Реферат по предмету "Астрономия"


Вселенная; Эволюция Вселенной

Эволюция Вселенной Важнейшие определения Согласно последним научным данным, возраст Вселенной составляет 13,7±0,2 миллиарда лет. Термины «известная Вселенная», «наблюдаемая Вселенная» или «видимая Вселенная» часто используются для описания части Вселенной, которая доступна для наблюдений. Поскольку космическое расширение исключает значительные части Вселенной из наблюдаемого горизонта, большинство космологов считает, что наблюдение всего континуума

невозможно и следует использовать термин «наша Вселенная» в отношении той части, которая известна человечеству. Существует также гипотеза о том, что Вселенная может быть частью мультивселенной — системы, содержащей множество других вселенных. Расстояния, доступные современным телескопам, составляют миллиарды световых лет. Вселенную на таких масштабах изучают астрономия и космология. Теоретической базой для космологии является общая теория относительности.

В самом крупном масштабе Вселенная представляет собой расширяющееся пространство. Стандартная модель эволюции Вселенной Вселенная постоянно расширяется. Тот момент, с которого Вселенная начала расширятся, принято считать ее началом. Тогда началась первая и эра в истории Вселенной, ее называют “большим взрывом”. Под расширением Вселенной подразумевается такой процесс, когда то же самое количество элементарных

частиц и фотонов занимают постоянно возрастающий объём. Средняя плотность Вселенной в результате расширения постепенно понижается. Из этого следует, что в прошлом плотность Вселенной была больше, чем в настоящее время. Можно предположить, что примерно десять миллиардов лет назад плотность Вселенной была очень большой. Кроме того, высокой должна была быть и температура - настолько высокой,

что плотность излучения превышала плотность вещества. Иначе говоря, энергия всех фотонов содержащихся в 1 куб. см была больше суммы общей энергии частиц, содержащихся в 1 куб. см. На самом раннем этапе, в первые мгновения “большого взрыва”, вся материя была сильно раскаленной и густой смесью частиц, античастиц и высокоэнергичных γ-фотонов. Частицы при столкновении с соответствующими античастицами аннигилировали, но возникающие γ-

фотоны моментально материализовались в частицы и античастицы. Эры эволюции Вселенной а) Адронная эра. При очень высоких температурах и плотности, в самом начале существования Вселенной, материя состояла из элементарных частиц. Вещество, на самом раннем этапе, состояло, прежде всего, из адронов, и поэтому ранняя эра эволюции Вселенной называется адронной, несмотря на то, что в то время существовали и лептоны.

Никогда после этого сильное взаимодействие (ядерная сила) не проявлялась во Вселенной в такой мере, как в адронную эру, длившуюся всего лишь одну десятитысячную долю секунды. б) Лептонная эра. Когда энергия частиц и фотонов понизилась, в веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и

фотонами встречаться гораздо реже. Лептонная эра начинается с распада последних адронов - пионов - в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 1010K, когда энергия фотонов уменьшилась, и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем “реликтовыми”. Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных

и мюонных нейтрино. Возникает нейтринное море. в) Фотонная эра или эра излучения. Температура Вселенной понизилась еще больше, произошла только аннигиляция электронов и позитронов. Новые электронно-позитронные пары не могли возникать вследствие материализации, потому, что фотоны не обладали достаточной энергией. Но аннигиляция электронов и позитронов продолжалась дальше, пока давление излучения полностью не отделило вещество от антивещества.

Со времени адронной и лептонной эры Вселенная была заполнена фотонами. К концу лептонной эры фотонов было в два миллиарда раз больше, чем протонов и электронов. Важнейшей составной Вселенной после лептонной эры становятся фотоны, причем не только по количеству, но и по энергии. Большой взрыв продолжался сравнительно недолго, всего лишь одну тридцатитысячную нынешнего возраста Вселенной. Несмотря на краткость срока, это, всё ж,е была самая славная эра

Вселенной. Никогда после этого эволюция Вселенной не была столь стремительна, как в самом её начале, во время “большого взрыва”. Все события во Вселенной в тот период касались свободных элементарных частиц, их превращений, рождения, распада, аннигиляции. Не следует забывать, что в столь короткое время (всего лишь несколько секунд) из богатого разнообразия видов элементарных частиц исчезли почти все: одни путем аннигиляции (превращение в гамма-фотоны), иные путем распада на самые легкие барионы (протоны) и на

самые легкие заряженные лептоны (электроны). После “большого взрыва” наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой. Она продолжается со времени завершения “большого взрыва” (приблизительно 300 000 лет) до наших дней. По сравнению с периодом “большого взрыва” её развитие представляется как будто слишком медленным. Это происходит по причине низкой плотности и температуры.

Таким образом, эволюцию Вселенной можно сравнить с фейерверком, который окончился. Остались горящие искры, пепел и дым. С атомов водорода начинается звездная эра - эра частиц, точнее, эра протонов и электронов. Вселенная вступает в звездную эру в форме водородного газа с огромным количеством световых и ультрафиолетовых фотонов. Водородный газ расширялся в различных частях Вселенной с разной скоростью. Неодинаковой была также и его плотность.

Он образовывал огромные сгустки, во много миллионов световых лет. Масса таких космических водородных сгустков была в сотни тысяч, а то и в миллионы раз больше, чем масса нашей теперешней Галактики. Расширение газа внутри сгустков шло медленнее, чем расширение разреженного водорода между самими сгущениями. Позднее из отдельных участков с помощью собственного притяжения образовались сверхгалактики и скопления галактик. Итак, крупнейшие структурные единицы

Вселенной - сверхгалактики - являются результатом неравномерного распределения водорода, которое происходило на ранних этапах истории Вселенной. Рождение галактик Колоссальные водородные сгущения - зародыши сверх-галактик и скоплений галактик - медленно вращались. Внутри их образовывались вихри, похожие на водовороты. Их диаметр достигал примерно ста тысяч световых лет.

Мы называем эти системы протогалактиками, т.е. зародышами галактик. Несмотря на свои невероятные размеры, вихри протогалактик были всего лишь ничтожной частью сверхгалактик и по размеру не превышали одну тысячную сверхгалактики. Сила гравитации образовывала из этих вихрей системы звезд, которые мы называем галактиками. Некоторые из галактик до сих пор напоминают нам гигантское завихрение.

Астрономические исследования показывают, что скорость вращения завихрения предопределила форму галактики, родившейся из этого вихря. Выражаясь научным языком, скорость осевого вращения определяет тип будущей галактики. Из медленно вращающихся вихрей возникли эллиптические галактики, в то время как из быстро вращающихся родились сплющенные спиральные галактики. В результате силы тяготения очень медленно вращающийся вихрь сжимался в шар или несколько сплюнутый

эллипсоид. Размеры такого правильного гигантского водородного облака были от нескольких десятков до нескольких сотен тысяч световых лет. Нетрудно определить, какие из водородных атомов вошли в состав рождающейся эллиптической, точнее говоря эллипсоидальной галактики, а какие остались в космическом пространстве вне нее. Если энергия связи сил гравитации атома на периферии превышала его кинетическую энергию, атом становился составной частью галактики. Это условие называется критерием

Джинса. С его помощью можно определить, в какой степени зависела масса и величина протогалактики от плотности и температуры водородного газа. Протогалактика, которая вообще не вращалась, становилась родоначальницей шаровой галактики. Сплющенные эллиптические галактики рождались из медленно вращающихся протогалактик. Из-за недостаточной центробежной силы преобладала сила гравитационная. Протогалактика сжималась и плотность водорода в ней возрастала.

Как только плотность достигала определенного уровня, начали выделятся и сжимается сгустки водорода. Рождались протозвезды, которые позже эволюционировали в звезды. Рождение всех звезд в шаровой или слегка приплюснутой галактике происходило почти одновременно. Этот процесс продолжался относительно недолго, примерно сто миллионов лет. На начальном этапе расширения Вселенной из фотонов рождались частицы и античастицы.

Этот процесс постоянно ослабевал, что привело к вымиранию частиц и античастиц. Согласно тому, как материализация в результате понижающейся температуры раскаленного вещества приостановилась. Солнечная система: состав и особенности Солнечная система - это спаянная силами взаимного притяжения система небесных тел.В неё входят: центральное тело - Солнце, 9 больших планет с их спутниками (которых известно уже более 60), несколько тысяч малых планет,

или астероидов, несколько сот наблюдавшихся комет и бесчисленное множество метеорных тел. Гравитационное притяжение солнца является главной силой, определяющей движение всех обращающихся вокруг него тел Солнечной системы. Двигаясь в Галактике, Солнечная система время от времени пролетает сквозь межзвездные газопылевые облака. Вследствие крайней разряженности вещества этих облаков погружение Солнечной системы в облако может проявится только при небольшом поглощении и рассеянии солнечных лучей.

Будучи вращающейся системой тел, Солнечная система обладает моментом количества движения (МКД). Главная часть его связана с орбитальным движение планет вокруг Солнца. Ядра комет по своему химическому составу родственны планетам - гигантам: они состоят из водяного льда и льдов различных газов с примесью каменистых веществ. Сравнительно недавно открытый Хирон, движущийся в основном между орбитами

Сатурна и Урана, вероятно, подобен ледяным ядрам комет и небольшим спутникам далёких от Солнца планет. У малых планет, именно вследствие их малых размеров, недра подогревались значительно меньше, чем у планет земной группы, и поэтому их вещество зачастую претерпело лишь небольшие изменения со времени их образования. Измерения возраста метеоритов (по содержанию радиоактивных элементов и продуктов их распада) показали, что они, а следовательно вся

Солнечная система существует около 5 миллиардов лет. Этот возраст Солнечной системы находится в согласии с измерениями древнейших земных и лунных образцов. Планеты земной группы Меркурий - самая близкая к Солнцу планета Солнечной системы. Расположена на расстоянии 58 млн. км от Солнца. Из-за близости к Солнцу и малых видимых размеров

Меркурий долго оставался малоизученной планетой. Поверхность усеяна кратерами разных размеров, причём их распределение по величине диаметра аналогично распределению кратеров Луны. Это говорит о том, что они образовались в результате интенсивной метеоритной бомбардировки миллиарды лет назад на первых этапах эволюции планеты. В начальный периуд своей истории Меркурий, по-видимому , испытывал сильное внутреннее разогревание, за которым следовало одна или несколько

эпох вулканизма.После завершения процесса формирования планеты её поверхность была гладкой.Далее наступил период интенсивной бомбардировки Меркурия остатками допланетного роя. Следующий этап характиризовался активным вулканизмом и выходов потоков лавы, заполнившей крупные бассеины.Этот период завершился около 3 милрд. лет назад. Венера - вторая по расстоянию от Солнца и ближайшая к Земле планета Солнечной системы.

Земля - сегодня известно, что наша планета образовалась около 4,6 млрд. лет назад. Существование осадочных пород, возраст которых превосходит 3,5 млрд. лет, служит доказательством существования на Земле обширных водоёмов уже в ту далёкую пору. Полагают, что земная атмосфера сильно изменилась в процессе эволюции: обогатилась кислородом и приобрела современный состав в результате длительного взаимодействия с горными породами и при участии биосферы, т.е. растительных и животных организмов.

Доказательством того, что такие изменения действительно произошли, служат, например, залежи каменного угля и мощные пласты отложений карбонатов в осадочных породах. Они содержат громадное количество углерода, который раньше входил в состав земной атмосферы в виде углекислого газа и окиси углерода. Учёные считают, что древняя атмосфера произошла из газообразных продуктов вулканических извержений; о её составе судят по химическому анализу образцов газа, "замурованных"

в полостях древних горных пород. Что ждёт Землю в будущем? В конце концов недра Земли остынут до такой степени, что движение материков (а значит, и горообразование, извержения вулканов и землетрясения) постепенно ослабнут и прекратятся. Выветривание со временем сотрёт неровности поверхности, и планета скроется под водой. Дальнейшая её судьба будет определяться средневековОй температурой.

Если она значительно понизится, то океан замёрзнет, и Земля покроется ледяной коркой. Если же температура повысится (а скорее всего именно это к этому и приведёт возрастающая активность Солнца), то вода испарится. Очевидно, ни в том, ни в другом случае жизнь человечества на Земле будет уже не возможна. Марс - четвёртая по расстоянию от

Солнца планета Солнечной системы. На звёздном небе она выглядит как немигающая точа красного цвета, которая время от времени значительно превосходит по блеску звезды первой величины. На протяжении долгой геологической истории Марса его поверхность изменяли извержения вулканов и мрсотрясени, глубокие шрамы оставили метеориты, ветер, вода и льды. Планеты-гиганты Юпитер - пятая по расстоянию от Солнца и самая большая планета

Солнечной системы Юпитерский океан состоит из главного на планете элемента - водорода. Сатурн - вторая по величине среди планет Солнечной системы. Кольца Сатурна - одно из самых удивительных и интересных образований в Солнечной системе. Плоская система колец опоясывает планету вокруг экватора и нигде не соприкасается с поверхностью. Уран - седьмая по порядку от Солнца планета

Солнечной системы. Уран имеет 9 плотных, узких и далеко стоящих друг от друга колец. Нептун - восьмая по счёту планета Солнечной системы. на Нептуне заметны пяина антициклонов. Плутон - из 9 известных больших планет Солнечной системы наиболее удалён от Солнца. Он является самой маленькой среди больших планет



Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Восстание 14 декабря 1825 г. в Петербурге
Реферат Оценка гидрологических условий на площадке строительства и прогноз развития неблагоприятных проц
Реферат Философские взгляды Сократа
Реферат Совершение преступления в состоянии опьянения
Реферат Учет расходов при возврате комиссий по кредитным договорам
Реферат Occupation Of Japan Essay Research Paper For
Реферат Бухгалтерская отчетность как источника информации о деятельности организации
Реферат Канада в АТР: торговля и безопасность в 2001-2002 гг.
Реферат 17 Адаму же сказал: за то, что ты послушал голоса жены твоей и ел от дерева, о котором Язаповедал тебе, сказав: «не ешь от него», проклята земля за тебя
Реферат Избранная рада и опричнина Ивана IV Грозного их влияние на развитие русской государственности в работах
Реферат Конкурентоспособность продукции в современных условиях бизнеса
Реферат East Francia Government Essay Research Paper King
Реферат Мусульманский мир модель экономической организации общества
Реферат Акімова Наталія Володимирівна удк 81’23’42’161. 1’Пелевін Мова творів В. Пелевіна в психолінгвістичному І лінгвокультурному аспектах 10. 02. 02 російська мова автореферат
Реферат Без действия нет жизни ВГБелинский По одному из произведений русской литературы КГПаустовский Черное