Курсовые работы. 24. Расчет мазутопровода при движении вязкопластичной жидкости. Содержание работы: Теоретическая часть. Классификация неньютоновских жидкостей. Зависимость между расходом и перепадом давления при ламинарном течении вязкопластичной жидкости в трубе. Расчетная часть. Пользуясь – теоремой, получить безразмерные параметры, характеризующие движение вязкопластичной жидкости в трубе. Получить формулу для определения коэффициента гидравлического сопротивления при ламинарном течении вязкопластичной жидкости в трубе. Построить графики зависимости гидравлического сопротивления от параметра Рейнольдса Re и параметра Ильюшина , т.е. =(Re, И). Рассчитать потери движения при транспорте мазута по горизонтальному трубопроводу к печам технологических установок нефтезавода, считая, что мазут описывается моделью вязкопластичной жидкости (реологические параметры жидкости определяются при средней температуре).^ Исходные данные ВариантыДанные 1 2 3 4 Предельное динамическое напряжение , н/м2 10 10 12 11 Диаметр трубопровода d, м 0,207 Длина трубопровода L, м 1000 950 1050 1100 Плотность мазута кг/м3 950 940 990 920 Расход Q, м3/с 0,0972 0,0972 0,0972 0,0972 Методические указания. Для определения коэффициента гидравлического сопротивления воспользоваться формулой Дарси-Вейсбаха: Выразить p из формулы и подставить в формулу Букингама, определяющую расход Q при течении вязкопластичной жидкости в трубе. Получить формулу для в виде =(Re, И), где , . Задаваясь различными значениями И (), построить зависимость от Re ().^ 25. Расчет мазутопровода при движении псевдопластичной жидкости. Содержание работыТеоретическая часть. Классификация неньютоновских жидкостей. Ламинарное стационарное течение псевдопластичной жидкости в трубе. Профиль скорости. Зависимость между расходом и перепадом давления. Расчетная часть. Построить профиль скорости неньютоновской жидкости, подчиняющейся степенному реологическому закону при течении в круглой трубе. Принять n = 3, 2, 1, 0,7, 0,33. Пользуясь – теоремой, получить безразмерные параметры, характеризующие движение псевдопластичной жидкости в трубе. Получить формулу для определения коэффициента гидравлического сопротивления при ламинарном течении псевдопластичной жидкости в трубе. Рассчитать потери движения при транспорте мазута по горизонтальному трубопроводу к печам технологических установок нефтезавода, считая, что мазут описывается моделью псевдопластичной жидкости и движение изотермическое.^ Исходные данные Реологические параметры жидкости: n = 1/1,398; k = 0,304 н.с.0.716м-2. ВариантыДанные 1 2 3 4 Длина трубопровода L, м 100 80 150 120 Диаметр трубопровода d, мм 0,207 0,207 0,207 0,207 Плотность мазута , кг/м3 950 950 950 950 Расход мазута Q, м3/с 0,277∙10-3 0,250∙10-3 0,425∙10-3 0,319∙10-3 ^ Методические указания Для определения коэффициента гидравлического сопротивления воспользоваться формулой Дарси-Вейсбаха: Выразить p из формулы и подставить в уравнение, определяющее зависимость между расходом Q и p перепадом давления при ламинарном течении псевдопластичной жидкости в трубе. Получить формулу для в виде:, где –– обобщенное число Рейнольдса.^ 26. Исследование пульсаций давления на расход при ламинарном движении неньютоновских жидкостей в трубах Содержание работы1. Теоретическая часть. Классификация неньютоновских жидкостей. 2. Расчетная часть. Рассматривается ламинарное неустановившееся течение неньютоновской жидкости, подчиняющейся степенному реологическому закону в круглой трубе. Градиент давления меняется по закону , (1) где , . Исследовать влияние пульсаций давления на расход жидкости. Рассмотреть случай, когда инерционными членами в уравнении движения можно пренебречь по сравнению с вязкими (квазистационарного движение). а) Найти скорость u = u(r,t). б) Определить средний за период колебания расход. Исследовать влияние пульсаций давления на средний за период колебания расход в случае n 1 ().^ Методические указания Уравнение неустановившегося ламинарного движения жидкости в трубе имеет вид:. При пульсирующем движении градиент давления представляют в виде суммы постоянной компоненты и пульсационной компоненты с амплитудой и частотой :. Для неньютоновской жидкости, подчиняющейся степенному реологическому закону, расход жидкости определяется по формуле, где а – радиус трубы. Средний расход жидкости за период колебания находится из соотношения. При стационарном ламинарном движении с постоянным градиентом давления расход жидкости q0 выражается через среднюю скорость v по формуле q0 = a2v. Отношение расхода жидкости при пульсирующем течении к расходу q0 при стационарном течении обозначим через Q . (2) В работе надо исследовать зависимость Q от n, т.е. определить влияние пульсаций давления на расход при различных n в случае квазистационарного движения, когда вязкие силы значительно больше чем силы инерции. В этом случае уравнение (1) примет вид. (3) Уравнение (3) надо проинтегрировать, т.е. найти u(r,t) и по формуле (2) определить Q. Удобно в уравнении (3) перейти к безразмерным переменным:. Тогда . Зависимость Q от n представить на графике при .