«Общая теория систем» на Practical Science : http://www.sci.aha.ru Ю.А. Урманцев ОБЩАЯ ТЕОРИЯ СИСТЕМ: СОСТОЯНИЕ, ПРИЛОЖЕНИЯ И ПЕРСПЕКТИВЫ РАЗВИТИЯ К ОТС нас привела загадка изомерии. Как известно, первоначально в науке, именно в химии, изомерией называли явление, заключающееся в существовании двух и более молекул одного состава, но различного строения. Таковы, например, AgOCN и AgCNO, изучение которых в 1822—1830 гг. привело Ю. Либиха, Ф. Велера и Я. Берцелиуса к открытию химической изомерии. Сто лет спустя, в 1921 г., О. Ган обнаружил ядерно-физическую изомерию, а 35 лет спустя, в 1956—1957 гг., при исследовании растений, животных, микроорганизмов нами была открыта биологическая изомерия. В частности, были зафиксированы восемь видов венчиков цветков льна-кудряша, различающихся строением и физиолого-биохимическими свойствами и тем не менее имеющих один и тот же состав — пять ничем не отличающихся друг от друга лепестков [89; 90]. В ходе детального изучения биоизомерии было выявлено поразительное совпадение (вплоть до самых мельчайших деталей) основных эмпирически обнаруженных классов изомерии молекул химических соединений и, казалось бы, резко от них отличных венчиков и листьев растений. Закономерно встал вопрос: каковы причины и границы столь разительного изомерий-ного изоморфизма? В поисках ответа мы, естественно, обратились к ОТС, в частности ОТС Л. Берталанфи [8] и М. Месаровича [61; 63]. Однако это оказалось безрезультатным, и нам пришлось самостоятельно исследовать явление структурного изоморфизма объектов неживой и живой природы. Начиная с 1968 г. в ряде публикаций [87; 88; 89; 91—93; 102] мы разрабатывали собственный вариант ОТС, что и позволило ответить на поставленные вопросы. Более того, впервые удалось показать, что изомеризация представляет собой одну из четырех основных форм изменения материи, что изомерия непосредственно связана с генезисом, симметрией, а также составом — структурой — свойствами объектов природы. Еще до построения ОТС мы считали, что на «выходе» ОТС должна дать в руки исследователей своеобразный перечень того: 1) что должно быть, 2) что может быть, 3) чего не может быть у любых систем — материальных и идеальных, т. е. предполагалось, что данная теория должна была быть всеобщей. Но согласно формально-логическому закону обратного отношения объема и содержания понятия, возникала реальная опасность построения теории, которая в силу ее претензий на всеобщность ограничивалась бы лишь тривиальными утверждениями. Эти опасения высказывались В. Н. Садовским [72], К. Боулдингом [10], М. Месаровичем [61]. Так, видимо, и случилось бы, если бы мы пошли по формально-логическому пути, образуя все более общие понятия и теории посредством отбрасывания «второстепенных» признаков. Однако помимо этого традиционного способа существует противоположный способ образования общих понятий, теорий, состоящий в объединении, прибавлении новых признаков при сохранении всего накопленного человечеством знания в рассматриваемом отношении. Так возникли, например, современные понятия числа и теория чисел; понятия массы, энергии, пространства, времени и общая теория относительности. Даже в формальной логике, как отмечал Б. В. Плесский, исчисление высказываний, будучи частным случаем более общих логических систем исчисления предикатов I и II порядков, безусловно, уступает им и по содержанию и по объему. Аксиоматика узкого исчисления предикатов включает все аксиомы исчисления высказываний и содержит еще ряд специфических аксиом. Расширение объема этой теоретической дисциплины сопровождалось не исключением, а добавлением новых элементов в ее содержание [69]. В этой связи уместно напомнить высказывание Гегеля из «Науки логики»: «... понятие сохраняется в своем инобытии, всеобщее в своем обособлении...; на каждой ступени дальнейшего определения всеобщее поднимает выше всю массу своего предшествующего содержания и не только ничего не теряет вследствие своего диалектического поступательного движения, не только ничего не оставляет позади себя, но и уносит с собой все приобретенное и обогащается и уплотняется внутри себя» [20]. 39 Возможность развития понятий и теорий не только «аналитически-общих» («формально-общих») в связи с разработкой ОТС обстоятельно обоснована В. С. Тюхтиным [5; 77; 82; 83]. Он доказал, что А. И. Уемову и нам удалось избежать «парадокса тривиальности» при создании ОТС и при определении ее центрального понятия «система». Диалектическая теория развития требовала построения ОТС как теории возникновения, существования, изменения и развития систем природы, общества и мышления. Поэтому при создании ОТС главной ее задачей стала формулировка основных ее законов в виде законов системогенеза — преобразования и развития систем. В связи с этим ОТС должна была иметь не только гносеологический, логико-методологический, но и онтологический статус. Между тем Р. Акофф [3; 4] и В. Н. Садовский [72; 73] полагали, что ОТС возможна не как предметная теория, (онтологизированная), а как некая метатеория. Вряд ли нужно доказывать, что, будучи лишенной онтологической основы, ОТС как метатеория не смогла бы выполнять методологическую функцию. И по-видимому, не случайно, что именно избранный нами путь позволил создать ОТС и в виде особой, системной методологии, т. е. совокупности требований, которые должны выполняться при исследовании систем любой природы. Далее, исходя из диалектического метода, необходимо было построить такую ОТС, с помощью которой можно было делать 1) обобщения, 2) предсказания, 3) давать объяснения, 4) ставить новые вопросы, 5) исправлять ошибки, 6) проводить четкие связи с важнейшими научными теориями и принципами, 7) осуществлять интеграцию, экономную «свертку» накопленных знаний на общем для науки языке, 8) наконец, ОТС должна была быть истинной и правильно построенной. В результате мы подошли к критериям истинности и правильности. В качестве первого мы приняли не согласие с интуицией, разной у разных исследователей, а соответствие ОТС реальным системам: несоответствие им послужило бы сигналом к пересмотру предлагаемой концепции, соответствие — поводом для дальнейшего продвижения по избранному пути. Что касается критериев правильности, то за таковые мы взяли метаматематические критерии полноты, непротиворечивости, независимости, в частности воспользовались критерием относительной непротиворечивости. Использование этих критериев позволило доказать предложения ОТС посредством не только формально-логических, но и онтологических доводов (как в естество- и обществознании). Что касается критериев «обобщающей», «эвристической» (предсказательной), «объясняющей», «вопрошающей», «коммуникационной», «интегрирующей», методологической возможностей (функций) ОТС, то в качестве таковых мы приняли наличие либо отсутствие в теории этих возможностей. Таким образом, наш подход к построению ОТС существенно отличается от предлагавшихся до сих пор и имевших фактически конвенционалистский характер (кроме ОТС А. И. Уемова [см.: 85; 86]. Далее, вслед за Р. Акоффом и М. М. Топером мы полагали что ОТС не должна начинаться с изоморфизма, а точнее, с разнообразных соответствий в природе; ее задача — подвести к ним, и не только к изоморфизму, но и к необходимому его дополнению — полиморфизму. Противоположная точка зрения, ориентирующаяся только или преимущественно на поли- или изоморфизм, является односторонней, по существу метафизической и потому приводит к построению негармоничных теорий систем. В них, например, идея полиморфизма — многообразия композиций системы — не играет сколько-нибудь заметной роли. Вот почему одна из главнейших проблем системного подхода — выявление систем, к которым принадлежит исследуемый объект, — как ни парадоксально, вообще не ставилась системологами. Идею важности построения внутренне гармоничной ОТС с должным вниманием как к изо-, так и к полиморфизму мы обосновывали неоднократно [см.: 91; 92]. И все же, по-видимому, эта идея еще недостаточно освоена системологами. Так, в книге Л. И. Уемова «Системный подход и общая теория систем» (1978) читаем, что «Ю. Урманцева интересуют прежде всего (?! — У. Ю.) симметрия и полиморфизм» и что «математический аппарат, применяемый Ю. Урманцевым, относится по существу к отношениям полиморфизма и симметрии...» [86. С. 142]. Именно поэтому мы сочли необходимым еще раз остановиться на проблеме поли- и изоморфизма в связи с построением общей систем.1. Предпосылки ОТС Какими должны быть предпосылки ОТС? Очевидно, теория, претендующая на предельную общность (всеобщность), должна исходить из всеобщих предпосылок, а таким требованиям отвечают философские категории и законы. Поэтому, если мы хотим построить предельно общую теорию систем, она должна возводиться на фундаменте предпосылок, имеющих философский характер. Для не полностью формализованной ОТС мы выбрали следующие пять аксиоматических условий: (1) существование, (2) множество объектов, (3) единое, (4) единство, (5) достаточность. При выборе условия (1) мы исходили из того, что существование является фундаментальной характеристикой системы. В соответствии с диалектическим материализмом существование мы сводим к трем его формам: 1) пространственной — «простиранию»; 2) временной — к «длению — бренности»; 3) динамической — «изменению + сохранению». Из них особенно важна третья форма, т. е. движение. (Подробнее о содержании терминов «простирание» и «дление — бренность» см.: 100; 101.) Условие (2) мы понимаем как множество самых различных объектов — материальных и идеальных. Фактически это «мир», каков он есть сам по себе, в его объективном существовании. «Объектом» мы называем любой предмет как объективной, так и субъективной реальности. Условие (2) приходится принимать во внимание потому, что невозможно построить систему, не имея нужных для этого объектов как своего рода строительных материалов. Условие (3) — «единое» — представляет собой некоторое одинаковое для всех композиций («объектов-систем») данной системы («системы объектов данного рода») свойство (или признак), логически выступающее основанием классификации. В дальнейшем такие признаки мы будем называть Ai признаками. Необходимость учета условия (3) объясняется тем, что данную i-тую систему приходится строить из объектов лишь множества {Мi(0)}, выделенного по основанию Ai(0) и далее называемого множеством первичных элементов. Условие (4) — «единство» — понимается двояко: и как такое отношение (в частном случае — взаимодействие) между «первичными» элементами, благодаря которому возникают объекты-системы, обладающие уже и новыми, целостными свойствами — аддитивными, неаддитивными, аддитивно-неаддитив-ными, и как отдельный объект — объект-система. Условие (4) имеет фундаментальное значение для существования систем. Категория единства важна для ОТС, так как благодаря ей конкретизируется проявление основного закона диалектики — закона единства и «борьбы» противоположностей (см. об этом подробнее параграф 13 данной главы). Условие (5) — «достаточность» — понимается в том же смысле, какой имеют в виду, когда говорят о необходимости достаточного количества материала и необходимых условий для сооружения какого-либо объекта. Без достаточного количества «первичных» элементов и достаточных оснований построение и существование какой бы то ни было системы невозможны. В сущности условие (5) совпадает с «принципом достаточного основания» Г. В. Лейбница, который писал в «Монадологии», что «ни одно явление не может оказаться истинным или действительным, ни одно утверждение справедливым без достаточного основания, почему дело обстоит так, а не иначе...» [42. С. 347]. Предпосылки (1) — (5) и правила логики позволяют получить все определения и предложения ОТС.2. Вывод и определение понятий «объект-система», «пустая (нуль) система» К понятию объекта-системы мы пришли следующим образом. Пользуясь условиями (1) — (5), мы можем утверждать, что «существует множество объектов». Это означает, что мы образовали комбинацию (1) (2), которая сводится к утверждению о существовании так называемого универсального множества {U}, принятого в теории множеств. Онтологически же это суждение совпадает с суждением о существовании мира. Далее принятые условия (предпосылки) позволяют утверждать, что «существует множество объектов единых», что равносильно образованию комбинации (1) (2) (3). Этому размещению отвечают находимые как в объективной, так и в субъективной реальности специфические подмножества объектов {Мi(0)}, выделенные согласно признакам Аi(0) из существующего бесконечного множества объектов мира, т. е. из {U}. Таким образом, любое {Мi(0)} равно или содержится в {U}: {Мi(0)} {U}. Такие подмножества — «множества первичных элементов» — могут быть конечными или бесконечными, размытыми или неразмытыми, одинаковой или разной мощности; они могут быть одно-или разноэлементными, т. е. иметь простой или сложный состав. ^ Примеры множеств «первичных» элементов: 1) совокупность атомообразующих элементарных частиц — протонов, нейтронов, электронов, которым соответствует множество признаков {Aa(0)} (индекс «a»—от слова «атом»); 2) совокупность «точек», «прямых», «плоскостей», позволяющих построить кон-цептуальное пространство и выделенных согласно признакам {Aп(0)} (п -от слова «пространство»); 3) совокупность отражений в плоскостях — {}, позволяющих получить все классические симметрические преобразования, выделенные согласно признакам {Aс(0)} (с — от слова «симметрия»). Теперь в соответствии с предпосылками образуем комбинацию (1) (4) (2) (3) — «существует единство множества объектов единых», или, что то же, «существует единство «первичных» элементов». Эта комбинация означает, что выделенные по признакам a Аi(0) объекты каждого существующего специфического множества объектов {Мi(0)} находятся в известных — i-тых — отношениях единства Ri. Так, электроны, протоны, нейтроны могут вступить и вступают в атомообразующие отношения— особого рода взаимодействия — r {Ra}; «точки», «прямые», «плоскости» могут находиться, а в известных условиях и находятся в отношениях r {Rп}: «лежит на ...», «между», «конгруэнтны», «параллельны» .. .; плоскости отражения могут, согласно отношениям r {Rc}, пересекаться под всевозможными углами. В силу двоякого смысла понятия «единство» комбинация (1) (4) (2) (3) означает и «существование нового объекта» как единства существующего множества единых объектов. В самом деле, единство протонов, нейтронов, электронов — это атом; единство «точек», «прямых», «плоскостей» суть концептуальное пространство; единство плоскостей отражения — симметрическое преобразование. Наконец, необходимо учесть, что отношения единства Ri, где бы они ни возникали (в природе или в уме человека), должны подчиняться требованиям определенных законов: атомообразующие взаимодействия — законам атомной физики z {Za}, пространствообразующие — аксиомам связи, порядка, конгруэнтности, непрерывности, параллельности и следующим из них теоремам z {Zп}, создающие симметрию — аксиомам теории групп z {Zс}. В силу сказанного правомерно: 1) все объекты, возникающие благодаря отношениям единства Ri в соответствии с условиями Zi из ряда объектов {Мi(0)}, назвать композициями или k; 2) участвующие в образовании композиций объекты из {Мi(0)} — «первичными» элементами»; 3) {Мi(0)}— i-ми множествами «первичных» элементов; 4) законы единения (условия, ограничивающие отношения единства) — законами композиции, или Zi. Теперь можно дать следующее определение объекта-системы.Определение 1. Объект-система (OS) — это композиция, или единство, построенное по отношениям (в частном случае — взаимодействиям) r множества {Ros} и ограничивающим эти отношения условиям z множества {Zos} из «первичных» элементов m множества {Мos(0)}, выделенного по основаниям а множества {Aos(0)} из универсума {U}. При этом множества {Zos}; {Zos} и {Ros}; {Zos} и {Ros) и {Aos} могут быть пустыми или содержать один, два, ..., бесконечное число одинаковых или разных элементов.Предложение 1. Любой объект О есть объект-система (OS). Справедливость этого утверждения следует из определения 1, согласно которому объект, состоящий даже из одного «первичного» элемента — самого себя, уже есть объект-система. Очевидно, в этом случае множества отношений и законов композиции — пустые, т. е. {Ros}= , {Zos}= . Более того. Важным частным случаем объекта-системы является также пустая, или нуль-система, т. е. система, не содержащая ни одного элемента. Очевидно, в этом случае множества {Aos(0)}, а стало быть, и {Mos(0)}, (Zos), {Ros}—пустые. Кстати, все эти множества — примеры пустых систем. Естественно, и само множество также пример объекта-системы: в этом случае {Zos}= , {Ros}= ,, а {Mos} ,. Поистине «единица» — множество, как и множество — «единица». В зависимости от мощности множеств{Mos(0)}, (Zos), {Ros} объекты-системы могут быть простыми, сложными, сверхсложными. Это различие можно провести по семи основаниям: 1) «первичным» элементам, 2) отношениям единства, 3) законам композиции, а также по 4) элементам + отношениям, 5) элементам + законам, 6) отношениям + законам, 7) элементам +отношениям + законам. Поскольку выделение любого объекта как объекта-системы из среды по «первичным» элементам, отношениям единства, зaконам композиции невольно сопряжено с ограниченностью восприятия действительности, постольку оно сопровождается разрывом его «живых» связей, омертвлением его «деятельности»; поэтому его выделение всегда и относительно. В реальности любой объект-система тысячами нитей (отношениями разных типов и видов) связан с другими объектами-системами, и в зависимости от задач исследования его можно рассматривать и как самостоятельный объект-систему, и как подсистему («первичный» элемент) другого, более сложного объекта-системы. Преувеличенный интерес к этому аспекту взаимоотношений объектов-систем разной сложности, уровня организации с необходимостью привел к развитию концепции об иерархических объектах-системах. М. Месарович, Д. Мако, И. Такахара предложили математическую теорию иерархических многоуровневых систем [62]. Одно время казалось, что любые объекты-системы, более того, любые системы только иерархические. Одной из причин такого неправильного представления послужили весьма распространенные определения систем вообще лишь как неких «целостностей», «единств». Из 34 рассматриваемых В. Н. Садовским [73] и далее анализируемых А. И. Уемовым [86] определений системы вообще 27 из них (т. е. подавляющее большинство) фактически совпадают с представлением о системе как особом «единстве», «целостности», «целостном единстве». Таковы определения Л. Берталанфи, К. Черри, Дж. Клира, А. Раппопорта, В. И. Вернадского, О. Ланге, П. К. Анохина, Л. А. Блюменфельда, И. В. Блауберга, В. Н. Садовского и Э. Г. Юдина. В сущности все эти определения можно рассматривать как весьма приблизительные определения «объекта-системы». Рассмотрим типичный пример. И. В. Блауберг, В. Н. Садовский, Э. Г. Юдин считают, что 1) система представляет собой целостный комплекс взаимосвязанных элементов; 2) она образует особое единство со средой; 3) обычно исследуемая система представляет собой элемент системы более высокого порядка; 4) элементы любой исследуемой системы в свою очередь обычно выступают как системы более низкого порядка [73]. А. И. Уемов справедливо считает, что признаки 3 и 4 «не могут быть включены в определение, поскольку... это не общие признаки всех систем, а лишь «обычно» встречающиеся. Обычно натуральные числа, с которыми мы имеем дело, не очень велики. Но это не значит, что указанный признак следует включать в общее определение натурального числа» [86]. И все же главный недостаток определений системы как (фактически) особого рода объекта-системы заключается в том, что в этих дефинициях не учитывается существование кроме объектов-систем еще и систем объектов-систем одного и того же рода, что служит основной причиной неполноты всех так называемых целостных дефиниций системы. Докажем это, одновременно продолжив построение ОТС.3. Вывод и определение понятия «система объектов одного и того же рода». Закон системности. Алгоритм построения системы объектов данного рода Комбинация (1) (4) (2) (3) — «существует единство множества объектов единых» — означает и «существует объект-система». Но «существует» значит, покоится или изменяется. Покой объекта-системы можно рассматривать как его непрерывный переход (во времени) в себя, а логически — как тождественное преобразование. Впервые это преобразование как системное было эксплицировано А. В. Маликовым. Изменение же объекта-системы всегда приводит к переходу его по определенным законам в один или большее число других объектов-систем. Последние в свою очередь превращаются в третьи, третьи — в четвертые объекты-системы и т. д. Причем если учесть, что движение абсолютно, а покой относителен, то естественно признать такие превращения неизбежными. Возникающие таким способом объекты-системы могут оказаться качественно одинакового или (и) разного рода.Определение 2. Система объектов данного (i-ro) рода — это в сущности закономерное множество объектов-систем одного и того же рода. Причем выражение «одного и того же, или «данного, рода» означает, что каждый объект-система обладает общими, родовыми признаками (одним и тем же качеством), а именно: каждый из них построен из всех или части фиксиро-ианных «первичных» элементов m множества {Мi(0)} в соответствии с частью или со всеми фиксированными отношениями r множества {Ri}, с частью или со всеми фиксированными законами композиции z множества {Zi}, реализованными в рассматриваемой системе объектов данного рода. Как для объекта-системы, так и для системы объектов одного и того же рода множества {Zi}; {Zi} и {Ri}; {Zi}, {Ri} и {Мi(0)} могут быть пустыми или содержать от одного до бесконечного числа элементов. Весьма наглядным примером системы объектов одного и того же рода являются предельные углеводороды СН4, С2Н6, С3Н8, ..., СS-1H2(S-1)+2, CSH2S+2: все они построены из одних и тех же «первичных» элементов С и Н в соответствии с одним и тем же отношением химического сродства и согласно одному и тому же закону композиции вида СnН2n+2 (n = 1, 2, 3, .... S). Примерами систем объектов тех или иных родов могут служить и системы точечных, линейных, плоских, пространственных (классических и неклассических) групп симметрии, системы чисел натурального ряда, периодическая система химических элементов Д. И. Менделеева, гомологические ряды в химии и в биологии, периодическая система венчиков и цветков растений, естественные и искусственные системы растений и животных, система общественно-экономических формаций, лингвистическая система из шести слов-изомеров — сон, нос, нсо, сно, онс, осн. Из определения 2 и приведенных примеров следует, что система объектов одного и того же рода — это закономерная совокупность в общем случае не входящих друг в друга, отдельно сушествующих объектов-систем, а не один объект, устроенный по типу русских матрешек. Уже это доказывает неполноту определений «системы вообще» только как «объекта-системы вообще» и иерархического объекта-системы в особенности. Исключительно широкое распространение систем объектов тех или иных родов в природе, обществе, мышлении дает основание полагать, что существует некий закон, сохраняющий свою справедливость для неживой, живой природы и общества. И такой закон действительно существует.^ Предложение 2. Закон системности. Любой объект есть объект-система и любой объект-система принадлежит хотя бы одной системе объектов данного рода. Справедливость этого закона прямо следует из определений 1, 2 и предложения 1. Заметим, что здесь и далее тем или иным предложениям дается статус «закона ОТС» в том случае, если они, отображая существенные, повторяющиеся особенности систем, имеют фундаментальное онтологическое и гносеологическое значение. Закон системности по охвату реальности — один из абсолютных законов ОТС. Его проявления в природе, обществе и мышлении не могли бы быть осознаны без ясного понимания и онтологического статуса ОТС, без отвечающего требованию полноты определения объекта-системы, без открытия существования принципиально нового вида систем — систем объектов одних и тех же родов. С законом системности связаны два алгоритма: алгоритм представления объекта как объекта-системы (см. параграф 2 настоящей главы) и алгоритм построения системы объектов одного и того же рода, к изложению которого мы и переходим.^ Алгоритм построения системы объектов данного рода. В самом общем виде данный алгоритм можно свести к четырем основным шагам: 1. К отбору из универсума {U} по единому основанию Аi(0) некоторой совокупности «первичных» элементов {Мi(0)}. 2. К наложению на «первичные» элементы определенных отношений единства Ri(1) и к образованию благодаря этому по закону Zi(1) множества объектов-систем (композиций) {Мi(1)}. 3. К такому изменению композиций множества {Мi(1)} и к такому выводу (согласно отношениям Ri(2), Ri(3), .., Ri(S) и законам композиции Zi(2), Zi(3), .., Zi(S) множеств композиций {Мi(2)}, {Мi(3)}, ..., {Мi(S)}, при которых эти композиции оказываются построенными из части или всех «первичных» элементов одного и того же множества {Мi(0)}. 4. К выводу всех возможных для данных Ai, Ri, Zi объектов-систем множества {Мi}, или системы объектов данного — i-го — рода Si = {Мi} = {Мi(0), Мi(1), ..., Мi(S)}. Рис 1. Изомерийно-неизомерийная система циклических венчиков со стыкующимися лепестками (m= 1 6) . Плюсы и минусы при стыках указывают на характер последних; символы в скобках — виды симметрии; m — число лепестков, Р — число изомеров^ Пример биологический. Построим систему циклических венчиков со стыкующимися лепестками [см.: 93].Для этого, согласно шагу 1, по основанию Ал(0) выделим множество первичных элементов {Мл(0)}={л}, содержащее лепестки (индекс «л» — лепесток). Согласно шагу 2, наложим на лепестки отношения RB(1) (взаимоналожения по кругу краев одних лепестков на края других) и по закону ZB(1) =P(m,r) =1/m rk (m/k) k|m(m=1) образуем первые два венчика значности: 1+0— и 1 — , 0 + , а тем самым и множество {МB(1)}= {1+, 0-; 1-, 0+} из таких венчиков (см. рис. 1). Согласно шагу 3, изменим композиции множества {МB(1)}, т. е. венчики 1 +, 0— и 1 —, 0+ (по отношениям RB(2) = RB(3) = = . ..= RB(S) = RB(1) и закону композиции ZB(2) = ZB(3) =.. .= P(m, r) = ZB(1) =P(m,r) =1/m rk (m/k) k|mтаким образом, что образуем все возможные циклические венчики с числом стыкующихся лепестков m = 2, 3, 4, 5, .. ., s; а тем самым и множества {МB(2)}= {1+, 1 —; 2—, 0+; 2 + , 0-), {МB(3)}={3+, 0-; 3 —, 0+; 2 + , 1 — ; 2-, 1 +},..., {МB(S)}=(S + , 0-; S-, 0+; (S-l)+, 1-; (S— 1)—, 1+;…} (см.рис. 1). Наконец, согласно шагу 4, получим систему циклических венчиков со стыкующимися лепестками SB = {MB}={ МB(0), МB(1), МB(2), ..., МB(S)}, частично схематически изображенную на рис. 1 (m=1 6). Построение системы объектов данного рода позволяет определить понятие «абстрактная система», или просто «система».4. Вывод и определение понятия «абстрактная система» Изучая особенности циклических венчиков со стыкующимися лепестками, мы обнаружили [93], что по таким признакам, как (не) четность числа лепестков т, (не) четность числа значных состояний венчика Z = m+l, изомерия — I, симметрия — S, система является периодической, ибо с переходом из одной ее клетки в другую все эти признаки изменяются периодически. Далее мы установили, что свойства изомерных совокупностей по ходу системы изменяются по следующему закону: четность, изомерия, симметрия изомерийных совокупностей циклических венчиков находятся в периодической зависимости от числа лепестков т, совпадающего с номером клетки в системе. Теперь нетрудно заметить изоморфизм данного закона закону системы химических элементов, установленному в 1869 г. Д. И. Менделеевым и уточненному в 1913 г. Ван дер Бруком и Г. Мозли. Согласно этому закону, свойства химических элементов находятся в периодической зависимости от числа положительных зарядов их атомных ядер Z, совпадающего с номером клетки в системе. Как видно, оба периодических закона (химических элементов и циклических венчиков) в принципе одинаковы. Они лишь две различные реализации одного и того же абстрактного закона дискретной периодической системы Sp, согласно которому P1, Р2, Р3, … , Pк свойства объектов-систем системы Sp находятся в периодической зависимости от N, совпадающего с номером клетки в Sp системе. В результате мы подходим к идее системы объектов одного и того же типа, например периодического, генеалогического, сетчатого, иерархического и т.д. Приведенные системы (венчиков растений и химических элементов), а также системы кристаллографических индексов [75], метаболических путей [47], структуры фауны и флоры в связи с размерами организмов [107], кариотипов цветковых растений [16] представляют собой конкретную реализацию системы одного и того же типа — периодического (прерывного или непрерывного). Это означает, что системы объектов одних и тех же родов можно объединять во все более и более крупные единицы — в системы объектов одних и тех же семейств, классов, типов и т. д. Тем не менее все они из-за инвариантности определения 2 относительно такого объединения в свою очередь могут быть интерпретированы как системы объектов одних и тех же родов, но разной степени общности. В пределе движение от менее ко все более общим системам в конце концов приводит к системе вообще.Определение 3. Система S — это множество объектов-систем, построенное по отношениям r множества отношений {R}, законам композиции z множества законов композиций {Z} из «первичных» элементов m множества {М(0)}, выделенного по основаниям а множества оснований {A(0)} из универсума U. При этом множества {Z}; {Z} и {R}; {Z}, {R} и {М(0)} могут быть и пустыми. Сделаем три замечания к данному определению.Замечание 1. Основное в определении системы — это тройка символов А(0), R, Z. Первые два (А(0), R) во многие определения системы были введены до нас. Понятие о законе композиции было сформулировано и введено нами в определение системы а 1968 г. Это было сделано в связи с тем, что в ряде случаев без указания Zi однозначное определение системы данного — i-ro — рода невозможно. Например, пусть АC(0) — основание для выделения атомов углерода С, АH(0)— атомов водорода Н, Ry — отношение химического сродства. Тогда по АC(0)АH(0) Ry мoжнo было бы получить по крайней мере две системы углеводородов:Sy(1) ==С, Н, CH4, C2H6, C3H8, … CSH2S+2,Sy(2) = C, H, CH2, C2H4, C3H6, ..., CSH2S.Это значит, что лишь по Аy(0) и Ry однозначно задать систему невозможно. Однако мы получим именно систему Sy(1) или Sy(2), если дополнительно укажем на закон композиции соответственно Zy(1) = CnH2n+2 или Zy(2) = CnH2n. Таким образом, указание в определении конкретной или абстрактной системы на закон ее композиции для ряда систем действительно необходимо. Между тем в существующих определениях систем даже у М. Месаровича и А. И. Уемова указание на закон композиции отсутствует, в силу чего такие определения могут приводить к неоднозначным результатам.Замечание 2. Стремление ко все более общему и содержательному определению системы, желание удержать то ценное, что было создано системологами, и прежде всего А. И. Уемовым, автором параметрического варианта ОТС, и М. Месаровичем, автором теоретико-множественного варианта ОТС, заставило нас дополнить определение системы указанием на то, что множества {Z}; {Z} и {R}; {Z}, {R} и {A(0)} могут быть пустыми. Действительно, в случае когда множество законов композиции пустое, т.е. {Z}=, возможно определение системы, основанное только на {A(0)} и {R} (дефиниция А. И. Уемова) [86]. Если же принять во внимание случай, когда и {Z}=, и {R}=, то можно прийти к определению системы, основанному только на {A(0)}, например данному М. Месаровичем [63].Замечание 3. ОТС и теория множеств. Ю. А. Шрейдер противопоставляет системный подход теоретико-множественному [115; 116]. Но согласно закону системности, множество и теории множеств суть системы, они должны и действительно принадлежат соответственно системе множеств и системе теорий множеств. В этом легко убедиться, просмотрев лишь первые главы современных книг по теории множеств, например, Н. Бурбаки [12] или К. Куратовского и А. Мостовского [41]. С точки зрения ОТС множество есть система, построенная лишь по основанию А(0) из заранее заданных элементов. Между тем система конструируется в одних случаях только из заранее заданных элементов — в виде множества {М(0)}; в других, более общих случаях — как из заранее задан * Т — тождественное, Кл — количественное, Кч — качественное, О — относительное преобразование.Центральное предложение ОТС — основной закон системных преобразований объекта-системы: объект-система в рамках системы объектов одного и того же рода благодаря своему существованию переходит по законам z {Zi} : А) либо в себя — посредством тождественного преобразования, Б) либо в другие объекты-системы — посредством одного из семи, и только семи, различных преобразований, именно изменений: 1) количества, 2) качества, 3) отношений, 4) количества и качества, 5) количества и отношений, 6) качества и отношений, 7) количества, качества, отношений всех или части его «первичных» элементов. С точки зрения центрального предложения одним и тем же названием, например «Кл преобразование», обозначаются и преобразования, изменяющие числа каждого «первичного» элемента объекта-системы, и преобразования, изменяющие числа лишь части его «первичных» элементов. Далее. Это предложение показывает, что вся совокупность системных преобразований состоит из одного тождественного и семи нетождественных. Знание числа и качества их имеет немаловажное значение. Так, исходя из этого знания, мы можем утверждать, что только семью различными способами неживая, живая природа и общество могут творить свои объекты-системы. Между тем принципиально важный вопрос о числе и виде способов порождения (преобразования) объектов ни философы, ни естествоиспытатели еще не ставили, за исключением разве Демокрита из Абдеры [подробнее об этом см. 94], даже тогда, когда постановка данного вопроса и ответ на него буквально напрашивались при создании различных эволюционных и генетических концепций. Это обусловило неполноту этих концепций. Например, А. Н. Северцов [74], перечисляя в созданной им теории развития онтогенеза модусы филэмбриогенеза, из семи возможных называет только два - изменение числа (пролонгацию — удлинение, аббревиацию — укорочение) и качества (девиацию — уклонение) этапов эмбриогенеза. Пять других модусов филэмбриогенеза, несмотря на наличие фактического материала, им не выделяются. Аналогично обстоит дело и с синтетической теорией эволюции, с различными морфогенетическими концепциями. Например, морфогенез пытаются свести в конечном счете лишь к увеличению или уменьшению числа и размеров клеток, к их дифференциации и дедифференциации, т.е. к 1) и 2) способам производства объектов-систем, и не учитывают пять других — 3), 4), 5), 6), 7) — способов их преобразований. Это с необходимостью требует дополнения указанных концепций на 5/71. 55 Так обстоит дело с преобразованием отдельного объекта-системы. Если же рассматривать преобразования совокупности объектов-систем, то в этом случае число таких преобразований будет значительно больше восьми.Предложение 4. Совокупность объектов-систем в рамках системы объектов одного и того же рода благодаря своему существованию будет переходить по законам z {Zi} либо в себя — посредством тождественного преобразования, либо в другие совокупности объектов-систем — посредством одного из 254 (и только 254) различных способов. В этом случае увеличение числа способов преобразования с 8 до 255 объясняется просто: преобразование одной совокупности объектов-систем в другие может происходить не только одним из 8, но и любыми 2 из 8, 3 из 8, ..., 8 из 8 способов. 8 A = С3i = 28- 1=255. i=1 Разумеется, данные выкладки справедливы лишь для принятых здесь условий. Если же, например, различать порядок преобразований (что может оказаться важным при изучении п