно, к III ряду. Это будет металл, следующий тотчас же за кремнием, и потому назовем его экасилицием». Действительно, этот еще не открытый элемент должен был стать своеобразным «замком», связывающим два типичных неметалла — углерод C и кремний Si — с двумя типичными металлами — оловом Sn и свинцом Pb.
Затем предсказал существование еще восьми элементов, в том числе «двителлура» — полония (открыт в 1898 г.), «экаиода» — астата (открыт в 1942-1943 гг.), «двимарганца» — технеция (открыт в 1937 г.), «экацезия» — Франция (открыт в 1939 г. )
В 1875 году французский химик Поль-Эмиль Лекок де Буабодран открыл в минерале вюртците — сульфиде цинка ZnS — предсказанный Менделеевым «экаалюминий» и назвал его в честь своей родины галлием Ga (латинское название Франции — «Галлия»).
Менделеев точно предсказал свойства экаалюминия: его атомную массу, плотность металла, формулу оксида El2O3, хлорида ElCl3, сульфата El2(SO4)3. После открытия галлия эти формулы стали записывать как Ga2O3, GaCl3 и Ga2(SO4)3. Менделеев предугадал, что это будет очень легкоплавкий металл, и действительно, температура плавления галлия оказалась равной 29,8 оС. По легкоплавкости галлий уступает только ртути Hg и цезию Cs.
Среднее содержание Галлий в земной коре относительно высокое, 1,5-10-30% по массе, что равно содержанию свинца и молибдена. Галлий — типичный рассеянный элемент. Единственный минерал Галлий — галдит CuGaS2, очень редок. На воздухе при обычной температуре Галлий стоек. Выше 260°С в сухом кислороде наблюдается медленное окисление (плёнка окиси защищает металл). В серной и соляной кислотах галлий растворяется медленно, в плавиковой — быстро, в азотной кислоте на холоду Галлий устойчив. В горячих растворах щелочей Галлий медленно растворяется. Хлор и бром реагируют с Галлий на холоду, иод — при нагревании. Расплавленный Галлий при температурах выше 300° С взаимодействует со всеми конструкционными металлами и сплавами Отличительная особенность Галлий — большой интервал жидкого состояния (2200° С) и низкое давление пара при температурах до 1100—1200°С… Геохимия Галлий тесно связана с геохимией алюминия, что обусловлено сходством их физико-химических свойств. Основная часть Галлий в литосфере заключена в минералах алюминия. Содержание Галлий в бокситах и нефелинах колеблется от 0,002 до 0,01%. Повышенные концентрации Галлий наблюдаются также в сфалеритах (0,01—0,02%), в каменных углях (вместе с германием), а также в некоторых железных рудах. Широкого промышленного применения Галлий пока не имеет. Потенциально возможные масштабы попутного получения Галлий в производстве алюминия до сих пор значительно превосходят спрос на металл.
Наиболее перспективно применение Галлий в виде химических соединений типа GaAs, GaP, GaSb, обладающих полупроводниковыми свойствами. Они могут применяться в высокотемпературных выпрямителях и транзисторах, солнечных батареях и др. приборах, где может быть использован фотоэффект в запирающем слое, а также в приёмниках инфракрасного излучения. Галлий можно использовать для изготовления оптических зеркал, отличающихся высокой отражательной способностью. Сплав алюминия с Галлий предложен вместо ртути в качестве катода ламп ультрафиолетового излучения, применяемых в медицине. Жидкий Галлий и его сплавы предложено использовать для изготовления высокотемпературных термометров (600—1300° С) и манометров. Представляет интерес применение Галлий и его сплавов в качестве жидкого теплоносителя в энергетических ядерных реакторах (этому мешает активное взаимодействие Галлий при рабочих температурах с конструкционными материалами; эвтектический сплав Ga—Zn—Sn оказывает меньшее коррозионное действие, чем чистый Галлий).
продолжение
--PAGE_BREAK--В 1879 году шведский химик Ларс Нильсон открыл скандий, предсказанный Менделеевым как экабор Eb. Нильсон писал: «Не остается никакого сомнения, что в скандии открыт экабор… Так подтверждаются нагляднейшим образом соображения русского химика, которые не только дали возможность предсказать существование скандия и галлия, но и предвидеть заранее их важнейшие свойства»[4]. Скандий получил название в честь родины Нильсона Скандинавии, а открыл он его в сложном минерале гадолините, имеющем состав Be2(Y, Sc)2FeO2(SiO4)2. Среднее содержание Скандий в земной коре (кларк) 2,2- 10-3% по массе. В горных породах содержание Скандий различно: в ультраосновных 5-10-4, в основных 2,4-10-3, в средних 2,5-10-4, в гранитах и сиенитах 3.10-4; в осадочных породах (1—1,3).10-4. Скандий концентрируется в земной коре в результате магматических, гидротермальных и гипергенных (поверхностных) процессов. Известно два собственных минерала Скандий — тортвейтит и стерреттит; они встречаются чрезвычайно редко. Скандий — мягкий металл, в чистом состоянии легко поддаётся обработке — ковке, прокатке, штамповке. Масштабы применения Скандий весьма ограничены. Окись Скандий идёт на изготовление ферритов для элементов памяти быстродействующих вычислительных машин. Радиоактивный 46Sc используется в нейтронно-активационном анализе и в медицине. Сплавы Скандий, обладающие небольшой плотностью и высокой температурой плавления, перспективны как конструкционные материалы в ракетои самолётостроении, а ряд соединений Скандий может найти применение при изготовлении люминофоров, оксидных катодов, в стекольном и керамических производствах, в химической промышленности (в качестве катализаторов) и в других областях. В 1886 году профессор Горной академии во Фрайбурге немецкий химик Клеменс Винклер при анализе редкого минерала аргиродита состава Ag8GeS6 обнаружил еще один элемент, предсказанный Менделеевым. Винклер назвал открытый им элемент германием Ge в честь своей родины, но это почему-то вызвало резкие возражения со стороны некоторых химиков. Они стали обвинять Винклера в национализме, в присвоении открытия, которое сделал Менделеев, уже давший элементу имя «экасилиций» и символ Es. Обескураженный Винклер обратился за советом к самому Дмитрию Ивановичу. Тот объяснил, что именно первооткрыватель нового элемента должен дать ему название. Общее содержание Германий в земной коре 7.10—4% по массе, т. е. больше, чем, например, сурьмы, серебра, висмута. Однако собственные минералы Германий встречаются исключительно редко. Почти все они представляют собой сульфосоли: германит Cu2 (Cu, Fe, Ge, Zn)2 (S, As)4, аргиродит Ag8GeS6, конфильдит Ag8(Sn, Ce) S6 и др. Основная масса Германий рассеяна в земной коре в большом числе горных пород и минералов: в сульфидных рудах цветных металлов, в железных рудах, в некоторых окисных минералах (хромите, магнетите, рутиле и др.), в гранитах, диабазах и базальтах. Кроме того, Германий присутствует почти во всех силикатах, в некоторых месторождениях каменного угля и нефти. Германий — один из наиболее ценных материалов в современной полупроводниковой технике. Он используется для изготовления диодов, триодов, кристаллических детекторов и силовых выпрямителей. Монокристаллический Германий применяется также в дозиметрических приборах и приборах, измеряющих напряжённость постоянных и переменных магнитных полей. Важной областью применения Германий является инфракрасная техника, в частности производство детекторов инфракрасного излучения, работающих в области 8—14 мк. Перспективны для практического использования многие сплавы, в состав которых входят Германий, стекла на основе GeO2 и др. соединения Германий.
Предугадать существование группы благородных газов Менделеев не мог, и им поначалу не нашлось места в Периодической системе.
Открытие аргона Ar английскими учеными У. Рамзаем и Дж. Релеем в 1894 году сразу же вызвало бурные дискуссии и сомнения в Периодическом законе и Периодической системе элементов. Менделеев вначале посчитал аргон аллотропной модификацией азота и только в 1900 году под давлением непреложных фактов согласился с присутствием в Периодической системе «нулевой» группы химических элементов, которую заняли другие благородные газы, открытые вслед за аргоном. Теперь эта группа известна под номером VIIIА.
В 1905 году Менделеев написал: «По-видимому, периодическому закону будущее не грозит разрушением, а только надстройки и развитие обещает, хотя как русского меня хотели затереть, особенно немцы»[5].
Открытие Периодического закона ускорило развитие химии и открытие новых химических элементов.
3. Д.И.Менделеев и таможенная политика России.
Менделеев сыграл выдающуюся роль в формировании и осуществлении таможенно-тарифной политики России в конце XIX-начале XX в. - тогда уже авторитетнейший ученый с масштабным патриотическим мышлением. Доказывая историческую необходимость индустриализации в России, Менделеев указывает на таможенный тариф как на одну из мер поддержки отечественной промышленности. Дмитрий Иванович, по образному выражению одного из биографов ученого, «все время держал ногу в экономическом стремени», и когда в конце 1880-х годов настало время разработки таможенного тарифа, святая святых экономической политики любого государства, он сразу был готов приступить к этой грандиозной работе. О начале своего непосредственного участия в работе по пересмотру тарифа Менделеев вспоминал так:
«В сентябре 1889 г. заехал, по-товарищески, к И.А. Вышнеградскому, тогда министру финансов, чтобы поговорить по нефтяным делам, а он предложил мне заняться таможенным тарифом по химическим продуктам"[6]. Как указывал сам ученый, ему был поручен «разбор материалов, подготовленных для предстоящего пересмотра общего таможенного тарифа». Ознакомившись с указанными материалами,
Менделеев убедился, что рассмотрение тарифа какого-либо разряда привозных товаров в отдельности, без связи со всеми остальными, может не принести желаемого результата. У него возник замысел составления общего тарифа всех товаров, соответствующего состоянию и потребностям русской промышленности, что предполагало разработку принципов таможенной политики, а также системы распределения товаров, в которой выступала бы их взаимная связь.
Казалось, что реализовать такой грандиозный замысел, к тому же в столь сжатые сроки, одному ученому, даже при наличии обширных знаний и необходимых материалов, — невозможно. Но Менделеев, понимая, что от предстоящего пересмотра тарифа во многом зависит промышленное будущее страны и ее экономическая независимость, «живо принялся за дело, овладел им и напечатал этот доклад к Рождеству»1889 г.
В декабре 1889 г. докладная записка «Связь частей общего таможенного тарифа. Ввоз товаров» — первая крупная работа Менделеева по тарифному вопросу — была представлена министру финансов. Впоследствии Дмитрий Иванович оценивал ее так: «Этим докладом определилось многое в дальнейшем ходе, как всей моей жизни, так и в направлении обсуждений тарифа, потому что цельность плана была только тут. С.Ю. Витте сразу стал моим союзником, а за ним перешли и многие другие»[7].
Менделеев в октябре 1890 г. представил тому же И.А. Вышнеградскому обширное «Добавление к докладной записке, относящейся к связи частей таможенного тарифа». Представленные доклады и их обсуждение быстро сделали Менделеева основной фигурой среди приглашенных разработчиков тарифной реформы. В 1890 г. ученый участвовал в заседаниях совещания и комиссии по тарифному вопросу и был, по словам В.И. Ковалевского, «духовной осью всей работы… по созданию промышленного протекционизма».
В феврале 1891 г. он представил И.А. Вышнеградскому записку «О таможенной пошлине на серу и серный колчедан», весной работал экспертом в Департаменте государственной экономии Государственного совета. В острых дискуссиях Менделееву удалось отстоять принципы своего проекта, они не затерялись в многочисленных замечаниях, поправках и легли в основу общего таможенного тарифа Российской империи по европейской торговле. 27 мая общее собрание Государственного совета одобрило таможенный тариф, 11 июня 1891 г. он был высочайше утвержден и 1 июля введен в действие, став кульминационным пунктом протекционистской политики России. В 1891-1900 гг. таможенное обложение составило 33% стоимости ввозившихся в страну товаров. Современники и исследователи отечественной экономической истории не без оснований называли этот тариф «менделеевским».
В 1891-1892 гг. появился знаменитый «Толковый тариф, или исследование о развитии промышленности России в связи с ее общим таможенным тарифом 1891 года» — главное произведение Менделеева по проблемам таможенной политики. Он представляет собой подробные комментарии к таможенному тарифу с экономическим обоснованием принятых в нем ставок обложения по отдельным видам товаров, описанием состояния основных отраслей и выяснением перспектив их развития. Широкий круг использованных источников, обширность представленного материала, тщательность его обработки и систематизации сделали «Толковый тариф» своеобразной экономической энциклопедией пореформенной России. В этом труде в полной мере проявилась сила синтезирующей мысли Менделеева, его способность к «всепознанию», отмечавшаяся многими современниками.
При разработке тарифа, по его мнению, следует исходить из того, что, во-первых, «таможенный тариф всегда будет делом времени, условий и обстоятельств страны, к которой прилагается»; во-вторых, «от тарифа можно ждать вполне благоприятных плодов лишь тогда, когда он установлен прочно, когда к нему есть возможность приноровиться и когда его система отличается целостностью». Ученый подчеркивает, что государство обязано возбуждать, содействовать и охранять промышленность и торговлю своей страны всеми возможными способами. Годы, прошедшие после принятия тарифа 1891 г. показали правильность избранного курса в таможенной политике: тариф не уменьшил ввоза, таможенные доходы возросли, а вместе с ними возросли и общие доходы государства.
Целью его тарифа было развитие и защита тех видов отечественных производств, которые доставят народу прочный заработок, а стране — необходимые товары. Менделеев считал необходимым «избрать немногие, но коренные промышленные дела, которые должны, вместе с ныне уже существующими, составить зерно предстоящего промышленного движения России».
4. Участие великого химика в промышленности.
Менделеев поднял знамя национально-освободительной борьбы русского народа против положения России как сырьевого придатка Запада, против раболепства властей и интеллигенции перед иноземными идеями и порядками.
Менделеев не мог мириться с тем: что «русский мужик, переставший работать на помещика, стал рабом Западной Европы и находится от нее в крепостной зависимости, доставляя ей хлебные условия жизни… Крепостная, то есть, в сущности, экономическая зависимость миллионов русского народа от русских помещиков уничтожилась, а вместо неё наступила экономическая зависимость всего русского народа от иностранных капиталистов… Миллиарды рублей, шедшие за иностранные товары… кормили не свой народ, а чужие». И он начинает борьбу за освобождение страны от этих экономических оков.
Д. Менделеев предложил промышленный способ фракционного разделения нефти, изобрел вид бездымного пороха («пироколлодий», 1890 г.) и организовал его производство.
Д.И. Менделеев активно участвовал в индустриальном развитии России. Особое внимание уделял нефтяной, угольной, металлургической и химической промышленности. Многое сделал для становления Бакинского и Донбасского промышленных районов, был инициатором строительства нефтепроводов. В сельском хозяйстве пропагандировал использование минеральных удобрений и орошения. Автор книги «К познанию России» (1906 г.), в которой подведены итоги размышлений о развитии производительных сил страны.
4.1. Нефтяная промышленность.
Ему не было еще тридцати, когда известный нефтепромышленник В.А. Кокорев попросил его выехать в Баку для изучения состояния нефтедобычи и нефтепереработки. Менделеев тщательно обследовал все Бакинские нефтепромыслы и установки по переработке нефти, но не ограничился этим, а наметил целую программу повышения эффективности отрасли. Он оценил потребности всей России в нефтепродуктах, принял в расчет все тогда известные и предполагаемые им месторождения нефти, выявил условия, когда нефтеперерабатывающие заводы лучше размещать в местах добычи нефти, а когда — в центрах ее потребления, и составил схему размещения новых нефтеперерабатывающих заводов в Центральной России, в особенности вблизи Москвы и в крупнейших городах на Волге (в Царицыне, Саратове, Самаре, Нижнем Новгороде, Ярославле, Рыбинске). Мало того, он предложил построить нефтепровод Баку — Батуми и заводы по переработке нефти на Черноморском побережье с тем, чтобы не только избавить Россию от импорта американского керосина, но и самим экспортировать нефтепродукты в Европу. Он считал варварством, что сырая нефть, из которой можно получать столько ценнейших продуктов, используется как топливо. На весь мир прозвучала его фраза: «Нефть — не топливо, топить можно и ассигнациями»[8]. Менделеев выступил против системы откупов, поскольку откупщики более всех противились глубокой переработке нефти. Позднее он побывал в США и, познакомившись с практикой нефтедобычи в Пенсильвании, пришёл к выводу, что в России её можно поставить не хуже, а лучше. Его труды дали мощный толчок развитию теории и практики, рациональной постановке всего нефтяного дела в стране.
В 1876 году, когда единственным ценившимся нефтепродуктом был керосин, используемый только для освещения, Д.И. Менделеев писал: «Мне рисуется в будущем… нефтяной двигатель, размерами и чуть-чуть не ценою немного превышающий керосиновую лампу..., он родит движение, когда нужно...»,[9] — писал о выгодности и удобстве двигателя, под поршнем которого взрывается смесь воздуха и летучих частей нефти, т.е. бензина.
В 1877 он выдвинул свою гипотезу происхождения нефти из карбидов тяжелых металлов, которая, правда, на сегодня большинством ученых не принимается; предложил принцип дробной перегонки при переработке нефти…
В 1880 году Д.И. Менделеев командируется на Кавказ, к этому времени у него складывается своя гипотеза образования нефти, которая была опубликована в материалах Венского геологического института.
В этом же году имела место публичное (отраженное в печати) столкновение Д.И. Менделеева с Людвигом Нобелем — владельцем механического завода в Петербурге и главой нефтяного «Товарищества Бр. Нобель» (братом изобретателя динамита Альфреда Нобеля, который также был пайщиком «Товарищества») — крупнейшего производителя керосина. В этом производстве бензин и тяжелые остатки считались бесполезными отходами и уничтожались. И вот эти-то бросовые остатки Д.И. Менделеев предлагал превращать в масла, которые в три-четыре раза были дороже, чем керосин. Это могло нанести удар по нефтяной империи Нобелей, т.к. его российские конкуренты могли бы тогда успешно с ним соперничать при гораздо меньших затратах. Во время этой полемики Д.И. Менделеева поддержал русский промышленник В.И. Рогозин, который в соответствии с рекомендациями ученого начал на построенном на Волге заводе полностью перерабатывать нефть, получая из нее кроме керосина смазочные масла хорошего качества. Его отчет «Бакинское нефтяное дело» стал по сути дела последним его крупным исследованием по нефти, которой он интересовался и так много занимался в течение десяти лет.
4.2. Угольная промышленность.
Точно так же комплексно подошел Менделеев и к оценке перспектив развития незадолго до того открытых залежей угля в Донецком бассейне. В то время местные угледобытчики каждый в одиночку пытались повысить эффективность работы своих крохотных шахт и, естественно, без особого успеха, потому что сделать добычу угля рентабельной можно было лишь при резком увеличении добычи, а его нельзя было добиться без создания рынка сбыта и путей сообщения с большой пропускной способностью. Менделеев просчитал, во что обходится снабжение Петербурга и Москвы польским (из Силезии) и импортным английским углем, и определил, при каких условиях донецкий уголь окажется конкурентоспособным с ними. Он разработал предложения по изменению таможенных тарифов на уголь, обосновал необходимость постройки специальной углевозной железнодорожной магистрали (дорога Москва — Донбасс была построена только при Советской власти, в 30-е годы), проведения шлюзования и дноуглубительных работ на Донце и Дону, развития портов на побережьях Азовского и Черного морей. При проведении намеченных им мероприятий Россия могла бы не только отказаться от импорта угля, но и сама экспортировать его сначала в страны Средиземноморья, а затем и в страны Балтики, причем эта задача рассматривалась им не только как экономическая, но и как политическая, как вопрос престижа нашей страны. По его мнению, народы средиземноморских и балтийских стран, видя, что Россия вывозит высококачественный уголь, убедились бы в том, что она в состоянии производить и экспортировать и другие товары высокого качества. Не ограничившись изучением только Донецкого угольного бассейна, Менделеев обратил внимание общественности и промышленных кругов на месторождения угля на востоке, в первую очередь в Кузнецком бассейне и далее, вплоть до Сахалина. Он первым поставил вопрос о принципиально новых методах добычи и использования угля, в частности, на возможность его подземной газификации.
продолжение
--PAGE_BREAK--