Реферат по предмету "Физика"


Оценки спектральных радиусов

--PAGE_BREAK--Пример конуса в множестве  n-мерных векторов — это множество векторов с неотрицательными координатами, этот конус принято обозначать через  Хотя понятно это не единственный пример конуса в . Так в случае n = 3  это множество векторов первого октанта, хотя в  можно рассматривать и другие примеры конусов, например «круглый» конус (см. рис.1). Каждый конус можно описать аналитически с помощью системы функций и неравенств. Например, конус  можно описать аналитически с помощью системы линейных неравенств:

 

                                     L
                          
                           K
                                                
                       Рис.1
 «Круглый» конус, изображенный на рис.1 — это множество векторов, лежащих внутри или на границе конической поверхности с вершиной в начале координат и направляющей — линией L, не проходящей через начало координат. Выбирая разные направляющие, мы будем получать разные примеры конусов. Так, если выбрать в качестве направляющей  контур треугольника (рис.2), мы получим трехгранный конус. Аналогично можно рассмотреть четырехгранные, пятигранные и т.д. конусы. «Круглый» конус, изображенный на рис.1, можно рассматривать в этой связи как конус, имеющий бесконечное число граней (каждое из ребер является одномерной гранью).
Особое место среди конусов занимают конусы с минимально возможным числом граней. Заметим, что в случае пространства  (т.е. плоскости) каждый конус имеет ровно две грани и число 2 — это единственно возможное число граней конуса на плоскости.
                       
 

  
                                      
              Рис.2     
Поэтому каждый конус на плоскости имеет минимально возможное число граней. В случае пространства  - минимально возможное число граней у конуса, содержащего хотя бы одну внутреннюю точку, равно трем. В пространстве минимально возможное число (n-1)-мерных граней у конуса, содержащего хотя бы одну внутреннюю точку, равно n.
Тогда миниэдральным конусом будет называться всякий конус, который, во-первых, содержит хотя бы одну внутреннюю точку и, во-вторых, имеет минимально возможное число граней.
Миниэдральные конусы обладают одним важным свойством. Для формулировки этого свойства нам понадобятся некоторые вспомогательные понятия.
Пусть Е — линейное пространство с конусом К и знак «» есть отношение предпочтения по конусу К.
Однако, миниэдральные конусы в конечномерных пространствах  обладают следующимфундаментальным свойством:
если конус К миниэдрален, то каждое ограниченное сверху (соответственно, снизу) множество М элементов имеет точную верхнюю sup М (соответственно, точную нижнюю inf M) грань.
Пример. Рассмотрим в пространстве  с конусом  векторов из   с неотрицательными координатами множество  векторов , удовлетворяющих для заданного вектора неравенству
.
Тогда inf, sup не существует.
Аналогично, если — множество векторов  из, удовлетворяющих неравенству
,
то sup, а inf не существует.
§3. Интегральные операторы
Большой интерес представляют линейные интегральные операторы
,
действующие в различных пространствах Е функций, определенных на множестве W, которое мы предполагаем ограниченным и замкнутым подмножеством конечномерного пространства Rп[1], [16], [20].
Термин «интегральные уравнения» расплывчат. Обычно под интегральными уравнениями понимают уравнения, в которых неизвестная функция независимого (скалярного или векторного) аргумента встречается под знаком интеграла. Различают линейные и нелинейные интегральные уравнения, в зависимости от того зависит ли уравнение от неизвестной функции линейным или нелинейным образом. Многие линейные интегральные уравнения (в «одномерном» случае) могут быть записаны в виде
                              (1)
где x: [a, b] → R — искомая функция, α, f: [a, b] → R и K: [a, b]Ч[a, b] → R — заданные функции. Функцию K обычно называют ядром интегрального уравнения.
Уравнение (1), когда K(t, s) = 0 при a ≤ t ≤ s ≤ b, называют уравнением Вольтерры. В противном случае его называют уравнением Фредгольма [2]. Уравнение Вольтерры, очевидно, оно может быть переписано в виде

Наиболее распространенными представителями нелинейных интегральных уравнений являются уравнения Урысона

и уравнения Гаммерштейна

Уравнения I и II рода
Если α(t) ≠ 0 при всех t [a, b], то уравнение (1), очевидно, может быть переписано в виде
                                     (2)
Уравнения такого вида называют уравнениями II рода, отличая их от уравнений I рода
                                     (3)
Если в некотором пространстве функций на отрезке [a, b] определить интегральный оператор

то уравнения (2) и (3), очевидно, переписываются в виде
x = Ix + f                                                    (4)
и
= Ix + f                                                    (5)
Прежде, чем объяснить разницу между уравнениями I и II родов, введем понятие корректности уравнения. Огрубляя ситуацию, говорят, что уравнение (4) или (5) корректно, если при любых f оно однозначно разрешимо и решение x непрерывно зависит от f. Более точно, говорят, что (линейное) уравнение корректно в паре (E1, E2) банаховых пространств функций на отрезке [a, b], если для любой f E2 уравнение имеет единственное решение xE1 и, кроме того, найдется такая константа C, что ||x||E1 ≤ ||f ||E2.
Разница между уравнениями I и II родов особенно ясно проявляется после записи интегральных уравнений в операторном виде. Суть здесь в следующем. Интегральные операторы в большинстве своем оказываются вполне непрерывными операторами. Для корректной разрешимости уравнения II рода, т. е. уравнения (4) при любой функции f необходимо и достаточно обратимости оператора I – I и ограниченности (I – I)–1, что в случае вполне непрерывного оператора I есть ситуация общего положения. Для разрешимости уравнения I рода необходима обратимость оператора I. В случае же вполне непрерывного оператора I–1 если он существует, необходимо, чтобы он являлся неограниченным [].
Уравнения I рода представляют собой существенно более сложный объект исследования.
§4. Интегральные уравнения с вырожденным ядром и уравнения
типа свертки
Выделим еще два класса линейных интегральных уравнений, часто встречающихся в математическом обиходе [2], [29]. Первый из них состоит из так называемых интегральных уравнений с вырожденным ядром. К ним относят интегральные уравнения, ядро которых представимо в виде
                                            (6)
Интегральные уравнения (скажем, Фредгольма II рода) с вырожденным ядром легко сводятся к системе алгебраических уравнений. Используя (6), уравнение (2) можно переписать в виде
                                          (5)
где
.
Умножение (7) на ηj и интегрирование по t от a до b приводит к системе алгебраических уравнений относительно неизвестных cj:

в которой
,

Уравнение Вольтерры типа свертки выделяется специальным видом ядра K(t, s) = k(t – s):

Название наследуется от интегрального оператора свертки

играющего роль умножения в банаховых алгебрах функций. Уравнение типа свертки весьма широко распространено в приложениях.
Уравнение Фредгольма типа свертки выглядит так:

Линейный оператор называется вполне непрерывным, если он переводит каждое ограниченное по норме пространства  множество в компактное множество.
Почти во всякой физической задаче, которая может быть сформулирована с помощью линейных операторов, важной характеристикой типа задачи является спектр соответствующего оператора [13]. Одной из основных характеристик спектра оператора является спектральный радиус этого оператора. Напомним, что те значения , при которых уравнение
,
где  – рассматриваемый оператор, имеет единственное решение, а оператор  ограничен, называются регулярными. Совокупность всех значений , не являющихся регулярными, называется спектром оператора  и обозначается . Спектральным радиусом  оператора называется число, определенное формулой
,    .
Если уравнение

при данном  имеет решение, отличное от тривиального, то  называется собственным значением оператора , а нетривиальное решение уравнения  называется собственным вектором, отвечающим этому собственному значению . При этом собственное значение  называется позитивным, если  и отвечающий ему собственный вектор  принадлежит конусу .

Глава II
Оценки спектральных радиусов интегральных операторов
§1. Сравнение спектральных радиусов двух положительных
операторов
Многочисленные технические, физические, а также экономические задачи приводят к отысканию решения типа
lx= Ax+ f.
Известно, что данное уравнение будет иметь единственное решение, которое можно найти, используя метод последовательных приближений, если спектральный радиус оператора A меньше единицы.
В  терминах понятия спектрального радиуса [20], [24], устанавливаются важнейшие теоремы существования неотрицательного решения соответствующих моделей математической экономики (модель Леонтьева, модель Леонтьева-Форда, обобщенная модель Леонтьева-Форда).
Приведем соответствующее определение.
Пусть А – линейный ограниченный оператор, действующий в банаховом пространстве Е. Вещественное или комплексное число l называется регулярным значением оператора  А, если оператор
(lI— A)
имеет ограниченный обратный, определенный во всем пространстве Е. В противном случае соответствующее число l называется точкой спектра оператора А. Совокупность всех точек спектра оператора А обозначается s(А).
Спектральным радиусом r(А) оператора А называется следующая величина:
.
Для ограниченного оператора А спектральный радиус r(А) является ограниченной величиной, более того из принципа Банаха сжатых отображений [23] следует оценка
r(А) A||.
Важнейшим фактом теории линейных положительных операторов является следующий факт:
Пусть конус К – нормальный и воспроизводящий, тогда r(А) является точкой спектра оператора А (теорема Карлина).
Более того, при несущественных дополнительных предположениях r(А) является собственным значением оператора А, которому отвечает собственный вектор x*Î К (теорема Перрона-Фробениуса [2]).
В теории принципа Хикса для интегрального уравнения с неотрицательным ядром важную роль для его справедливости играет условие вида
r(A) (1)
где r(A)  — спектральный радиус интегрального оператора А с ядром K(t,s). Естественно иметь признаки, обеспечивающие выполнение условия (1). Для этого получим соответствующие признаки для случаев, когда А:
10) A=(aij)    (i,j=1,2,3…);                                                                    (2)
20) A – интегральный оператор вида
,                                   (3)
где W — ограниченное замкнутое множество из евклидова пространства Rm, K(t,s) – измеримая по sÎW  почти при всех значениях tÎW функция, для которой при некоторых p>1 и  выполняется условие:
.                                         (4)
При выполнении условия (4) оператор (3), как известно, действует в пространстве Lp(W) и является вполне непрерывным оператором в этом пространстве [ 29].
Введем в рассмотрение следующие функции
,.                                 (5)
Теорема 1.   Пусть для некоторого aÎ[0,1]  выполняется следующее неравенство
Pa(t)Q1-a(t)£1   (tÎW)                                          (6)
и, кроме того, выполняется одно из двух следующих условий:
10) в неравенстве (6) равенство допускается лишь на множестве точек лебеговой меры нуль;
20) в неравенстве (6)  строгое неравенство выполняется для всех t из некоторого множества wÎW,  mesw>0, оператор А – неразложим в пространстве Lp(W).
Тогда спектральный радиус r(A) оператора А в пространстве Lp(W) меньше чем единица:
r(A)
Аналогичный результат имеет место и в том случае, когда интегральный оператор (3) действует в пространстве C(W) и неразложим в этом пространстве относительно конуса неотрицательных функций пространства C(W).
Получению оценок спектрального радиуса положительного оператора по информации о поведении этого оператора на фиксированном ненулевом элементе конуса  посвящена достаточно обширная литература [21], [11], [13], [18], [26], [29]. Речь идет о том, что из неравенства вида
   ,
где  - фиксированный элемент из , вытекает оценка снизу

для спектрального радиуса  линейного положительного оператора , а из неравенства вида
                                                 (7)
(при некоторых дополнительных предположениях [29] относительно элемента  и конуса , или оператора ), вытекает оценка сверху для  вида
.                                                  (8)
Для этого, например, достаточно, чтобы конус  был телесным и нормальным, и чтобы  был внутренним элементом конуса . Заметим, что без соответствующих дополнительных предположений утверждать о наличии оценки сверху типа  (8), очевидно, нельзя. В отличие от оценки  сверху, оценка  снизу верна при единственном предположении о том, что .
Поставим вопрос существенно шире: что можно сказать о том, что если вместо условия (7) нам известно условие вида
,                                                (9)
где  - некоторый линейный оператор, действующий в пространстве ? По аналогии с упомянутой оценкой вида (8) естественно спросить: не следует ли из условия (9) оценка
?                                                      (10)
При положительном ответе на этот вопрос получаем возможность иметь как следствия, ранее установленные ([11], [18], [26], [29]) результаты по оценке сверху спектральных радиусов линейных положительных операторов по информации о поведении операторов  и  на фиксированном элементе конуса .
Теорема 2. Пусть конус  - телесен и нормален,  - внутренний элемент конуса .  и  - линейные положительные операторы, действующие в , причем они коммутируют, т.е.
.                                                  (11)
Пусть хотя бы на одном фиксированном элементе  конуса  выполняется неравенство
,
тогда для спектральных радиусов  и  операторов  и  справедливо следующее неравенство:
 .
Доказательство.
Перейдем в пространстве  к — норме [26], [29], которая, во-первых, определена на всем , так как конус  телесен, и, во-вторых, эквивалентна норме в , т.к. конус  нормален. Тем самым пространство  будет полно по -норме. Прежде всего, установим, что для произвольного линейного положительного оператора  справедливо равенство
.                                          (12)
Действительно, из неравенства
,
справедливого для любого , в виду положительности оператора  следует, что
,
откуда, учитывая монотонность -нормы, получим
,
и, следовательно, по определению нормы оператора
.                                            (13)
С другой стороны, из свойств нормы следует, что
.                             (14)
Из (14) и (13) следует равенство (12).
Далее, согласно условию (9), свойству (11) и положительности оператора , имеем
    продолжение
--PAGE_BREAK--.           (15)
По индукции легко доказать, что для любого  имеет место неравенство
,
и в силу монотонности -нормы
.
Поэтому, согласно (12),
.                                  (16)
Т.к. в силу эквивалентности -нормы и нормы пространства  можно написать, что
, ,                             (17)
то из неравенства (16) и равенств (17) следует утверждение теоремы.
Замечание. Теорема 2 верна также и в том случае, когда операторы  и  полукоммутируют (т.е. ). В доказательстве выражение (15) перепишется в виде:
.
Рассмотрим теперь условия (9) и (10) для строгих неравенств. Т.е. условия, при которых из

следует оценка
.                                             (18)
Прежде, чем перейти к рассмотрению строгих оценок (18), приведем несколько важных теорем, представляющих интерес.
Теорема 3.Пусть  и  - линейные положительные операторы, действующие в пространстве , причем они коммутируют, т.е. . Пусть оператор  неразложим, тогда операторы  и  имеют общий собственный вектор.
Доказательство.
Пусть  - собственный вектор оператора , отвечающий спектральному радиусу . Т.к. операторы  и  коммутируют, то для любого  имеем:
.
Тогда
,
следовательно  - собственный вектор оператора , . Т.к.  - неразложим, то согласно теореме о единственности (с точностью до нормы) собственного вектора у неразложимого оператора [29]:

где .
Тем самым у оператора  есть собственный вектор . Т.е. получаем, что у операторов  и  есть общий собственный вектор .
Теорема доказана.
Важным моментом в доказанной теореме является то, что телесность конуса не предполагается.
Теорема 4. Пусть дана некоторая коммутативная совокупность  линейных положительных операторов, из которых хотя бы один  является неразложимым. Тогда найдется положительный функционал , такой, что  для всех , где  для каждого . При этом .
Доказательство.
На основании предыдущей теоремы, можем утверждать, что все операторы из  имеют общий собственный вектор  (), причем .
 является собственным значением соответствующего оператора  и собственным значением сопряженного оператора , которому отвечают собственный вектор  оператора  и собственный функционал  оператора , где — сопряженная к  полугруппа. Из результатов [22], следует, что сопряженные операторы также составляют коммутирующую совокупность линейных положительных операторов . Таким образом, получим
 и .
Теорема доказана.
Приведем достаточно известный [22] результат.
Теорема 5. Если , то уравнение
                                            (19)
имеет единственное решение
,
которое является пределом последовательных приближений
                          (20)
при любом .
Замечание. Сходимость последовательных приближений (20) равносильна тому, что решение (19) может быть представлено сходящимся по норме рядом Неймана
.
Перейдем к рассмотрению строгих оценок.
Теорема 6. Пусть  и  - линейные положительные операторы, действующие в пространстве , причем они коммутируют, т.е. , и пусть оператор  - неразложим и хотя бы на одном фиксированном элементе конуса  выполнено неравенство
, ().
Пусть выполнено одно из условий:
1)                 вполне непрерывен,  - квазивнутренний элемент ;
2)                конус  телесный и нормальный,  - внутренний элемент ;
3)                оператор  -ограничен сверху, конус  воспроизводящий и нормальный;
4)                 оператор  -ограничен сверху, конус  воспроизводящий и нормальный,  - квазивнутренний элемент ;
5)                оператор  допускает представление
,
где  - вполне непрерывен, , конус  воспроизводящий и нормальный,  - квазивнутренний элемент ; существует такой элемент  , что .
Тогда справедливо строгое неравенство
.
Доказательство.
В силу теоремы 5 уравнение

имеет решение
.
Очевидно, что это решение удовлетворяет неравенству
.                                      (21)
Т.к.  - неразложим, то из неравенства (21) следует, что — квазивнутренний элемент . Поэтому при любом ненулевом  выполнено неравенство
.                                  (22)
В условиях нашей теоремы существует такой ненулевой функционал , что . На основании теоремы 3 найдется такой  собственный элемент  оператора , отвечающий собственному значению , который будет также собственным элементом оператора , отвечающим некоторому собственному значению  оператора . Тогда
,
и из (22) вытекает
.
Откуда
.
Следовательно, .
Теорема доказана.
Замечание 1. Теорема 6 верна также и в том случае, когда операторы  и  полукоммутируют, т.к. если операторы  и  полукоммутируют, и оператор  неразложим, то имеет место равенство:
,
т. е. операторы  и  коммутируют.
Замечание2. Используя равенство

можно расширить возможности получения оценок спектрального радиуса: если некоторая степень  удовлетворяет условиям теоремы 5, то из неравенства

вытекает оценка
.
Пример. Рассмотрим матрицу  и вектор  пространства , а также матрицу , коммутирующую с матрицей :
;   ; , .  Имеем  , , т.е. . Таким образом, выполнены все условия теоремы 6, следовательно .
В то время как точное значение спектрального радиуса: .
Заметим, что использование коммутирующего оператора  способствовало уточнению оценки . Действительно, если в примере воспользоваться неравенством (7), то , и тогда, учитывая (8), получим , а эта оценка намного хуже оценки .
§ 2. Оценки спектрального радиуса интегрального оператора
Существует большое количество результатов по оценке спектрального радиуса матричного оператора. Обзор результатов приведен, например, в работе [26]. Стеценко В.Я. в [29] развил некоторые из оценок на интегральные операторы. Следующая теорема является развитием второго метода Островского для интегральных операторов [26].
Теорема 1 . Пусть — матричное ядро. .  Функции , заданны  в квадрате , за исключением прямой  t=s, , . Пусть r=-спектральный радиус матричного интегрального оператора .Тогда
,   где  p>0, q>0,  1/p+ 1/q=1,
где                 
                            .                                                  (1)
Доказательство.
Рассмотрим систему
.                                      (2)
Так как — спектральный радиус оператора А, то система линейных однородных уравнений относительно неизвестных    имеет  ненулевое решение. Выберем решение так, чтобы
                                                                            (3)
Представим                                                        (4)
Вычтем почленно из (2) тождество (4):
                                   . 
Так как , то , таким образом:

Применяя неравенство Гельдера для интегралов, и учитывая, что ,
получим:
 =
=
согласно (4)
=
учитывая (1) и (3)
.
 Возведем обе части в степень q.
, тогда

Проинтегрируем по t
 ,
учитывая (3) получим:
            или              
Теорема доказана.
Докажем еще одну теорему, которая является неравенством Фарнелла для интегральных операторов.
Теорема 2.Пусть -непрерывное матричное ядро . Тогда функции , заданные для , порождают действующий и вполне непрерывный оператор в пространстве 
.
 Пусть -спектральный радиус матричного интегрального оператора   в пространстве,
, ,
докажем, что
.
Для доказательства теоремы рассмотрим систему
.                                   (5)
Эта система имеет ненулевое решение. Выберем решение так, чтобы
                                                                         (6)
Умножим обе части уравнения (5) на . Получим
                                   .                           (7)
С учетом (5)        ,                 
тогда (7) запишется следующим образом:
                                          (8)
Умножим обе части выражения (8) на , получим
                   .            (9)
Проинтегрируем обе части выражения (9) по
.
Тогда

Учитывая (6), получим

Из неравенства Гельдера   для
получим


.
Следовательно,
.
Теорема доказана.
Получена еще одна оценка сверху для спектрального радиуса интегрального оператора.
§3. Новые оценки спектрального радиуса линейного
положительного оператора
В данном параграфе предлагается дальнейшее развитие оценок спектрального радиуса линейного положительного оператора, заключающееся в том, что сравнивается значение элемента  со значением комбинации элементов , где  - специальным образом подобранный оператор, причем для получения оценок  достаточно знать оценку , а не его точное значение. Результаты, полученные в этом параграфе, являются продолжением работ [11], [18], [26], [29].
Справедлива следующая теорема.
Теорема 1. Пусть  воспроизводящий и нормальный конус,  и — линейные положительные операторы, причем они коммутируют, т.е. . Пусть  - неразложим. Если для некоторого  и  выполняется неравенство
,                                                  (1)
то
.
Если для  верна оценка , тогда
.                                            (2)
Доказательство.
Существует такой функционал , что
 и ,
где — собственное значение оператора , соответствующее функционалу . Применим функционал  к (1):
,
,
.
Т.к. оператор — неразложим, то данный функционал принимает положительные значения на ненулевых элементах конуса  [29]. Поэтому
.
Заменив  на , мы только усилим неравенство (т.к. ):
.
Первое утверждение теоремы доказано. Из последнего неравенства очевидным образом следует неравенство (2). Теорема доказана.
Пример 1. Рассмотрим матрицу  и вектор  пространства , а также матрицу , коммутирующую с матрицей :
;   ; ;  ,
поэтому , и . Все условия теоремы 1 выполнены, следовательно , т.к. , то имеем . В то время как .
При   получим известную теорему  Стеценко В.Я. [20]:
Пусть оператор  неразложим и , K — телесный и нормальный конус, и для некоторого элемента  выполняется неравенство , тогда справедливо неравенство .
Эта теорема является частным случаем теоремы 1.
Кроме того, заметим, что использование коммутирующего с оператором  оператора  способствовало уточнению оценки . Действительно, если в примере 1 предположить , то , и тогда , а эта оценка намного хуже оценки .
Аналогично теореме 1 доказывается следующая теорема.
Теорема 2. Пусть  - воспроизводящий и нормальный конус,  и  - линейные положительные операторы, причем они коммутируют, т.е. . Пусть  - неразложим, и для некоторого  выполняется неравенство
,
где , . Тогда
.
Если для  верна оценка , тогда
.
Теорема 3. Пусть  воспроизводящий и нормальный конус,  и  линейные положительные операторы, причем они коммутируют, т.е. . Пусть  - неразложим. Пусть для некоторого  выполняется неравенство
,                        (3)
где , . Тогда верна оценка:
,
где  - наименьшее позитивное собственное значение оператора .
Доказательство.
Применим  к (3) функционал  из теоремы 1:
.
Т.к. оператор — неразложим, то данный функционал принимает положительные значения на ненулевых элементах конуса  [29]. Поэтому
.
Т.к. , то заменив в последнем неравенстве  на , только усилим его:
,
таким образом . Теорема доказана.
Следствие (к теореме  3). Если в условиях теоремы 3 предположить, что оператор  также неразложим, тогда будет верна оценка:
.
Теорема 4. Пусть  воспроизводящий и нормальный конус,  и  линейные положительные операторы, причем они коммутируют, т.е.. Пусть  - неразложим, и пусть для некоторого  выполняется неравенство
,
, . Если спектральный радиус оператора  известен и , то
.
Если для  известна оценка  и выполняется неравенство , тогда имеет место оценка: .
Доказательство.
Как и при доказательстве теоремы 1, придем к неравенству
.                                        (4)
Предположим, что , тогда, усиливая неравенство (4), получим
,
,
что противоречит предположению. Остается принять, что . Усиливая неравенство (4), получим
       .
Первое утверждение теоремы доказано. Заменяя в неравенстве (4)  на большее число , повторим рассуждения и получим второе утверждение теоремы. Теорема доказана.
Теорема 6. Пусть  воспроизводящий и нормальный конус,  и  линейные положительные операторы, причем они коммутируют, т.е. . Пусть  - неразложим и для некоторого  выполняется неравенство
,
, . Если наименьшее позитивное значение  оператора  известно и , то
.
Если для  известна оценка , и выполняется неравенство , тогда имеет место оценка: .
Доказательство теоремы 5 вполне аналогично доказательству теоремы 4.
Следствие (к теореме 5). Если в условиях теоремы 5 предположить, что оператор  также неразложим, спектральный радиус  оператора  известен и , тогда верна оценка:
.
Теорема 6. Пусть  воспроизводящий и нормальный конус,  и  линейные положительные операторы, причем они коммутируют, т.е. . Пусть  - неразложим. Если для некоторого  выполняется неравенство
,
где ,  и , то верна оценка:
.
Доказательство.
Аналогично тому, как это было сделано в теореме 1, приходим к неравенству
,                              (5)
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.