Реферат по предмету "География"


Петрология литосферы и верхней мантии - нерешенные и спорные вопросы

Изучение химического состава глубинных геосфер невозможно без учета термодинамических условий недр Земли (высоких давлений и температур) и их влияния на свойства вещества. Не вдаваясь в достаточно сложные детали этого принципиального вопроса о составе внутренних оболочек Земли, укажем лишь на две господствующие точки зрения.
Первой была высказана точка зрения о гетерогенном составе внутренних геосфер. Современные данные о плотности и скорости распространения сейсмических волн допускают отождествление вещества верхней мантии с ультраосновными породами. На основании этих же данных можно предполагать преимущественно железо-никелевый состав ядра, верхняя оболочка которого находится в жидком состоянии. Позже была высказана идея об однородном с точки зрения химического состава строении Земли. Наличие границ в Земле и различие физических свойств геосфер можно объяснить фазовыми переходами вещества. В условиях давления, измеряемого сотнями тысяч МПа, и температуры в несколько тысяч градусов теоретически возможно разрушение не только кристаллической решетки вещества - плавление, но и его электронных оболочек. При этом в ядре Земли вещество переходит в металлическую фазу. Важно отметить, что такая смена способа «упаковки» частиц вещества на атомарном уровне, по всей вероятности, происходит скачкообразно, при достижении достаточного давления и температуры. Таким образом можно объяснить наличие концентрических границ изменения физических свойств вещества Земли при относительном постоянстве ее химического состава. Сторонники этой точки зрения предполагают единый для всей планеты силикатный состав, а скачкообразную смену физических свойств на границах геосфер связывают с фазовыми переходами. Однако современные эксперименты с ударным кратковременным сжатием силикатов и соответствующие теоретические расчеты не подтверждают возможности металлизации силикатов в физических условиях ядра Земли. Тем не менее, нельзя отвергать возможность перестроек кристаллических решеток минералов при увеличении давления; примеры минералов одинакового химического состава, различающихся по способу «упаковки» и физическим свойствам известны. Современные данные допускают в какой-то степени правомерность обеих точек зрения. И, по-видимому, можно предполагать различное происхождение выделяемых сейсмических границ. Вероятнее всего, в Земле имеются границы смены как химического состава, так и внутренней структуры вещества. Каковы же основные данные, которые могут быть использованы для изучения химического состава Земли в целом? К сожалению их немного. Во-первых, химический состав земной коры. Однако не следует забывать, что земная кора представляет только небольшую (менее 1% по массе) часть нашей планеты и поэтому состав Земли в основном определяется составом мантии и ядра. Во-вторых, геофизические данные - в основном результаты сейсмологии. Однако эти данные допускают неоднозначное истолкование, т.к. одинаковые значения физических свойств - скорости упругих волн или плотности - могут быть присущи веществам различного химического состава. В-третьих, космологические данные, т.е. результаты изучения космических тел, в первую очередь Луны и метеоритов, падающих на Землю. Эти данные можно использовать только при предположении о близости химического состава исходного вещества планет, по крайней мере, земной группы. Гипотезы о происхождении Земли допускают сходство химического состава Земли и Луны. Кроме того, можно полагать, что поставщиком значительной части метеоритов, падающих на Землю, является пояс астероидов, расположенный между орбитами Марса и Юпитера. Существует гипотеза о том, что современные астероиды являются обломками десятой планеты Солнечной системы - Фаэтона. Предполагая сходство химического состава Земли и этой планеты, можно использовать результаты анализа состава метеоритов при изучении химического состава нашей планеты. Метеориты играют значительную роль в жизни Земли. Ежесуточно на Землю падает около 3 т метеоритов, не считая космической пыли. Всего на Землю попадает не менее 10 тыс.т метеорно-космического вещества в год. И в любом случае, представляют ли метеориты исходный «строительный материал», из которого так и не была сформирована десятая планета, или являются обломками планеты Фаэтон, изучение их химического состава позволяет судить о составе материи, достаточно близкой Земле. К настоящему времени общее число найденных метеоритов составляет примерно 2500 шт. Число же обломков метеоритов исчисляется десятками тысяч. В последние годы многочисленные находки метеоритов сделаны в Антарктиде. Связано это не с повышенной частотой падения метеоритов, а с уникальными условиями их сохранения здесь. Только с 1973 по 1983 г.г. японские исследователи Антарктиды подобрали 4750 фрагментов метеоритов (вблизи горы Ямато на Земле Королевы Мод). Размеры метеоритов весьма разнообразны. Метеорит массой 60 т, названный Гоба, найден в Африке. В Каньоне Дьявола, штат Невада, США по диаметру метеоритного кратера в 1,2 км и глубине в 140 м определили, что масса взорвавшегося метеорита составляла 15 тыс.т. По составу метеориты делятся на железные, железо-каменные и каменные. Железные метеориты составляют 6% от всех найденных. Они почти целиком сложены железом (89,7%) и никелем (9,1%) и называются сидеролитами. Плотность их около 8 г/см3. Железл-каменные метеориты составляют лишь 2% найденных. По составу они делятся на паласситы (железо с вкраплениями силикатов) и мезосидериты (примерно равное количество железа и силикатов). Их плотность 5-6 г/см3. Наиболее часто находят каменные метеориты, составляющие 92% от всего количества. По составу они делятся на хондриты и ахондриты. Хондриты состоят из овальных каплевидных зерен (хондр) силикатов, сцементированных железом. Форма зерен свидетельствует об остывании их в условиях весьма слабого тяготения. Ахондриты по составу близки к земным породам основного ряда - базальтам и иногда содержат до 1% алмазов. Ахондриты - наиболее распространенная разновидность метеоритов. Существует предположение о том, что они являются продуктами лунного вулканизма, выбрасывающего их в поле тяготения Земли. Плотность их около 3,5 г/см3. Приведенные данные о составе метеоритов, падающих на Землю, служат аргументом в пользу гетерогенного строения планет. Возвращаясь к гипотезе о том, что метеориты являются фрагментами разрушенной планеты Фаэтон, можно установить связь планетных оболочек с классом метеоритов. По мнению А.Н.Заварицкого, ахондриты представляют собой обломки коры планеты, имевшей мощность 40-50 км. Мантия Фаэтона характеризовалась ультраосновным силикатным составом, о чем свидетельствует состав хондритов. Сидеролиты и железо-каменные метеориты могли образоваться при разрушении ядра планеты. Не вдаваясь в гипотезы существования планеты Фаэтон, следует указать, что астероиды (если судить по метеоритам) по плотности и другим параметрам, безусловно, близки к планетам земной группы. В этой связи важность изучения состава метеоритов очевидна.
Близость химического состава планет подтверждают также данные изучения образцов лунных пород, доставленных советской станцией «Луна-16» и американскими «Аполлон-11 и 12». С учетом состава и свойств метеоритов и образцов с Луны, а также геофизических (сейсмологических) данных о внутреннем строении Земли рассчитаны модели химического состава Земли в целом (табл.4) Химический состав Земли Таблица 4
Химические
Массовая доля,%
элементы
по А.Е.Ферсману
по Б.Мейсону
O
27,71
29,5
Fe
39,76
34,6
Si
14,53
15,2
Mg
8,69
12,7
S
0,64
1,92
Ni
3,46
2,38
Ca
2,32
1,13
Al
1,79
1,09
Прочие
1,1
1,48
Сравнение состава Земли в целом с составом земной коры (см.выше) показывает резкое увеличение в первом доли тяжелых элементов - железа и никеля, что обусловлено влиянием ядра. Приведенные в табл.4 элементы в Земле распространены в виде химических соединений, в самородном виде они встречаются крайне редко. Ядро Земли имеет, по всей вероятности, железо-никелевый состав, близкий к составу сидеролитов. Содержание железо-никелевого сплава составляет 84-92%, а остальную часть занимают оксиды железа. Переходный слой от внешнего ядра к субъядру может состоять из сернистого железа - троилита FeS. Мантия образовалась в результате дифференциации первичного вещества по плотности. Железо и никель, опустившись, сконцентрировались в ядре, а в мантии накопилось относительно легкое вещество - пиролит. В составе мантии отсутствует металлическое железо, но ее состав определяется содержанием оксидов кремния, магния, алюминия и кальция. Хондриты по составу занимают промежуточное положение между первичным веществом Земли и пиролитом. Из-за высокого содержания кремния и магния мантию иногда называют симатической оболочкой. Процесс дифференциации вещества мантии продолжается и в настоящее время. Так, в астеносфере происходит выплавление базальта из пиролита, способного выделить до 25% базальта. После выплавления более легкого базальта, поднимающегося вверх к земной коре, вещество верхней мантии теряет часть SiO2; по составу эта часть пиролита соответствует ультраосновным породам - перидотиту, пироксениту, дуниту. Граница базальта и ультраосновных пород характеризуется резким изменением плотности и сейсмической скорости. Эта граница собственно и есть раздел между корой и мантией - граница Мохоровичича. Дифференциация затрагивает, по-видимому, не только астеносферу, но и нижележащий слой Голицына, к которому приурочены локальные очаги плавления и очаги глубокофокусных землетрясений. Земная кора, по современным представлениям, является результатом дифференциации вещества мантии. Базальтовый слой, характеризующийся сплошным распространением на Земле, как указывалось выше, выплавляется из пиролита в астеносфере, откуда базальт медленно поднимается вверх к коре в виде огромных масс каплевидной формы - астенолитов. Существует и другая точка зрения о механизме выплавления базальтов, в соответствии с которой на границе Мохо происходит не резкая смена состава, а лишь перестройка внутренней структуры базальта и переход его в более плотную разновидность - эклогит. Эта перестройка структуры обратима и определяется физическими условиями - давлением и температурой в подошве коры. При изменении этих условий граница Мохо может перемещаться вверх и вниз по разрезу. Обе приведенные точки зрения объясняют причину появления в подошве земной коры границы, разделяющей базальты и ультрабазиты, в общем довольно близкие по химическому составу. Значительно сложнее объяснить происхождение гранитно-метаморфического слоя, лежащего на базальтах в пределах континентов. По-видимому, этот слой, представленный породами, обогащенными окисью кремния и окисью алюминия, образовался вследствие очень глубокой дифференциации пород, происходившей на ранней стадии развития Земли, и последующего переплавления (возможно многократного) сформировавшихся пород. Гранитообразование в значительной степени связано со вторичными процессами переплавления, происходящими в конвергентных и коллизионных зонах как на границе континентов и океанов, так и внутриконтинентальных. Оно также связано с геологическими процессами, протекающими на поверхности - выветриванием и осадконакоплением, которые сопровождаются образованием пород, обогащенных оксидами. Из-за высокого содержания кремния и алюминия земную кору иногда называют сиалической оболочкой Земли. Таким образом, в направлении от внешних геосфер к внутренним возрастает роль более тяжелых элементов, в частности, металлов.
КОНТРОЛЬНЫЕ ВОПРОСЫ 1.Какие методы применяются для изучения состава геосфер? Что такое кларк вещества? 2.С какой целью изучают метеориты и лунные образцы? 3.Какие химические элементы характерны для литосферы, мантии, ядра? 4.До какой глубины достоверно изучены химические элементы, слагающие земную кору? Что такое «ксенолит»?


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.