Реферат по предмету "Биология"


Ультрафиолетовое излучение

Курсовая работа На тему: «Ультрафиолетовое излучение» Содержание Введение… … 1. Обзор литературы….… …1. Природа ультрафиолетового излучения… …2. Влияние ультрафиолетового излучения на биосферу… 3. Действие ультрафиолетового излучения на клетку… ….4. Действие ультрафиолетового излучения на кожу… …8 1.5.

Бактерицидное действие ультрафиолетового излучения… ….6. Биологическое действие ультрафиолетового излучения … 7.Положительное действие ультрафиолетового излучения….… 8. Негативное воздействие ультрафиолетового облучения….… 9. Защита от ультрафиолетового излучения… ….2. Практическое применение УФ-излучения….….…1. Искусственные источники УФ-излучения ….….15 2.1.1.

Бактерицидные лампы… ……… 2. Бактерицидные облучатели…2. Исследование в ультрафиолетовом излучении… ….19 Заключение… 22 Список литературы….… 23 Приложение…24 Введение Понятие об ультрафиолетовых лучах впервые встречается у индийского философа 13-го века Shri Madhvacharya в его труде Anuvyakhyana. Атмосфера описанной им местности Bhootakasha содержала фиолетовые лучи, которые невозможно

увидеть обычным глазом. Вскоре после того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета. В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Тогда, многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов:

окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также «актиническим излучением». Излучение солнца имеет электромагнитную колебательную природу и носит непрерывный характер. Этот спектр излучений можно разделить на несколько областей– рентгеновское излучение – ниже 2 нм,

УФ-излучение – от 2 нм до 400 нм, видимый участок спектра – от 400 нм до 750 нм и инфракрасное излучение – выше 750 нм. Энергия квантов УФ-излучения (70-140 ккал/моль) превосходит энергию активации большинства химических реакций. Поэтому УФ-радиация является весьма фотохимически активной частью спектра. Ультрафиолетовое излучение в области от 180 нм до 2 нм интенсивно поглощается кислородом воздуха. Поэтому оно реально существует лишь в космическом пространстве или в специальных лабораторных условиях.

[5] УФ-излучение является постоянно действующим фактором внешней среды, оказывающим мощное воздействие на многие физиологические процессы, протекающие в организме. Также оно сыграло важную роль в эволюционных процессах, протекавших на Земле. Прежде всего УФ-излучение наряду с космическими лучами и радиоактивными элементами земной коры, с электрическими разрядами в атмосфере, извержениями вулканов и ударами метеоритов, было важнейшим

фактором, способствовавшим абиогенному синтезу органических соединений на Земле. Мутагенное действие УФ-излучения на простейшие формы жизни стимулировало ход биологической эволюции, способствовало увеличению разнообразия жизненных форм. В ходе эволюции земные организмы приобрели способность использовать для своих нужд энергию различных частей солнечного спектра. Хорошо известна роль видимой части солнечного света – фотосинтез, зрение,

инфракрасной – тепло. Оказалось, что используются и ультрафиолетовые компоненты солнечного диапазона и, в частности, при фотохимическом синтезе витамина Д, важнейшего регулятора обмена кальция и фосфора в организме. [12] 1.Обзор литературы 1. Природа ультрафиолетового излучения Спектр лучей, видимых глазом человека, не имеет резкой, четко определенной границы. Верхней границей видимого спектра одни исследователи называют 400 нм, другие 380, третьи сдвигают

ее до 350 320 нм. Это объясняется различной световой чувствительностью зрения и указывает на наличие лучей не видимых глазом. В 1801 г. И. Риттер (Германия) и У. Уола-стон (Англия) используя фотопластинку доказали наличие ультрафиолетовых лучей. За фиолетовой границей спектра она чернеет быстрее, чем под влиянием видимых лучей. Поскольку почернение пластинки происходит в результате фотохимической реакции, ученые пришли к выводу,

что ультрафиолетовые лучи весьма активны. Ультрафиолетовые лучи охватывают широкий диапазон излучений (таблица 1): 400 20 нм. Область излучения 180 127 нм называется вакуумной. Посредством искусственных источников (ртутно-кварцевых, водородных и дуговых ламп), дающих как линейчатый, так и непрерывный спектр, получают ультрафиолетовые лучи с длиной волны до 180 нм. В 1914 г. Лайман исследовал диапазон до 50 нм. [1] 1.

Диапазон ультрафиолетового излучения Наименование Аббревиатура Длина волны в нанометрах Количество энергии на фотон Ближний NUV 400 нм — 300 нм 3.10 — 4.13 эВ Средний MUV 300 нм — 200 нм 4.13 — 6.20 эВ Дальний FUV 200 нм — 122 нм 6.20 — 10.2 эВ Экстремальный EUV, XUV 121 нм — 10 нм 10.2 — 124 эВ

Вакуумный VUV 200 нм — 10 нм 6.20 — 124 эВ Ультрафиолет А, длинноволновой диапазон, Чёрный свет UVA 400 нм — 315 нм 3.10 — 3.94 эВ Ультрафиолет B (средний диапазон) UVB 315 нм — 280 нм 3.94 — 4.43 эВ Ультрафиолет С, коротковолновой, гермицидный диапазон UVC 280 нм — 100 нм 4.43 — 12.4 эВ Исследователи обнаружили тот факт, что спектр ультрафиолетовых лучей

Солнца, достигающих земной поверхности, очень узок - 400 290 нм. Неужели солнце не излучает свет с длиной волны короче 290 нм? Ответ на этот вопрос нашел А. Корню (Франция). Он установил, что озон поглощает ультрафиолетовые лучи короче 295 нм, после чего выдвинул предположение: Солнце излучает коротковолновые ультрафиолетовое излучение, под его действием молекулы кислорода распадаются на отдельные атомы, образуя молекулы озона, поэтому

в верхних слоях атмосферы озон должен покрывать землю защитным экраном. Гипотеза Корню получила подтверждение тогда, когда люди поднялись в верхние слои атмосферы. Таким образом, в земных условиях спектр солнца ограничен пропусканием озонового слоя. Количество ультрафиолетовых лучей, достигающих земной поверхности, зависит от высоты Солнца над горизонтом. В течение периода нормального освещения освещенность изменяется на 20%, тогда

как количество ультрафиолетовых лучей достигающих земной поверхности уменьшается в 20 раз. [6] Специальными экспериментами установлено, что при подъеме вверх на каждые 100 м интенсивность ультрафиолетового излучения возрастает на 3 4%. На долю рассеянного ультрафиолета в летний полдень приходится 45 70% излучения, а достигающего земной поверхности - 30 55%. В пасмурные дни, когда диск Солнца закрыт тучами, поверхности Земли достигает главным образом рассеянная радиация.

Поэтому можно хорошо загореть не только под прямыми лучами солнца, но и в тени, и в пасмурные дни. Когда Солнце стоит в зените, в экваториальной области поверхности земли достигают лучи длиной 290 289 нм. В средних широтах коротковолновая граница, в летние месяцы, составляет примерно 297 нм. В период эффективного освещения верхняя граница спектра составляет порядка 300 нм. За полярным кругом земной поверхности достигают лучи с длиной волны 350 380 нм. [2] 1.2.

Влияние ультрафиолетового излучения на биосферу Выше диапазона вакуумной радиации ультрафиолетовые лучи легко поглощаются водой, воздухом, стеклом, кварцем и не достигают биосферы Земли. В диапазоне 400 180 нм влияние на живые организмы лучей различной длины волны не одинакова. Наиболее богатые энергией коротковолновые лучи сыграли существенную роль в образовании первых сложных органических соединений на Земле. Однако эти лучи способствуют не только образованию, но и распаду органических

веществ. Поэтому прогресс жизненных форм на Земле наступил лишь после того, когда благодаря деятельности зеленых растений атмосфера обогатилась кислородом и, под действием ультрафиолетовых лучей, образовался защитный озоновый слой. А 400 320 нм; В 320 275 нм; С 275 180 нм. Для нас представляют интерес ультрафиолетовое излучение Солнца и искусственных источников ультрафиолетового излучения в диапазоне 400 180 нм.

Внутри этого диапазона выделены три области: В действии каждого из этих диапазонов на живой организм есть существенные различия. Ультрафиолетовые лучи действуют на вещество, в том числе и живое, по тем же законам, что и видимый свет. Часть поглощаемой энергии превращается в тепло, но тепловое действие ультрафиолетовых лучей не оказывает на организм заметного влияния. [1] Другой способ передачи энергии – люминесценция. Фотохимические реакции под действием ультрафиолетовых

лучей проходят наиболее интенсивно. Энергия фотонов ультрафиолетового света очень велика, поэтому при их поглощении молекула ионизируется и распадается на части. Иногда фотон выбивает электрон за пределы атома. Чаще всего происходит возбуждение атомов и молекул. При поглощении одного кванта света с длиной волны 254 нм энергия молекулы возрастает до уровня, соответствующего энергии теплового движения при температуре 38000°С.

Основная часть солнечной энергии достигает земли в качестве видимого света и инфракрасного излучения и лишь незначительная часть - в виде ультрафиолета. Максимальных значений поток УФ достигает в середине лета на Южном полушарии (Земля на 5% ближе к Солнцу) и 50% от суточного количества УФ поступает в течение 4-х полуденных часов. Diffey установил, что для географических широт с температурой 20-60°

человек, загорающий с 10:30 до 11:30 и затем с 16:30 до заката, получит только 19% от суточной дозы УФ. В полдень, интенсивность УФ (300 нм) в 10 раз выше, чем тремя часами раньше или позже: незагорелому человеку достаточно 25 минут для получения легкого загара в полдень, однако для достижения этого же эффекта после 15:00, ему понадобится лежать на солнце не менее 2-х часов. Ультрафиолетовый спектр в свою очередь разделяют на ультрафиолет-

А (UV-A) с длиной волны 315-400 нм, ультрафиолет-В (UV-B) -280-315 нм и ультрафиолет-С (UV-С)- 100-280 нм, которые отличаются по проникающей способности и биологическому воздействию на организм. UV-A не задерживается озоновым слоем, проходит сквозь стекло и роговой слой кожи. Поток UV-A (среднее значение в полдень) в два раза выше на уровне Полярного Круга, чем на экваторе, так что абсолютное его значение больше в высоких широтах.

Не отмечается и существенных колебаний в интенсивности UV-A в разные времена года. За счет поглощения, отражения и рассеивания при прохождении через эпидермис, в дерму проникает только 20-30% UV-A и около 1% от общей его энергии достигает подкожной клетчатки. Большая часть UV-B поглощается озоновым слоем, который "прозрачен" для UV-A. Так что доля UV-B во всей энергии ультрафиолетового излучения в летний полдень составляет всего

около 3%. Он практически не проникает сквозь стекло, на 70% отражается роговым слоем, на 20% ослабляется при прохождении через эпидермис - в дерму проникает менее 10%. Однако длительное время считалось, что доля UV-В в повреждающем действии ультрафиолета составляет 80%, поскольку именно этот спектр отвечает за возникновение эритемы солнечного ожога. Необходимо учитывать и тот факт, что UV-В сильнее (меньшая длина волны) чем

UV-А рассеивается при прохождении через атмосферу, что приводит и к изменению соотношения между этими фракциями с увеличением географической широты (в северных странах) и временем суток. UV-С (200-280 нм) поглощается озоновым слоем. В случае использования искусственного источника ультрафиолета, он задерживается эпидермисом и не проникает в дерму. [10] 1.3. Действие ультрафиолетового излучения на клетку В действии коротковолнового излучения на живой организм

наибольший интерес представляет влияние ультрафиолетовых лучей на биополимеры - белки и нуклеиновые кислоты. Молекулы биополимеров содержат кольцевые группы молекул, содержащие углерод и азот, которые интенсивно поглощают излучение с длиной волны 260 280 нм. Поглощенная энергия может мигрировать по цепи атомов в пределах молекулы без существенной потери, пока не достигнет слабых связей между атомами и не разрушит связь.

В течение такого процесса, называемого фотолизом, образуются осколки молекул, оказывающие сильное действие на организм. Так, например, из аминокислоты гистидина образуется гистамин - вещество, расширяющее кровеносные капилляры и увеличивающее их проницаемость. Кроме фотолиза под действием ультрафиолетовых лучей в биополимерах происходит денатурация. При облучении светом определенной длины волны электрический заряд молекул уменьшается, они слипаются и теряют свою активность - ферментную, гормональную, антигенную и пр.

Процессы фотолиза и денатурации белков идут параллельно и независимо друг от друга. Они вызываются разными диапазонами излучения: лучи 280 302 нм вызывают главным образом фотолиз, а 250 265 нм - преимущественно денатурацию. Сочетание этих процессов определяет картину действия на клетку ультрафиолетовых лучей. [2] Самая чувствительная к действию ультрафиолетовых лучей функция клетки - деление. Облучение в дозе 10(-19) дж/м2 вызывает остановку деления около 90% бактериальных клеток.

Но рост и жизнедеятельность клеток при этом не прекращается. Со временем восстанавливается их деление. Чтобы вызвать гибель 90% клеток, подавление синтеза нуклеиновых кислот и белков, образование мутаций, необходимо довести дозу облучения до 10(-18) дж/м2. Ультрафиолетовые лучи вызывают в нуклеиновых кислотах изменения, которые влияют на рост, деление, наследственность клеток, т.е. на основные проявления жизнедеятельности.

Значение механизма действия на нуклеиновую кислоту объясняется тем, что каждая молекула ДНК (дезоксирибонуклеиновой кислоты) уникальна. ДНК - это наследственная память клетки. В ее структуре зашифрована информация о строении и свойствах всех клеточных белков. Если любой белок присутствует в живой клетке в виде десятков и сотен одинаковых молекул, то ДНК хранит информацию об устройстве клетки в целом, о характере и направлении процессов обмена веществ

в ней. Поэтому нарушения в структуре ДНК могут оказаться непоправимыми или привести к серьезному нарушению жизнедеятельности.[9] 1.4. Действие ультрафиолетового излучения на кожу Воздействие ультрафиолета на кожу заметно влияет на метаболизм нашего организма. Общеизвестно, что именно УФ-лучи инициируют процесс образования эргокальциферола (витамина Д), необходимого для всасывания кальция в кишечнике и обеспечения нормального развития костного скелета.

Кроме того, ультрафиолет активно влияет на синтез мелатонина и серотонина - гормонов, отвечающих за циркадный (суточный) биологический ритм. Исследования немецких ученых показали, что при облучении УФ-лучами сыворотки крови в ней на 7 % увеличивалось содержание серотонина - "гормона бодрости", участвующего в регуляции эмоционального состояния. Его дефицит может приводить к депрессии, колебаниям настроения, сезонным функциональным расстройствам.

При этом количество мелатонина, обладающего тормозящим действием на эндокринную и центральную нервную системы, снижалось на 28%. Именно таким двойным эффектом объясняется бодрящее действие весеннего солнца, поднимающего настроение и жизненный тонус. Действие излучения на эпидермис - наружный поверхностный слой кожи позвоночных животных и человека, состоящий из многослойного плоского эпителия человека, представляет собой воспалительную реакцию называемую эритемой. Первое научное описание эритемы дал в 1889 г.

А.Н. Макланов, который изучил также действие ультрафиолетовых лучей на глаз (фотоофтальмию) и установил, что в основе их лежат общие причины. Различают калорическую и ультрафиолетовую эритему. Калорическая эритема обусловлена воздействием видимых и инфракрасных лучей на кожу и прилива к ней крови. Она исчезает почти сразу после прекращения действия облучения. [11] Если падающие на кожу лучи поглощаются мертвыми клетками рогового слоя, они не оказывают на организм

никакого влияния. Эффект облучения зависит от проникающей способности лучей и от толщины рогового слоя. Чем короче длина волны излучения, тем меньше их проникающая способность. Лучи короче 310 нм не проникают глубже эпидермиса. Лучи с большей длиной волны достигают сосочкового слоя дермы, в котором проходят кровеносные сосуды. Таким образом, взаимодействие ультрафиолетовых лучей с веществом происходит исключительно в коже, главным

образом в эпидермисе. Основное количество ультрафиолетовых лучей поглощается в ростковом (основном) слое эпидермиса. Процессы фотолиза и денатурации приводят к гибели шиловидных клеток зародышевого слоя. Активные продукты фотолиза белков вызывают расширение сосудов, отек кожи, выход лейкоцитов и другие типичные признаки эритемы. Продукты фотолиза, распространяясь по кровеносному руслу, раздражают также нервные окончания кожи и через центральную нервную систему рефлекторно воздействуют на все органы.

Установлено, что в нерве, отходящем от облученного участка кожи, частота электрических импульсов повышается. Эритема рассматривается как сложный рефлекс, в возникновении которого участвуют активные продукты фотолиза. Степень выраженности эритемы и возможность ее образования зависит от состояния нервной системы. На пораженных участках кожи, при обморожении, воспалении нервов эритема либо вовсе не появляется, либо выражена очень слабо, несмотря на действие ультрафиолетовых лучей.

Угнетает образование эритемы сон, алкоголь, физическое и умственное утомление. Н. Финзен (Дания) впервые применил ультрафиолетовое излучение для лечения ряда болезней в 1899 г. В настоящее время подробно изучены проявления действия разных участков ультрафиолетового излучения на организм. Из ультрафиолетовых лучей, содержащихся в солнечном свете, эритему вызывают лучи с длиной волны 297 нм. К лучам с большей или меньшей длиной волны эритемная чувствительность кожи снижается.

С помощью искусственных источников излучения эритему удалось вызвать лучами диапазона 250 255 нм. Лучи с длиной волны 255 нм дает резонансная линия излучения паров ртути, используемых в ртутно-кварцевых лампах. [3] Таким образом, кривая эритемной чувствительности кожи имеет два максимума. Впадина между двумя максимумами обеспечивается экранирующим действием ороговевшего слоя кожи. Ультрафиолетовое излучение поставляет энергию для фотохимических реакций в организме.

В нормальных условиях солнечный свет вызывает образование небольшого количества активных продуктов фотолиза, которые оказывают на организм благотворное действие. Ультрафиолетовые лучи в дозах, вызывающих образование эритемы, усиливают работу кроветворных органов, ретикуло-эндотелиальную систему (Физиологическая система соединительной ткани, вырабатывающая антитела разрушающие чужеродные организму тела и микробы), барьерные свойства кожного покрова, устраняют аллергию.

Под действием ультрафиолетового излучения в коже человека из стероидных веществ образуется жирорастворимый витамин D. В отличие от других витаминов он может поступать в организм не только с пищей, но и образовываться в нем из провитаминов. Под влиянием ультрафиолетовых лучей с длиной волны 280 313 нм провитамины, содержащиеся в кожной смазке выделяемой сальными железами, превращаются в витамин D и всасываются в организм. Физиологическая роль витамина

D заключается в том, что он способствует усвоению кальция. Кальций входит в состав костей, участвует в свертывании крови, уплотняет клеточные и тканевые мембраны, регулирует активность ферментов. Болезнь, возникающая при недостатке витамина D у детей первых лет жизни, которых заботливые родители прячут от Солнца, называется рахитом. Кроме естественных источников витамина

D используют и искусственные, облучая провитамины ультрафиолетовыми лучами. При использовании искусственных источников ультрафиолетового излучения следует помнить, что лучи короче 270 нм разрушают витамин D. Поэтому с помощью фильтров в световом потоке ультрафиолетовых ламп подавляется коротковолновая часть спектра. Солнечное голодание проявляется в раздражительности, бессоннице, быстрой утомляемости человека. В больших городах, где воздух загрязнен пылью, ультрафиолетовые лучи вызывающие

эритему почти не достигают поверхности Земли. Длительная работа в шахтах, машинных отделениях и закрытых заводских цехах, труд ночью, а сон в дневные часы приводят к световому голоданию. Световому голоданию способствует оконное стекло, которое поглощает 90 95% ультрафиолетовых лучей и не пропускает лучи в диапазоне 310 340 нм. Окраска стен также имеет существенное значение. Например, желтая окраска полностью поглощает ультрафиолетовые лучи.

Недостаток света, особенно ультрафиолетового излучения, ощущают люди, домашние животные, птицы и комнатные растения в осенний, зимний и весенний периоды. Восполнить недостаток ультрафиолетовых лучей позволяют лампы, которые наряду с видимым светом излучают ультрафиолетовые лучи в диапазоне длин волн 300 340 нм. Следует иметь в виду, что ошибки при назначении дозы облучения, невнимание к таким вопросам, как спектральный состав ультрафиолетовых ламп, направление излучения и высота размещения ламп, длительность

горения ламп, могут вместо пользы принести вред. [12] 1.5. Бактерицидное действие ультрафиолетового излучения Нельзя не отметить и бактерицидную функцию УФ-лучей. В медицинских учреждениях активно пользуются этим свойством для профилактики внутрибольничной инфекции и обеспечения стерильности оперблоков и перевязочных.

Воздействие ультрафиолета на клетки бактерий, а именно на молекулы ДНК, и развитие в них дальнейших химических реакций приводит к гибели микроорганизмов. Загрязнение воздуха пылью, газами, водяными парами оказывает вредное влияние на организм. Ультрафиолетовые лучи Солнца усиливают процесс естественного самоочищения атмосферы от загрязнений, способствуя быстрому окислению пыли, частичек дыма и копоти, уничтожая на пылинках микроорганизмы.

Природная способность к самоочищению имеет пределы и при очень сильном загрязнении воздуха оказывается недостаточной. Ультрафиолетовое излучение с длиной волны 253 267 нм наиболее эффективно уничтожает микроорганизмы. Если принять максимум эффекта за 100%, то активность лучей с длиной волны 290 нм составит 30%, 300 нм - 6%, а лучей лежащих на границе видимого света 400 нм 0,01% максимальной. Микроорганизмы обладают различной чувствительностью к ультрафиолетовым лучам.

Дрожжи, плесневые грибки и споры бактерий гораздо устойчивее к их действию, чем вегетативные формы бактерий. Споры отдельных грибков, окруженные толстой и плотной оболочкой, отлично себя чувствуют в высоких слоях атмосферы и, не исключена возможность, что они могут путешествовать даже в космосе. Чувствительность микроорганизмов к ультрафиолетовым лучам особенно велика в период деления и непосредственно перед ним. Кривые бактерицидного эффекта, торможения и роста клеток практически совпадают с кривой поглощения

нуклеиновыми кислотами. Следовательно, денатурация и фотолиз нуклеиновых кислот приводит к прекращению деления и роста клеток микроорганизмов, а в больших дозах к их гибели. Бактерицидные свойства ультрафиолетовых лучей используются для дезинфекции воздуха, инструмента, посуды, с их помощью увеличивают сроки хранения пищевых продуктов, обеззараживают питьевую воду, инактивируют вирусы при приготовлении вакцин.(приложение 3) 1.6.

Биологическое действие ультрафиолетового излучения Различают три участка спектра ультрафиолетового излучения, имеющего различное биологическое воздействие. Слабое биологическое воздействие имеет ультрафиолетовое излучение с длиной волны 0,39-0,315 мкм. Противорахитичным действием обладают УФ-лучи в диапазоне 0,315-0,28 мкм, а ультрафиолетовое излучение с длиной волны 0,28-0,2 мкм обладает способностью убивать микроорганизмы.

Для организма человека вредное влияние оказывает как недостаток ультрафиолетового излучения, так и его избыток. Воздействие на кожу больших доз УФ-излучения приводит к кожным заболеваниям (дерматитам). Повышенные дозы УФ-излучения воздействуют и на центральную нервную систему, отклонения от нормы проявляются в виде тошноты, головной боли, повышенной утомляемости, повышения температуры тела и др. [5] Ультрафиолетовое излучение с длиной волны менее 0,32 мкм отрицательно влияет на сетчатку глаз, вызывая

болезненные воспалительные процессы. Уже на ранней стадии этого заболевания человек ощущает боль и чувство песка в глазах. Заболевание сопровождается слезотечением, возможно поражение роговицы глаза и развитие светобоязни ("снежная" болезнь). При прекращении воздействия ультрафиолетового излучения на глаза симптомы светобоязни обычно проходят через 2-3 дня. Недостаток УФ-лучей опасен для человека, так как эти лучи являются стимулятором основных биологических

процессов организма. Наиболее выраженное проявление "ультрафиолетовой недостаточности" - авитаминоз, при котором нарушается фосфорно-кальциевый обмен и процесс костеобразования, а также происходит снижение работоспособности и защитных свойств организма от заболеваний. Подобные проявления характерны для осенне-зимнего периода при значительном отсутствии естественной ультрафиолетовой радиации ("световое голодание").

В осенне-зимний период рекомендуется умеренное, под наблюдением медицинского персонала, искусственное ультрафиолетовое облучение эритемными люминесцентными лампами в специально оборудованных помещениях - фотариях. Искусственное облучение ртутнокварцевыми лампами нежелательно, так как их более интенсивное излучение трудно нормировать. [10] При оборудовании помещений источниками искусственного УФ-излучения необходимо руководствоваться "Указаниями по профилактике светового голодания у людей"

, утверждёнными Министерством здравоохранения СССР (N547-65). Документом, регламентирующим допустимую интенсивность ультрафиолетового излучения на промышленных предприятиях, являются "Указания по проектированию и эксплуатации установок искусственного ультрафиолетового облучения на промышленных предприятиях". Воздействие ультрафиолетового излучения на человека количественно оценивается эритемным действием, т.е. покраснением кожи, в дальнейшем приводящим к пигментации кожи

(загару). Оценка ультрафиолетового облучения производится по величине эритемной дозы. За единицу эритемной дозы принят 1 эр, равный 1Вт мощности УФ-излучения с длиной волны 0,297 мкм. Эритемная освещённость (облучённость) выражается в эр/м2. Для профилактики ультрафиолетового дефицита достаточно десятой части эритемной дозы, т.е. 60-90 мкэр•мин/см2. Бактерицидное действие ультрафиолетового излучения, т.е. способность убивать микроорганизмы,

зависит от длины волны. Так, например, УФ-лучи с длиной волны 0,344 мкм обладают бактерицидным эффектом в 1000 раз большим, чем ультрафиолетовые лучи с длиной волны 0,39 мкм. Максимальный бактерицидный эффект имеют лучи с длиной волны 0,254-0,257 мкм. Оценка бактерицидного действия производится в единицах, называемых бактами (б). Для обеспечения бактерицидного эффекта ультрафиолетового облучения достаточно примерно 50 мкб • мин/см2.

[7] 1.7. Положительное действие ультрафиолетового излучения В ХХ веке было впервые показано, почему УФ-излучение оказывает благотворное воздействие на человека. Физиологическое действие Уф-лучей было исследовано отечественными и зарубежными исследователями в середине прошлого столетия (Г. Варшавер. Г. Франк. Н. Данциг, Н. Галанин. Н. Каплун, А. Парфенов, Е. Беликова. В.

Dugger. J. Hassesser. Н. Ronge, Е. Biekford и др.). Было убедительно доказано в сотнях экспериментов, что излучение в УФ области спектра (290—400 нм) повышает тонус симпатико-адреналиновой системы, активирует защитные механизмы, повышает уровень неспецифического иммунитета, а также увеличивает секрецию ряда гормонов. Под воздействием УФ излучения (УФИ) образуются гистамин и подобные ему вещества, которые обладают сосудорасширяющим

действием, повышают проницаемость кожных сосудов. Изменяется углеводный и белковый обмен веществ в организме. Действие оптического излучения изменяет легочную вентиляцию — частоту и ритм дыхания; повышается газообмен, потребление кислорода, активизируется деятельность эндокринной системы. Особенно значительна роль УФ излучения в образовании в организме витамина Д, укрепляющего костно-мышечную систему и обладающего антирахитным действием.

Особо следует отметить, что длительная недостаточность УФИ может иметь неблагоприятные последствия для человеческого организма, называемые «световым голоданием». Наиболее частым проявлением этого заболевания является нарушение минерального обмена веществ, снижение иммунитета, быстрая утомляемость и т. п. [2] 1.8. Негативное воздействие ультрафиолетового облучения Хорошо известен и ряд негативных эффектов, возникающих при воздействии

УФ-излучения на организм человека, которые могут приводить к ряду серьезных структурных и функциональных повреждений кожи. Как известно, эти повреждения можно разделить на: - острые, вызванные большой дозой облучения, полученной за короткое время (например, солнечный ожог или острые фотодерматозы). Они происходят преимущественно за счет лучей УФ-В, энергия которых многократно превосходит энергию лучей УФ-А. Солнечная радиация распределяется неравномерно:

70% дозы лучей УФ-В, получаемых человеком, приходится на лето и полуденное время дня, когда лучи падают почти отвесно, а не скользят по касательной - в этих условиях поглощается максимальное количество излучения. Такие повреждения вызваны непосредственным действием УФ-излучения на хромофоры - именно эти молекулы избирательно поглощают УФ-лучи. - отсроченные, вызванные длительным облучением умеренными (субэритемными) дозами (например,

к таким повреждениям относятся фотостарение, новообразования кожи, некоторые фотодерматиты). Они возникают преимущественно за счет лучей спектра А, которые несут меньшую энергию, но способны глубже проникать в кожу, и их интенсивность мало меняется в течение дня и практически не зависит от времени года. Как правило, этот тип повреждений - результат воздействия продуктов свободнорадикальных реакций (напомним,

что свободные радикалы - это высокореактивные молекулы, активно взаимодействующие с белками, липидами и генетическим материалом клеток).[9] Роль УФ-лучей спектра А в этиологии фотостарения доказана работами многих зарубежных и российских ученых, но тем не менее, механизмы фотостарения продолжают изучаться с использованием современной научно-технической базы, клеточной инженерии, биохимии и методов клеточной функциональной диагностики.

Слизистая оболочка глаза - коньюктива - не имеет защитного рогового слоя, поэтому она более чувствительна к уф-облучению, чем кожа. Резь в глазу, краснота, слезотечение, частичная слепота появляются в результате дегенерации и гибели клеток коньюктивы и роговицы. Клетки при этом становятся непрозрачными. Длинноволновые ультрафиолетовые лучи, достигая хрусталика, в больших дозах могут вызвать его помутнение - катаракту.

1.9. Защита от ультрафиолетового излучения Для защиты от избытка УФИ применяют противосолнечные экраны, которые могут быть химическими (химические вещества и покровные кремы, содержащие ингредиенты, поглощающие УФИ) и физическими (различные преграды, отражающие, поглощающие или рассеивающие лучи). Хорошим средством защиты является специальная одежда, изготовленная из тканей, наименее пропускающих УФИ (например, из поплина).

Для защиты глаз в производственных условиях используют светофильтры (очки, шлемы) из тёмно-зелёного стекла. Полную защиту от УФИ всех длин волн обеспечивает флинтглаз (стекло, содержащее окись свинца) толщиной 2 мм. При устройстве помещений необходимо учитывать, что отражающая способность различных отделочных материалов для УФИ другая, чем для видимого света. Хорошо отражают УФ-излучения полированный алюминий и медовая побелка, в то время как оксиды цинка и

титана, краски на масляной основе - плохо.[5] 2. Практическое применение УФ-излучения 2.1. Искусственные источники УФ-излучения Благодаря созданию и совершенствованию искусственных источников УФ излучения, шедшими параллельно с развитием электрических источников видимого света, сегодня специалистам, работающим с УФ излучением в медицине, профилактических, санитарных и гигиенических учреждениях, сельском

хозяйстве и т. д предоставляются существенно большие возможности, чем при использовании естественного УФ излучения. Разработкой и производством УФ ламп для установок фотобиологического действия (УФБД) в настоящее время занимаются как ряд крупнейших электроламповых фирм (Philips, Osram, LightTech, Radium, Sylvania и др.). В России известны производители УФ ламп для УФБД: ОАО «Лисма-ВНИИИС» (Саранск), НПО «ЛИТ» (Москва),

ОАО СКБ «Ксенон» (Зеленоград), ООО «ВНИСИ» (Москва). Номенклатура УФ ламп для УФБД весьма широка и разнообразна: так, например, у ведущего в мире производителя фирмы Philips она насчитывает более 80 типов. В отличие от осветительных УФ источники излучения, как правило, имеют селективный спектр, рассчитанный на достижение максимально возможного эффекта для определенного ФБ процесса. Классификация искусственных

УФ ИИ по областям применения, детерминированным через спектры действия соответствующих ФБ процессов с определенными УФ диапазонами спектра: • Эритемные лампы (ЛЭЗО, ЛЭР40) были разработаны в 60-х годах прошлого века для компенсации «УФ недостаточности» естественного излучения и, в частности, интенсификации процесса фотохимического синтеза витамина D3 в коже человека («антирахитное действие»). В 70-80 годах эритемные

ЛЛ, кроме медицинских учреждений, использовались в специальных «фотариях» (например, для шахтеров и горных рабочих), в отдельных ОУ общественных и производственных зданий северных регионов, а также для облучения молодняка сельскохозяйственных животных.[8] Спектр ЛЭ30 радикально отличается от солнечного; на область В приходится большая часть излучения в УФ области, излучение с длиной волны &#955; <

300нм, которое в естественных условиях вообще отсутствует, может достигать 20 % от общего УФ излучения. Обладая хорошим «анитирахитным действием», излучение эритемных ламп с максимумом в диапазоне 305—315 нм оказывает одновременно сильное повреждающее воздействие на коньюктиву (слизистую оболочку глаза). Отметим, что в номенклатуре УФ ИИ фирмы Philips присутствуют ЛЛ типа TL12 с предельно близкими к ЛЭ30 спектральными характеристиками, которые наряду с более «жесткой»

УФ ЛЛ типа TL01 используются в медицине для лечения фотодерматозов. Диапазон существующих УФ ИИ. которые используются в фототерапевтических установках, достаточно велик; наряду с указанными выше УФ ЛЛ, это лампы типа ДРТ или специальные МГЛ зарубежного производства, но с обязательной фильтрацией УФС излучения и ограничением доли УФВ либо путем легирования кварца, либо с помощью специальных светофильтров,

входящих в комплект облучателя. • В странах Центральной и Северной Европы, а также в России достаточно широкое распространение получили УФ ОУ типа «Искусственный солярий», в которых используются УФ ЛЛ, вызывающие достаточно быстрое образование загара. В спектре «загарных» УФ ЛЛ преобладает «мягкое» излучение в зоне

УФА Доля УФВ строго регламентируется, зависит от вида установок и типа кожи (в Европе различают 4 типа человеческой кожи от «кельтского» до «средиземноморского») и составляет 1-5 % от общего УФ излучения. ЛЛ для загара выпускаются в стандартном и компактном исполнении мощностью от 15 до 160 Вт и длиной от 30 до 180 см. • В 1980 г. американский психиатр Альфред Леви описал эффект «зимней депрессии», которую сейчас квалифицируют как заболевание и называют

сокращенно SAD (Seasonal Affective Disorders). Заболевание связано с недостаточной инсоляцией, то есть естественным освещением. По оценкам специалистов, синдрому SAD подтверждено ~ 10-12 % населения земли и прежде всего жители стран Северного полушария. Известны данные по США: в Нью-Йорке — 17 %, на Аляске — 28 %, даже во Флориде — 4 %.

По странам Северной Европы данные колеблются от 10 до 40 %. В связи с тем, что SAD является, бесспорно, одним из проявлений «солнечном недостаточности», неизбежен возврат интереса к так называемым лампам «полного спектра», достаточно точно воспроизводящим спектр естественного света не только в видимой, но и в УФ области. Ряд зарубежных фирм включило ЛЛ полного спектра в свою номенклатуру, например, фирмы

Osram и Radium выпускают подобные УФ ИИ мощностью 18, 36 и 58 Вт под названиями, соответственно, «Biolux» и «Biosun», спектральные характеристик которых практически совпадают. Эти лампы, естественно, не обладают «антирахитным эффектом», но помогают устранять у людей ряд неблагоприятных синдромов, связанных с ухудшением здоровья в осенне-зимний период и могут также использоваться в профилактических целях в ОУ школ, детских садов, предприятий и учреждений для компенсации

«светового голодания». При этом необходимо напомнить, что ЛЛ «полного спектра» по сравнению c ЛЛ цветности ЛБ имеют световую отдачу примерно на 30 % меньше, что неизбежно приведет к увеличению энергетических и капитальных затрат в осветительно-облучательной установке. Проектирование и эксплуатация подобных установок должны осуществляться с учетом требований стандарта CTES 009/E:2002 «Фотобиологическая безопасность ламп и ламповых систем». •

Весьма рациональное применение найдено УФЛЛ, спектр излучения которых совпадает со спектром действия фототаксиса некоторых видов летающих насекомых-вредителей (мух, комаров, моли и т. д.), которые могут являться переносчиками заболеваний и инфекций, приводить к порче продуктов и изделий. Эти УФ ЛЛ используются в качестве ламп-аттрактантов в специальных устройствах-светоловушках, устанавливаемых в кафе, ресторанах, на предприятиях пищевой промышленности, в животноводческих и птицеводческих хозяйствах,

складах одежды и пр.[4] 2.1.1. Бактерицидные лампы В качестве источников УФ-излучения используются разрядные лампы, у которых в процессе электрического разряда генерируется излучение, содержащие в своем составе диапазон длин волн 205-315 нм (остальная область спектра излучения играет второстепенную роль). К таким лампам относятся ртутные лампы низкого и высокого давления, а также ксеноновые импульсные лампы.

Ртутные лампы низкого давления конструктивно и по электрическим параметрам практически ни чем не отличаются от обычных осветительных люминесцентных ламп, за исключением того, что их колба выполнена из специального кварцевого или увиолевого стекла с высоким коэффициентом пропускания УФ-излучения, на внутренней поверхности которой не нанесен слой люминофора. Эти лампы выпускаются в широком диапазоне мощностей от 8 до 60

Вт. Основное достоинство ртутных ламп низкого давления состоит в том, что более 60 % излучения приходится на линию с длиной волны 254 нм, лежащей в спектральной области максимального бактерицидного действия. Они имеют большой срок службы 5.000-10.000 ч и мгновенную способность к работе после их зажигания. Колба ртутно-кварцевых ламп высокого давления выполнена из кварцевого стекла. Достоинство этих ламп состоит в том, что они имеют при небольших габаритах большую единичную мощность

от 100 до 1000 Вт, что позволяет уменьшить число ламп в помещении, но обладают низкой бактерицидной отдачей и малым сроком службы 500-1.000 ч. Кроме того, нормальный режим горения наступает через 5-10 минут после их зажигания. Существенным недостатком непрерывных излучательных ламп является наличие риска загрязнения парами ртути окружающей среды при разрушении лампы. В случае нарушения целостности бактерицидных ламп и попадания ртути в помещение должна быть проведена

тщательная демеркуризация загрязненного помещения. [10] В последние годы появилось новое поколение излучателей - короткоимпульсные, обладающие гораздо большей биоцидной активностью. Принцип их действия основан на высокоинтенсивном импульсном облучении воздуха и поверхностей УФ-излучением сплошного спектра. Импульсное излучение получают при помощи ксеноновых ламп, а также с помощью лазеров. Данные об отличии биоцидного действия импульсного

УФ-излучения от такового при традиционном УФ-излучении на сегодняшний день отсутствуют. Преимущество ксеноновых импульсных ламп обусловлено более высокой бактерицидной активностью и меньшим временем экспозиции. Достоинством ксеноновых ламп является также то, что при случайном их разрушении окружающая среда не загрязняется парами ртути. Основными недостатками этих ламп, сдерживающими их широкое применение, является необходимость использования для их работы высоковольтной, сложной и дорогостоящей

аппаратуры, а также ограниченный ресурс излучателя (в среднем1-1,5 года). Бактерицидные лампы разделяются на озонные и безозонные. У озонных ламп в спектре излучения присутствует спектральная линия с длиной волны 185 нм, которая в результате взаимодействия с молекулами кислорода образует озон в воздушной среде. Высокие концентрации озона могут оказать неблагоприятное воздействие на здоровье людей.

Использование этих ламп требует контроля содержания озона в воздушной среде и тщательного проветривания помещения. Для исключения возможности генерации озона разработаны так называемые бактерицидные "безозонные" лампы. У таких ламп за счет изготовления колбы из специального материала (кварцевое стекло с покрытием) или её конструкции исключается выход излучения линии 185 нм. Бактерицидные лампы, отслужившие свой срок службы или вышедшие из строя, должны храниться запакованными

в отдельном помещении и требуют специальной утилизации согласно требованиям соответствующих нормативных документов. [8] 2.1.2. Бактерицидные облучатели Бактерицидный облучатель - это электротехническое устройство, в котором размещены: бактерицидная лампа, отражатель и другие вспомогательные элементы, а также приспособления для его крепления. (приложение 3) Бактерицидные облучатели перераспределяют поток излучения в окружающее пространство в заданном направлении и подразделяются на две группы - открытые и закрытые.

Открытые облучатели используют прямой бактерицидный поток от ламп и отражателя (или без него), который охватывает широкую зону пространства вокруг них. Устанавливаются на потолке или стене. Облучатели, устанавливаемые в дверных проемах, называются барьерными облучателями или ультрафиолетовыми завесами, у которых бактерицидный поток ограничен небольшим телесным углом. Особое место занимают открытые комбинированные облучатели.

В этих облучателях, за счет поворотного экрана, бактерицидный поток от ламп можно направлять в верхнюю или нижнюю зону пространства. Однако эффективность таких устройств значительно ниже из-за изменения длины волны при отражении и некоторых других факторов. При использовании комбинированных облучателей бактерицидный поток от экранированных ламп должен направляться в верхнюю зону помещения таким образом, чтобы исключить выход прямого потока от лампы или отражателя

в нижнюю зону. При этом облученность от отраженных потоков от потолка и стен на условной поверхности на высоте 1,5 м от пола не должна превышать 0,001 Вт/м2. У закрытых облучателей (рециркуляторов) бактерицидный поток от ламп распределяется в ограниченном небольшом замкнутом пространстве и не имеет выхода наружу, при этом обеззараживание воздуха осуществляется в процессе его прокачки через вентиляционные отверстия рециркулятора.

При применении приточно-вытяжной вентиляции бактерицидные лампы размещаются в выходной камере. Скорость воздушного потока обеспечивается либо естественной конвекцией, либо принудительно с помощью вентилятора. Облучатели закрытого типа (рециркуляторы) должны размещаться в помещении на стенах по ходу основных потоков воздуха (в частности, вблизи отопительных приборов) на высоте не менее 2 м от пола. Согласно перечню типовых помещений, разбитых по категориям (ГОСТ), рекомендуется помещения

I и II категорий оборудовать как закрытыми облучателями (или приточно-вытяжной вентиляцией), так и открытыми или комбинированными - при их включении в отсутствии людей. В помещениях для детей и легочных больных рекомендуется применять облучатели с безозонными лампами. Искусственное ультрафиолетовое облучение, даже непрямое, противопоказано детям с активной формой туберкулеза, нефрозо-нефрита, лихорадочным состоянием и резким истощением.

Использование ультрафиолетовых бактерицидных установок требует строгого выполнения мер безопасности, исключающих возможное вредное воздействие на человека ультрафиолетового бактерицидного излучения, озона и паров ртути. [8] 2.2. Исследование в ультрафиолетовом излучении Исследование с использованием ультрафиолетовых лучей в техническом отношении достаточно простое и доступное средство научного анализа произведений искусства. В практике изучения живописи их применение сводится

к визуальному наблюдению или фотографированию вызываемой ими видимой люминесценции, то есть свечения вещества в темноте под действием фильтрованных ультрафиолетовых лучей. Различают два вида такого свечения: флуоресценцию — свечение, прекращающееся в момент, когда кончается действие источника его возбуждения, и фосфоресценцию — свечение, продолжающееся некоторое время после окончания действия источника возбуждения. В исследовании произведений живописи используют только флуоресценцию.

Под действием ультрафиолетовых лучей вещества органического и неорганического происхождения, в том числе некоторые пигменты, лаки и другие компоненты, входящие в состав произведения живописи, светятся в темноте. При этом свечение каждого вещества относительно индивидуально: оно определяется его химическим составом и характеризуется конкретным цветом и интенсивностью, что позволяет идентифицировать то или иное вещество или обнаруживать его присутствие. Понятие люминесценции.

Ультрафиолетовая область спектра непосредственно следует за сине-фиолетовым участком его видимой части. В этой области различают три зоны — ближнюю, примыкающую к видимому спектру (400-315 нм), среднюю (315-280 нм) и дальнюю, еще более коротковолновую. Ультрафиолетовое излучение, естественным источником которого является солнечный свет, подобно другим видам излучения, может поглощаться веществом, отражаться им или проходить сквозь него. Для возникновения люминесценции необходимым является поглощение света веществом:

поглощенная атомами и молекулами световая энергия возвращается в виде светового же излучения, которое носит название фотолюминесценции.[11] Частицы вещества, способного люминесцировать, поглотив световую энергию, приходят в особое возбужденное состояние, которое длится очень короткий промежуток времени (порядка 10-8 сек.). Возвращаясь в исходное состояние, возбужденные частицы отдают избыток энергии в виде света — люминесценции. Согласно правилу Стокса, люминесцирующее вещество, поглотившее световую

энергию определенной длины волны, излучает свет обычно большей длины волны. Поэтому, когда возбуждение производится невидимыми ближними ультрафиолетовыми лучами, люминесценция приходится на видимую область спектра и может быть любого цвета — от фиолетового до красного. В качестве источника длинноволнового ультрафиолетового излучения обычно применяют лампы высокого давления, рассчитанные на работу от сети переменного тока. Эксплуатация ламп производится с приборами включения

и в арматуре заводского изготовления Такие лампы удобны, когда надо возбудить люминесценцию больших поверхностей. Основная часть энергии этих ламп сосредоточена в видимой и ближней ультрафиолетовых областях. В практике работы зарубежных музейных лабораторий популярностью пользуются лампы мощностью в 500 Вт, изготовленные из «черного» стекла. Благодаря стандартному цоколю эти лампы не требуют специальных монтировочных устройств. Получили широкое распространение и люминесцентные лампы-трубки.

Изготовленные из того же стекла, они пропускают только ультрафиолетовую часть спектра. Будучи установленными по сторонам исследуемого произведения, эти лампы дают более равномерное освещение большой поверхности. Лампы-трубки имеют еще одно немаловажное преимущество: они работают без предварительного разогрева, и их можно включать сразу же после выключения, не делая перерыва для охлаждения, что значительно экономит время на операторскую работу. Ультрафиолетовые лучи значительно повышают ионизацию воздуха,

усиливая при этом выделение озона и окислов азота. Поэтому в помещении, где проводится работа с ультрафиолетовыми лучами, должен быть обеспечен усиленный обмен воздуха приточно-вытяжной вентиляцией. После окончания работы желательно активное проветривание рабочего помещения. Как показали специальные исследования и почти вековая музейная практика работы с этим излучением, при этом не происходят ни ухудшения сохранности картин, ни изменения колорита.

Фотофиксация проводимых исследований. При анализе данных люминесцентного исследования нельзя полагаться лишь на субъективные оценки: наблюдения должны быть зафиксированы и выражены какими-либо объективными показателями. Только в этом случае можно сравнивать и сопоставлять между собой факты, отмеченные при изучении разных произведений. Характерным признаком видимой люминесценции является ее цвет. Однако визуальное определение цвета, как уже говорилось, крайне субъективно.

Поэтому было бы целесообразным проведение спектрофотометрирования отдельных участков живописи, что позволило бы однозначно характеризовать окраску свечения. Из-за сложности снятия спектрофотометрических характеристик с большого количества разнородных участков, разбросанных на большой площади произведения, получил распространение менее точный, но более доступный способ фиксации люминесценции — ее фотографирование. [1]

Мягко отпечатанная фотография видимой люминесценции правильно передает характер свечения; более контрастный отпечаток делает очевиднее характер разрушения и тонировок. (приложение 1 и 2) Заключение Таким образом, УФ-излучение является очень важным природным фактором, обеспечивающим нормальную жизнедеятельность организма и соответствующие рост и развитие Различают три участка спектра ультрафиолетового излучения, имеющего различное биологическое воздействие.

Слабое биологическое воздействие имеет ультрафиолетовое излучение с длиной волны 0,39-0,315 мкм. Противорахитичным действием обладают УФ-лучи в диапазоне 0,315-0,28 мкм, а ультрафиолетовое излучение с длиной волны 0,28-0,2 мкм обладает способностью убивать микроорганизмы. Для организма человека вредное влияние оказывает как недостаток ультрафиолетового излучения, так и его избыток. Воздействие на кожу больших доз УФ-излучения приводит к кожным заболеваниям (дерматитам).

Повышенные дозы УФ-излучения воздействуют и на центральную нервную систему, отклонения от нормы проявляются в виде тошноты, головной боли, повышенной утомляемости, повышения температуры тела и др.[3] Ультрафиолетовое излучение с длиной волны менее 0,32 мкм отрицательно влияет на сетчатку глаз, вызывая болезненные воспалительные процессы. Уже на ранней стадии этого заболевания человек ощущает боль и чувство песка в глазах. Заболевание сопровождается слезотечением, возможно поражение роговицы глаза и развитие

светобоязни ("снежная" болезнь). При прекращении воздействия ультрафиолетового излучения на глаза симптомы светобоязни обычно проходят через 2-3 дня. Недостаток УФ-лучей опасен для человека, так как эти лучи являются стимулятором основных биологических процессов организма. Наиболее выраженное проявление "ультрафиолетовой недостаточности" - авитаминоз, при котором нарушается фосфорно-кальциевый обмен и процесс костеобразования, а также происходит снижение

работоспособности и защитных свойств организма от заболеваний. Подобные проявления характерны для осенне-зимнего периода при значительном отсутствии естественной ультрафиолетовой радиации ("световое голодание"). Бактерицидное действие ультрафиолетового излучения, т.е. способность убивать микроорганизмы, зависит от длины волны. Так, например, УФ-лучи с длиной волны 0,344 мкм обладают бактерицидным эффектом в 1000

раз большим, чем ультрафиолетовые лучи с длиной волны 0,39 мкм. Максимальный бактерицидный эффект имеют лучи с длиной волны 0,254-0,257 мкм. Оценка бактерицидного действия производится в единицах, называемых бактами (б). Для обеспечения бактерицидного эффекта ультрафиолетового облучения достаточно примерно 50 мкб • мин/см2.[6] Список литературы 1. Бейкер, А Беттеридж Д. Фотоэлектронная спектроскопия //

М.: Наука, 1985 – 97 с. 2. Галанин, Н. Ф. Лучистая энергия и ее гигиеническое значение // М.: Зна¬ние, 1991 – 45 с. 3. Дубров, А. П. Генетические и физиологические эффекты действия ультрафиолетовой радиации на высшие растения // М.: Просвещение, 1989 44 с. 4. Зайдель, А. Н Шрейдер, Е. Я Спектроскопия вакуумного ультрафиолета // М.: Агропромиздат, 1987 52с. 5. Лазарев, Д. Н. Ультрафиолетовая радиация и ее применение //

Л 1950 18с. 6. Мейер, А Зейтц, Э. Ультрафиолетовое излучение // М.: Наука, 1982 – 63 с. 7. Мясник, М. Н. Генетический контроль радиочувствительности бактерий // М.: Стройиздат, 1994 – 36с. 8. Потапченко, Н. Г Савлук, О. С. Использование ультрафиолетового излучения в практике обеззараживания воды // Химия и технология воды М 1995 Т. 13. № 12 – С. 41-48. 9.

Самойлова, К. А. Действие ультрафиолетовой радиации на клетку //Ленинград.: Интерстиль, 1997 - 106 с. 10. Смит, К Хэнеуолт,Ф. Молекулярная фотобиология // пер. с англ М.: Просвещение, 1992 – 97с. 11. Столяров, К. П. Химический анализ в ультрафиолетовых лучах // М.: 1965 – 44 с. 12. Шульгин, И. А. Растение и солнце //

М.: Наука, 2000 – 18 с. Приложение 1 Б.Пассароти. Мадонна с младенцем и Иоанном Крестителем. Вторая пол. XVI в. Приложение 2 Фотография фрагмента росписи ц.Чуда архангела Михаила в Московском Кремле в свете видимой люминесценции, показывающая многочисленные разрушения живописи, и в отраженных ультрафиолетовых лучах, демонстрирующая технику исполнения пробелов.

Приложение 3 Стерилизация воздуха и твёрдых поверхностей



Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат "Мы живем, под собою не чуя страны..."
Реферат Irish Immigraton Essay Research Paper Michael SakowichEnglish
Реферат Африка (Eng.)
Реферат Развитие экономики России в пореформенный период
Реферат Цвет в рекламе
Реферат Константин Симонов - писатель-фронтовик
Реферат Влияние температуры на параметры сенсибилизированной фосфоресценции трифенилена в твердых растворах Н-декана
Реферат Характеристика маркетингового дослідження товару
Реферат Чайная церемония в Японии
Реферат Как, исходя из понимания всех элементов коммуникативного процесса, восстановить доверие общественных групп к организации в кризисной ситуации
Реферат Теории международного движения капитала
Реферат Мемнон Родосский
Реферат Мацкевич, Юзеф
Реферат Cтиль руководства как одно из направлений психологии малых групп и организаций
Реферат Проблема применения смертной казни в России с этической точки зрения