МИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ СЕВМАШВТУЗ ФАКУЛЬТЕТ IV КАФЕДРА ФИЗИКИ Лабораторная работа Определение коэффициентов трения качения и скольжения путем наклонного маятника Северодвинск I. Лабораторная работа Наклонный маятник Цель работы определение коэффициентов трения качения и трения скольжения. II. Основные теоретические положения При относительном перемещении двух соприкасающихся тел или при
попытке вызвать такое перемещение возникают силы трения. Различают три вида трения, возникающего при контакте твердых тел трение скольжения, покоя и качения. Трение скольжения и трение качения всегда связаны с необратимым процессом превращением механической энергии в тепловую. Сила трения скольжения действует на контактирующие друг с другом тела и направлена в сторону, противоположную скорости относительного движения.
Сила нормальной реакции опоры и сила трения являются нормальной и тангенциальной составляющими одной и той же силы , которая называется силой реакции опоры рис. 1. Модули сил Fтр. и N связаны между собой приближенным эмпирическим законом Амонтона-Кулона . 1 В этой формуле - коэффициент трения, зависящий от материала и качества обработки соприкасающихся поверхностей, слабо зависящий от скорости скольжения и практически не зависящий от площади
контакта. Сила трения покоя принимает значение, обеспечивающее равновесие, т.е. состояние покоя тела. Угол б между направлением силы и нормалью к поверхности может принимать значения в промежутке от нуля до максимального, обусловленного законом Амонтона-Кулона. Сила трения качения возникает из-за деформации материалов поверхностей катящегося тела и опоры, а также из-за разрыва временно образующихся молекулярных связей в месте контакта.
Рассмотрим лишь первую из названных причин, поскольку вторая играет заметную роль только при хорошей полировке тел. При качении цилиндра или шара по плоской поверхности в месте контакта и перед ним возникает деформация катящегося тела или опоры. Тело оказывается в ямке рис.2 и вынуждено все время из нее выкатываться. Из-за этого точка приложения силы реакции опоры смещается немного вперед по ходу движения, а линия действия этой силы отклоняется немного назад. Нормальная составляющая силы есть сила упругости, а тангенциальная
сила трения качения. Для силы трения качения справедлив приближенный закон Кулона Fтр кач. kNnR. 2 В этом выражении R - радиус катящегося тела, а k-коэффициент трения качения, имеющий размерность длины. III. Схема лабораторной установки, Принцип действия Установка представлена на рис. 3 и включает в свой состав основание 1, вертикальную стойку 2, верхний кронштейн 3 с панелью 4, маятник скольжения и маятник качения, которые устанавливаются
на верхнем кронштейне 3 поочередно. Основание 1 снабжено тремя регулируемыми опорами 5 и зажимом 6 для фиксации вертикальной стойки 2. Вертикальная стойка 2 выполнена из металлической трубы, на которую нанесена риска, показывающая угол отклонения панели 4 от вертикального положения. Панель 4 имеет прямоугольное окно, в котором устанавливаются сменные образцы в виде пластин. В нижней части панели нанесена шкала отсчета угла отклонения маятников.
С помощью винта 7 панель отклоняется от вертикального положения. Угол отклонения панели определяется с помощью шкалы 8, закрепленной в нижней части панели. Маятник скольжения представляет собой металлический стержень 9, снабженный призматической опорой 10 и обоймой 11, в которую устанавливаются сменные образцы в виде усеченного шара. Маятник качения представляет собой металлический шарик 12, подвешенный на капроновой нити 13.
Шары являются сменными. Маятник скольжения отводят рукой на некоторый угол и отпускают без толчка. Затем вместо маятника скольжения устанавливается маятник качения, отводят его на такой же угол, что и маятник скольжения, и снимают показания. IV. Вывод рабочей формулы Измерение силы трения с помощью наклонного маятника основано на измерении уменьшения его амплитуды за определенное число колебаний. Пусть б0 максимальный угол отклонения маятника в начальный момент движения,
бn максимальное значение угла отклонения маятника после n колебаний рис.4, а точка B определяет положение шарика в начальный момент отклонения маятника на угол б б0, точка B - положение шарика после n колебаний в момент отклонения маятника на угол б бn. За n колебаний полная энергия E маятника уменьшается на величину E, равную убыли его потенциальной энергии E Ep mgh, где h изменение высоты центра тяжести шарика после
n колебаний в момент максимального отклонения из положения равновесия h l sin. 3 Рис. 3 Убыль потенциальной энергии равна работе сил сопротивления и сил трения, взятых по модулю, на пройденном пути S за n колебаний Ep Aтр.кач. Aсопр. Fтр.кач.S Aсопр 4 где Aтр.кач. Fтр.кач.S работа сил трения качения S - путь, который проходит центр тяжести шарика за n полных колебаний, равен
S 4Lnбср L длина маятника Aсопр. работа по преодолению сопротивления среды и трения в точке подвеса маятника. Так как с течением времени происходит затухание колебаний, то значение максимального угла отклонения бn маятника от положения равновесия уменьшается, поэтому при расчете пути S, пройденного шариком за n колебаний берем среднее значение максимального угла бср бср б0 бn2. а б в Рис. 4 Пренебрегая в 4 ДАсопр. ввиду малости, имеем
ДЕР mgДh Fтр.кач. S. 5 Возникновение трения качения объясняется деформациями шарика и опоры. При этом могут возникать как упругие, так и неупругие деформации. Из-за деформации поверхностей линия действия силы реакции не совпадает с линией действия силы нормальной реакции опоры рис.5, в нашем случае равной весу шарика. Нормальная составляющая силы реакции опоры численно равна весу шарика, а горизонтальная составляющая
представляет силу трения качения Fтр кач Nn P, Nф Fтр кач. По правилу равенства моментов сил Fтр кач.R Nn k, 6 где k коэффициент трения качения, представляет плечо силы Nn и имеет размерность длины, м R радиус шара рис. 5. Из 6 получаем Fтр кач. kNnR, 7 По второму закону Ньютона для шарика имеем рис.4, в откуда в проекциях на ось y
Nn mg сos в , 8 здесь в угол наклона плоскости, на которую опирается шарик, подвешенный на нити, m масса шарика. Подставив формулы 3 и 7 в формулу 5 mgДl sin в kmgS cos вR, 9 откуда находим формулу для k k RДlS tg в , 10 в которой Дl ОЕ ОD рис. 4, б. Учитывая, что б0 и бn малы и cos б 1 2 sin б22, окончательно будем иметь 11 Формула 11 рабочая формула для определения коэффициента трения качения, где n число полных колебаний,
Дl ОЕ ОD. Здесь б0 и бn углы выраженные в радианах. В случае скольжения шара по поверхности опоры сила трения скольжения определяется формулой Fтр.ск. мNn, 12 где м коэффициент трения скольжения, зависящий от материала и качества обработки соприкасающихся поверхностей, то есть шарика и опоры, слабо зависящий от скорости скольжения и практически не зависящий от площади контакта опоры и шарика, Nn сила нормальной реакции опоры.
Так как при скольжении шара по поверхности опоры его радиус не учитывается, то формулу 12 можно привести к виду 13 - рабочая формула для определения коэффициента трения скольжения. V. Порядок проведения лабораторной работы 1. Определение коэффициентов трения качения. Установить угол г наклона панели 4 равным 0 градусов. Используя маятник качения в качестве отвеса, при помощи регулировочных опор основания выставить стойку
установки в строго вертикальном положении. Протереть исследуемые поверхности сменных пластин, усеченные шары и шары маятника качения этиловым спиртом и вытереть насухо. Установить одну из сменных пластин на панель 4. Вставить усеченный стальной шар в обойму 11 маятника скольжения сферической поверхностью наружу. Подвесить маятник скольжения при помощи призматической опоры 10 на верхний кронштейн 3 таким образом, чтобы усеченный шар соприкоснулся с установленной на панель пластиной
и ось маятника была параллельна лицевой поверхности панели. При необходимости подрегулировать положение основания так, чтобы указатель маятника оказался напротив нулевого деления шкалы отсчета угла отклонения маятника, но без нарушения вертикального положения стойки. Установить угол наклона панели г равным 2 градуса. Отвести рукой маятник в одно из крайних положений и записать в табл.
1 начальный угол отклонения б0 10 градусов по шкале отсчета угла отклонения маятника. Отпустить маятник и записать угол отклонения бn при его остановке и число n полных колебаний, совершенных маятником. Перевести значения углов в радианную меру. Повторить измерения 4 раза для г 2. Данные занести в табл. 1. Табл. 1 опытаСкольжениеб0, градбn, градn1 102345Снять маятник скольжения.
2. Определение коэффициентов трения скольжения. Установить маятник качения стальной шарик в такое положение, чтобы указатель маятника оказался напротив нулевого деления шкалы отсчета угла отклонения маятника. При заданном угле наклона панели г 5 градусов отклонить шарик 12 от положения равновесия на угол б0 5 градусов Угол отклонения шарика выбирается таким образом, чтобы шарик катался по пластине без проскальзывания. Затем без толчка отпустить маятник и с этого момента начать отсчет колебаний.
После того, как маятник совершит n полных колебаний, записать угол отклонения колебания маятника бn и число n полных колебаний. Перевести значения углов б0 и бn из градусной меры в радианную. Повторить измерения 4 раза для г 5. Данные занести в табл. 2. Табл. 2 опытаКачениеб0, градбn, градn1 52345После выполнения лабораторной работы привести установку в исходное состояние. VI. Обработка экспериментальных данных 1.
Определить коэффициент трения скольжения, используя данные табл.1, по формуле 13 , где в 90 - г 88. Эта формула верна при условии, что угол г 2 градусам. 2. Результаты расчета занести в табл. 3. Табл. 3 опытаУгол наклона панели, г градКоэффициент трения скольжения, м1 223453. Определить коэффициент трения качения, используя данные табл. 2, по формуле 11 , в которой R 0,01 м радиус шара.
4. Результаты расчета занести в табл. 4. Табл. 4 опытаУгол наклона панели, г градКоэффициент трения качения, k1 523455. Рассчитать абсолютную погрешность для коэффициента трения скольжения по формуле Дмi мi - м , где м м1 м2 м3 м4 м5 5. 6. Рассчитать относительную погрешность для коэффициента трения скольжения по формуле Дмi Дм м , в которой Дм Дмi 5. 7. Рассчитать абсолютную погрешность для коэффициента трения качения по формуле
Дki ki - k , здесь k k1 k2 k3 k4 k5 5. 8. Рассчитать относительную погрешность для коэффициента трения качения по формуле Дki Дk k , где Дk Дki 5. 9. Записать окончательно с учетом погрешностей формулы для коэффициентов трения качения и трения скольжения в виде м м Дм , k k Дk . VII. Контрольные вопросы 1. Виды трения 2. Что такое трение скольжения 3. Как изменяется Fтр скольжения и как она направлена 4.
От чего зависит сила трения покоя 5. Что такое трение качения 6. Что такое коэффициент трения качения, и от чего он зависит 7. Вывод формулы коэффициента трения качения методом наклонного маятника. 8. Вывод формулы коэффициента трения скольжения методом наклонного маятника. 9. Какие систематические и случайные погрешности встречаются в данной работе
VIII. Техника безопасности 1. К работе с установкой допускаются лица, ознакомленные с е устройством и принципом действия. 2. Для предотвращения опрокидывания установки необходимо располагать е только на горизонтальной поверхности. Описание подготовили студенты группы 4402 Широкая Е. А. и Яркова С. С. Под руководством Юрина Ю. М.
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |