Метод решения уравнений Ньютона - Рафсона
Метод Ньютона-Рафсона, также известный как Метод
Ньютона, представляет собой обобщенный метод поиска корня уравнения
(1)
Примем x = xj в качестве j-го приближения к
корню уравнения (1). Предположим, что xj не является решением.
Следовательно, . Предположим
также, что мы получили разложение в ряд Тейлора для уравнения (1) относительно
точки x = xj:
(2)
Если примем в качестве следующего члена x = xj+1,
то уравнение (2) будет иметь вид:
(3)
Теперь предположим, что справедливо необязательное
допущение того, что предыдущее приближение xj было
удовлетворительным, так что xj+1 - xj мало. Если это
предположение верно, мы можем пренебречь членами более высокого порядка в
уравнении (3), так как n-я степень малой величины значительно меньше, чем малая
величина для n>=2. В этом случае уравнение (3) может быть аппроксимировано
следующим образом:
(4)
Нашей целью является выбор такого xj+1,
чтобы оно стало решением уравнения (1). Следовательно, если наше предыдущее
предположение справедливо, xj+1 должно быть выбрано таким, что. Приравняв
уравнение (4) к нулю и решив относительно xj+1, получим:
(5)
Уравнение (5) называется уравнением Ньютона - Рафсона.
Если наше предположение, приведшее к выводу уравнения (5), справедливо, этот
алгоритм будет сходящимся, но только в том случае, если точка начального
приближения достаточно близка к точке решения. Геометрическая интерпретация
сходящегося метода Ньютона - Рафсона приведена на рис. 1а.
а) метод сходится
б) метод не сходится
Рис.1. Геометрическая интерпретация метода Ньютона -
Рафсона
Однако, если точка начального приближения далека от
точки решения, то метод Ньютона - Рафсона может не сходиться совсем.
Геометрическая интерпретация не сходящегося метода Ньютона - Рафсона приведена
на рис. 1б.
Алгоритм
Назначение: поиск решения уравнения (1)
Вход:
Начальное
приближение x0
Точность
(число итераций I)
Выход:
xI
- решение уравнения (1)
Инициализация:
calculate f’(x0)
Шаги:
1. repeat:
2. calculate xi using (5)
3. let i=i+1
4. if i>I then break the cycle
end
of repeat
Модификация алгоритма Ньютона для решения системы
нескольких уравнений заключается в линеаризации соответствующих функций многих
переменных, т. е. аппроксимации их линейной зависимостью с помощью частных
производных. Например, для нулевой итерации в случае системы двух уравнений:
Чтобы отыскать точку, соответствующую каждой новой
итерации, требуется приравнять оба равенства нулю, т.е. решить на каждом шаге
полученную систему линейных уравнений.
Список литературы
Для подготовки данной работы были использованы
материалы с сайта http://www.xaoc.ru/