Реферат по предмету "Физика"


Нетрадиционные способы и источники получения энергии

--PAGE_BREAK--В период до 2015 г. на основе полученного опыта целесообразно создание и освоение 1 или 2 СЭС мощностью 10…20 МВт.
Космические солнечные системы. Огромное количество солнечной энергии, приходящей на Землю (приблизительно 0,15 МВтЧч на 1 м2 поверхности в год), затруднительно использовать из-за низкой плотности солнечной радиации и зависимости ее интенсивности от облачности и времени года. В настоящее время имеются технические возможности для создания СЭС, размещаемых на искуственных спутниках Земли с геостационарной орбитой. В этом случае солнечная энергия будет аккумулироваться непрерывно. Передача энергии на Землю должна осуществляться по сверхвысокочастотному (СВЧ) каналу с длиной волны 10 см (частота 2,4 ГГц).
Космические солнечные электростанции могут быть спроектированы на полезную электрическую мощность 3…20 ГВт. Размеры КСЭС с выходной мощностью 5 ГВт оцениваются следующим образом:
 суммарная поверхность батареи …………… 20 км2;
 диаметр передающей антенны ……………… 1 км2;
 диаметр приемной антенны ………………… 7 …12 км.
Солнечная батарея КСЭС может построена на ФЭП двух типов:
 на основе кремния:
 на основе арсенида галлия.
При использовании указанных ФЭП общая масса КСЭС мощностью 5 ГВт составит более 12000 тонн. Следует отметить, что кремниевые преобразователи достаточно дороги, так как производство монокристаллов высокой чистоты очень трудоемко. Галлиевые преобразователи имеют более высокий КПД, однако их применение ограничивается низким уровнем запасов галлия в природе, а также трудностью его добычи и переработки.
Кроме фотоэлектрического способа получения электроэнергии на КСЭС разрабатываются проекты космических станций с другими принципами преобразования энергии:
 газо и паротурбинные:
 на основе МГД – генераторов;
 термоэмиссионные;
 термоэлектрические.
Наибольшее распространение получили проекты, использующие традиционные паро- и газотурбинные замкнутые схемы. Основные их достоинства состоят в более высоком, чем у ФЭП коэффициенте полезного действия (до 40% против 14–16%), хорошо разработанных технологиях, наличии развитой промышленной базы для изготовления основных агрегатов.
Процесс производства ЭЭ включает следующие стадии. С помощью концентраторов в форме параболоидов вращения собирается солнечный свет и направляется на теплоприемник. В качестве рабочего тела используется инертный газ (например, аргон), который при температуре 1000…1300 К вращает турбину. Отработанный газ охлаждается в рекуператоре и вновь подается в теплоприемник. Общий КПД всей установки составляет 18%. Удельная масса на 1 кВт мощности равна 12 кг, что почти в два раза меньше чем у КСЭС с ФЭП. Основной недостаток рассмотренной схемы состоит в наличии вращающихся узлов, что снижает эксплуатационную надежность установки, а это в условиях космоса имеет первостепенное значение. Данный недостаток может быть устранен путем применения МГД – генераторов. При этом из-за низких космических температур упрощается применение сверхпроводящих обмоток электромагнитов, а почти абсолютный вакуум облегчает условия герметизации.
Стадию преобразования солнечной энергии в электрическую можно исключить путем преобразования света в энергию монохроматического излучения (излучение одной определенной частоты). Однако, данный способ пока недостаточно хорошо проработан.
Для преобразования выработанной в космосе энергии в СВЧ излучение предполагается использовать усилители двух типов:
 амплитроны – усилители со скрещенными полями;
 клистроны – усилители на линейных пучках.
Применяемая длина волны (10–12 см) достаточно велика, что приводит к существенной расходимости пучка. Поэтому требуется сооружение наземных приемных антенн (ректенн), занимающих большие площади. Для приема 5 ГВт требуется ректенна с диметром до 12 км. Кроме приема СВЧ излучения, ректенна должна преобразовывать его в постоянный ток, для чего требуются миллионы диодных элементов. При этом, общая площадь ректенны достигает 250–270 км2. Для того чтобы исключить изъятие таких огромных площадей из землепользования, предполагается приподнимать решетку ректенны над земной поверхностью.
Недостаточно проработаны в настоящее время экологические аспекты строительства и эксплуатации КСЭС. Например, возможны неблагоприятные изменения картины распределения заряженных частиц в атмосфере из-за воздействия СВЧ – пучка, что приведет к возникновению помех в радиосвязи. Кроме того, СВЧ – излучение интенсивно поглощается молекулами воды и кислорода, что может вызывать локальный нагрев воздуха.
Приливные электростанции
Приливные электростанции (ПЭС) выгодно отличаются от речных ГЭС тем, что их работа определяется космическими явлениями и не зависит от природных условий, определяемых целым рядом случайных факторов. Ритмично, со строгой закономерностью, в одних местах каждые 12 ч 25 мин, а в других через 24 ч 50 мин могучая волна океанского прилива наступает на берег. Вызванный взаимодействием космических сил системы Земля-Луна-Солнце прилив плавно поднимает уровень моря у берега в зависимости от положения на планете, формы русла и береговой линии от нескольких сантиметров до многих метров. Наивысший прилив (19 м) наблюдается на берегах залива Фанди (Канада). У северо-западных берегов США он достигает 10 м, в Южной Америке (Аргентина, Галегос) 11 м, в Англии (Бристоль) и Франции (Сен-Мало) 14 м. Значителен подъем прилива (10 м и выше) у берегов Австралии, Индии, Китая и Кореи. У берегов РФ высокие приливы наблюдаются в Пенжинском (до 13,4 м), Тугурском и Мезенском (до 10 м) заливах в Охотском и Белом морях. На Мурманском побережье прилив достигает 7,2 м. Мировой энергопотенциал морского прилива оценивается в 1 млрд. кВт, что в 2,5 раза больше, чем мощность всех существующих ГЭС на планете.
Главный недостаток ПЭС – неравномерный график работы. Неравномерность приливной энергии в течение лунных суток и месяца, отличных от солнечных, не позволяет систематически использовать эту энергию. Прилив в зависимости от видимости лунного диска от полнолуния к новолунию в течение 14,2 суток уменьшается в 3 раза. Кроме того, если морской залив или бухту отгородить плотиной и в этой плотине поставить турбину (рис. 20а), то при опускании уровня моря вследствие отлива напор, действующий на турбину, образуется не сразу, а через некоторый промежуток времени , в течение которого затворы турбин приливной электростанции закрыты (рис. 20б). В момент , когда напор, определяемый разностью уровней воды в заливе и море, достигнет значения технического минимума, открываются затворы и турбины начинают работать. Так будет продолжаться до момента, когда напор вновь достигнет минимального значения . После выравнивания уровней в бассейне и море (момент ) затворы турбин закрываются. Поэтому уровень воды в заливе будет сохраняться неизменным, а в море в результате прилива повышаться. Этот процесс будет продолжаться до момента , когда снова возникает необходимый напор и турбины смогут начать работу.
Таким образом, в интервале времени и в других аналогичных интервалах агрегаты ПЭС не выдают мощности, а в остальные периоды отлива и прилива она изменяется от нуля до некоторого максимального значения и вновь снижается до нуля (рис 20в). По этому принципу работает ПЭС, построенная по простейшей однобассейновой схеме двустороннего действия.
В условиях современной энергетики, когда в энергосистемах имеются большие возможности маневрирования генерирующим оборудованием, от приливной электростанции не требуется непрерывная работа. Гораздо важнее получить от нее мощность в часы наибольшего потребления, что позволит обеспечить более равномерную работу нуждающихся в этом тепловых и атомных электростанций. При этом реализуется очень ценное качество приливной энергии, заключающееся в неизменности ее среднемесячного значения в любой сезон.
Реализация этого качества приливной энергии может быть достигнута, если построить ПЭС по простой однобассейновой схеме двустороннего действия, обеспечивающей наибольшую выработку.
Другим серьезным препятствием для широкомасштабного сооружения ПЭС является дороговизна их строительства вследствие необходимости возведения сооружений на значительных глубинах при воздействии морской стихии. Для преодоления этого недостатка применяют при строительстве ПЭС наплавной способ, позволяющий построить здание ПЭС в благоприятных условиях приморского промышленного центра и в готовом виде со смонтированным оборудованием доставить его водным путем в труднодоступный с суши створ.
На ПЭС устанавливают обратимые капсюльные агрегаты (рис. 21), которые могут работать в генераторном режиме во время приливов и отливов, так и в насосном режиме для закачивания воды в бассейн с целью обеспечения достаточного напора.
Природные условия России позволяют построить ПЭС с суммарной установленной мощностью около 150 тыс. МВт. Многолетние научные исследования привели к выводу о том, что возможно строительство нескольких ПЭС:
 Лумбовской в Баренцевом море мощность 320 МВт (в другом варианте 672 МВт);
 Мезенской в Белом море мощностью 15200 МВт и выработкой электроэнергии 42000 ГВт ч в год;
 Тугурской мощностьк 6800 МВт и выработкой электроэнергии 16200 ГВт* ч в год;
 Пенжинской мощность 21400 МВт (в другом варианте 87400 МВт) в Охотском море.
В течение нескольких десятков лет в бывшем СССР велись научные и проектные работы по приливной энергетике. К настоящему времени выполнены проработки по Лумбовской, Пенжинской, Мезенской и Тугурской ПЭС.
С 1968 г. работает экспериментальная Кислогубская ПЭС мощностью 400кВт (рис. 22). Выполнено технико – экономическое обоснование по опытно – промышленной Кольской ПЭС мощностью 40 МВт, которая предназначалась для проведения натурных испытаний конструктивных решений по капсульному агрегату для мощных Тугурской и Мезенской ПЭС.
За рубежом работают три приливных станции:
 ПЭС Ранс мощностью 240 МВт во Франции (построена в 1967 г. и имеет 24 агрегата).
 ПЭС Цзянсян мощностью 32 МВт в Китае (пуск шести агрегатов осуществлен в период 1980…1985 гг.).
 ПЭС Аннаполис мощностью 196 МВт в Канаде (построена в 1984 г., имеет 1 агрегат).
Кроме того, в Китае построены десятки микро и мини ПЭС, являющихся элементами комплексов для осуществлении проектов обводнения, осушения, судоходства и т.д.
На Мезенской и Тугурской ПЭС предусмотрена установка соответственно 800 и 420 агрегатов. Единичная мощность агрегатов Мезенской ПЭС 19 МВт. Это капсульные агрегаты с диаметром рабочего колеса турбины 10 м с двухсторонним режимом работы. Единичная мощность агрегатов Тугурской ПЭС 16,2 МВт. Подобные типы агрегатов уже разработаны зарубежными фирмами. Большое количество агрегатов на ПЭС – серьезное препятствие для их сооружения, так как для создания такого числа агрегатов необходимо задействовать всю энергетическую промышленность страны.
Серьезное препятствие для создания описанных ПЭС – их исключительно большая установленная мощность, не имеющая аналогов в мире, и связанный с нею значительный объем капиталовложений.
Геотермальные электростанции
На геотермальных электростанциях (ГеоТЭС) в качестве источника энергии используется теплота земных недр. На основе геофизических исследований установлено, что температура земной коры возрастает на 1 °С при увеличении глубины на 30–40 метров. Таким образом, на глубине 3–4 км достигается температура кипения воды, а на глубине 10–15 км температура породы составляет 1000–1500 °С. В некоторых районах температура горячих источников достаточно высока в непосредственной близости от поверхности.
Источником геотермальной теплоты является горячая магма, которая проникает из недр Земли и в некоторых местах близко подходит к поверхности. Источники глубинной теплоты размещаются, как правило, вблизи границ литосферных плит и в районах повышенной геологической активности. Месторождения геотермальной энергии разделяются на шесть видов:
 гидротермальные системы (парогидротермы), залегающие на глубине до 3 км, рис. 23;
 месторождения низкотемпературной геотермальной теплоты (100…200 °С);
 системы аномально высокого давления (глубина до 10 км);
 сухие горячие горные породы (глубина до 10 км);
 магма (на глубине до 10 км).
В настоящее время широкое применение находят месторождения первого типа.
При освоении геотермальных месторождений возникают сложные проблемы, препятствующие широкомасштабному использованию этого вида энергии. Во-первых, температура геотермальных флюидов гораздо ниже, чем у пара, вырабатываемого на обычной ТЭС, поэтому необходимо принимать специальные меры, направленные на эффективное использование энергии. Во-вторых, геотермальные воды содержат большое количество растворенных минеральных веществ, имеющих высокую химическую агрессивность. При попадании этих веществ на лопатки турбины происходит их быстрое разрушение. Кроме того, на поверхностях трубопроводов и другого тепломеханического оборудования происходит значительное солеотложение. Поэтому необходимы специальные меры для предварительной очистки теплоносителя от вредных примесей.
Имеют место и значительные экологические проблемы:
 вероятность стимулирования землетрясений в результате гидравлического разрыва пласта;
 просадка почвы вследствие отбора воды;
 сильный шум, создаваемый из-за того, что при выходе на поверхность происходит резкое падение давления геотермального флюида;
 выброс вредных газов (двуокиси углерода СО2 и сероводорода );
 трудности с ликвидацией отработанного рассола.
ГеоТЭС достигли в настоящее время уровня достаточной конкурентоспособности и широко используются в ряде стран, обладающих ресурсами геотермальной энергии. В основном это ГеоТЭС на парогидротермах (рис. 23). В мире сегодня работают более 170 блоков ГеоТЭС суммарной мощностью более 7000 МВт, технология и оборудование ГеоТЭС на парогидротермах в основном разработаны. Вместе с тем на всех действующих ГеоТЭС возникают специфические проблемы экологии, солеотложений, коррозии металлических частей основного оборудования. Около 40% вынужденных аварийных остановов турбин на ГеоТЭС происходит из-за заноса солями первых двух ступеней сопловой решетки турбины и коррозионно-эрозионного разрушения последней ступени турбины. Кроме того, в Японии неоднократно происходили остановы ГеоТЭС по требованию природоохранных органов в связи с загрязнением окрестностей станций сероводородом и солевыми геотермальными водами.
Россия располагает большими потенциальными запасами геотермальной энергии в виде парогидротерм вулканических районов и энергетических термальных вод с температурой 60…200 °С в платформенных и предгорных районах. До последнего времени из за дешевизны органического топлива использование этих запасов было незначительным (Паужетская ГеоТЭС на Камчатке мощностью 11 МВт, системы геотермального теплоснабжения на Северном Кавказе и Камчатке с годовой экономией топлива около 1 млн. т.у.т.). По мере приближения цен на топливо к мировым рентабельность геотермальной энергетики повышается и появляется возможность строительства мощных ГеоТЭС.
В настоящее время применяются два основных способа использования геотермальной энергии:
 ГеоТЭС на парогидротермах.
 Двухконтурные ГеоТЭС, использующие низкотемпературное (100–200 °С) тепло термальных вод.
Электростанции первого типа строятся по одноконтурной и двухконтурным схемам. Одноконтурная ГеоТЭС работается так же, как и обычная ТЭС. Основное отличие заключается в том, что рабочее тело перед подачей на лопатки турбины проходит сложную систему очистки от агрессивных примесей.
Для кардинального решения проблем экологии, солеотложений, коррозии, эрозии разработана двухконтурная технологическая схема (рис. 25), согласно которой в комплект оборудования добавляется парогенератор. На «горячей» стороне парогенератора конденсируется геотермальный пар; на «холодной» стороне генерируется вторичный пар, полученный из питательной воды, химически очищенной традиционными методами. При этом используется обычная паровая турбина. В двухконтурной схеме за счет отсутствия газов во вторичном паре будет получен более глубокий вакуум в конденсаторе и этим будет компенсирована потеря потенциала геотермального пара парогенераторе.
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Анализ дебиторской и кредиторской задолженности 3
Реферат Анализ себестоимости продукции предприятия и резервы ее снижения 2
Реферат Анализ СООО Украина
Реферат Анализ финансово хозяйственной деятельности предприятия
Реферат Расчёт и проектирование конструкций балочной клетки
Реферат Анализ дебиторской и кредиторской задолженности 2
Реферат Мифология как исторический тип мировоззрения
Реферат Прием иностранных гостей
Реферат Анализ бухгалтерского баланса 3
Реферат Анализ СООО Украина 2
Реферат Анализ и диагностика финансово-хозяйственной деятельности предприятия 2
Реферат Анализ состава и технического состояния основных производственных фондов предприятия
Реферат Основы рынка ценных бумаг
Реферат Социологическое исследование различных аспектов трудовой занятости молодежи
Реферат «Современные аспекты управления малым предприятием»