Цезий - химический элемент I группы периодической системы, атомный номер 55, атомная масса 132,9054; относится к щелочным металлам.
Открыт цезий сравнительно недавно, в 1860 г., в минеральных водах известных целебных источников Шварцвальда (Баден-Баден и др.). За короткий исторический срок прошел блистательный путь - от редкого, никому не ведомого химического элемента до стратегического металла. Принадлежит к семье редких щелочных легких металлов. Легко взаимодействует с другими элементами, образуя прочные связи. В настоящее время применяется одновременно в нескольких отраслях: в электронике и автоматике, в радиолокации и кино, в атомных реакторах и на космических кораблях.
Впервые он был обнаружен по двум ярким линиям в синей области спектра, и латинское слово «caesius», от которого произошло его название, означает небесно-голубой. Неоспоримо утверждение о том, что цезий практически последний в ряду щелочных металлов. Правда, еще Менделеев предусмотрительно оставил в своей таблице пустую клетку для «экацезия», который должен был следовать в I группе за цезием. И этот элемент (франций) в 1939 г. был открыт. Однако франций существует лишь в виде быстро распадающихся радиоактивных изотопов с периодами полураспада в несколько минут, секунд или даже тысячных долей секунды.
Цезий был первым элементом, открытым с помощью спектрального анализа. Ранее соли цезия ошибочно считали солями калия. Ученые, однако, имели возможность познакомиться с этим элементом еще до того, как Бунзен и Кирхгоф создали новый исследовательский метод. Речь идет о пропаже, которая долгие годы не давала покоя химикам. Еще в 1846 году немецкий ученый К. Платтнер занялся исследованием полуцита-минерала, найденного на острове Эльба. Выполнить полный химический анализ минерала было делом не хитрым, но вот загвоздка: как ни складывал Платтнер полученные им результаты, сумма всех составляющих оказывалась равной 93%. Куда же могли подеваться остальные 7%? Почти два десятка лет никто не мог ответить на этот вопрос. И лишь в 1864 году итальянец Пизани представил неопровержимые доказательства того, что виновником «недовеса» был цезий, ошибочно принятый Платтнером за калий - эти элементы состоят в довольно близком химическом родстве, однако цезий в два с лишним раза тяжелее.
Металлический цезий впервые был получен Сеттербергом в 1882 г. электролизом расплавленного цианида цезия. Производство соединений цезия возникло в конце прошлого столетия, а производство металлов цезия было организовано в двадцатых годах прошлого столетия. Однако и в настоящее время их получают в ограниченном количестве.
Блестящая поверхность металлического цезия имеет бледно-золотистый цвет. Это - один из самых легкоплавких металлов: он плавится при 28,5 °C, кипит при 705 °C в обычных условиях и при 330 °C в вакууме. Легкоплавкость цезия сочетается с большой легкостью. Несмотря на довольно большую атомную массу (132,905) элемента, его плотность при 20 °C всего 1,87. Цезий во много раз легче своих соседей по менделеевской таблице. Лантан, например, имеющий почти такую же атомную массу, по плотности превосходит цезий в три с лишним раза. Цезий всего вдвое тяжелее натрия, а их атомные массы относятся, как 6:1. По-видимому, причина этого кроется в своеобразной электронной структуре атомов цезия. Каждый его атом содержит 55 протонов, 78 нейтронов и 55 электронов, но все эти многочисленные электроны расположены относительно рыхло - ионный радиус цезия очень велик - 1,65 ?*. Ионный радиус лантана, например, равен всего 1,22 ?, хотя в состав его атома входят 57 протонов, 82 нейтрона и 57 электронов. Атомный радиус цезия равен 2,62 ?.
Природный цезий состоит из стабильного нуклида 133Cs. Поперечное сечение захвата тепловых нейтронов 2,9*10-27м2.
Конфигурация внешней электронной оболочки атома 6s1, степень окисления +1; энергия ионизации при переходе Cs >Cs+>Cs2+ соответствует 3,89397, 25,1 эВ;
сродство к электрону 0,47 эВ; электроотрицательность по Полингу 0,7; работа
выхода электрона 1,81 эВ; металлический радиус 0,266 нм, ковалентный радиус 0.235 нм, ионный радиус Cs+ 0,181 нм (координационное число 6), 0,188 нм (8), 0,192 нм (9), 0,195 нм (10),
0,202 нм (12).
Содержание цезия в земной коре 3,7·10-4% по массе. Минералы цезия - поллуцит (Сs, Nа) [АlSi2O6] ·Н2О (содержание Cs2О 29,8-36,7% по массе) и редкий авогадрит (К, Сs) [ВF4]. Цезий присутствует в виде примеси в богатых калием алюмосиликатах: лепидолите (0,1-0,5% СsО), флогопите (0,2-1,5%) и др., также в карналлите (0,0003-0,002% CsС1), трифилине, в термальных (до 5 мг/л Cs) и озерных (до 0,3 мг/л Cs) водах. Промышленный источники цезия - поллуцит и лепидолит.
Цезий - мягкий металл, который при комнатной температуре находится в полужидком состоянии. Пары окрашены в зеленовато-синий цвет. Кристаллизуется в кубической объемноцентрированной решетке: а = 0,6141 нм, z = 2, пространств, группа IтЗт т. пл. 28,44 °С, точка кипения 669,2 °С; плотность 1,904 г./см3 (20 °С); С0р32,21 Дж/(моль·К); Н0пл 2,096 кДж/моль, ?Н0исп65,62 кДж/моль, ?Н0возг76,54 кДж/моль (298,15 К); S0298 85,23 Дж/(моль·К); уравнения температурной зависимости давления пара: lg p (мм рт. ст.) = -4122/T + 5,228 - 1,514 lg T + 3977Т (100-301,59К), lg p (мм. рт. cт.)= -3822/Т + 4,940 - 0,746 lg T (301,59-897 К); теплопроводность, Вт/(м·К): 19,0 (298 К), 19,3 (373 К), 20,2 (473 К); ?, мкОм·м: 0,1830 (273,15 К), 0,2142 (301,59 К, твердый), 0,3568 (301,59 К, жидкость), температурный коэффициент ? 6,0-10-3 К-1 (273-291 К); парамагнетик, удельная магнитная восприимчивость +0,22·10-9(293 К); ?, мПа·с: 6,76 (301,59 К), 5,27 (350 К), 3,18 (500 К); ? 60,6 мН/м (301,59 К); температурный коэффициент линейного расширения 97·10-6 К-1 (273 К); твердость по Моосу 0,2; модуль упругости 1,7 ГПа (293 К); коэффициент. сжимаемости 71·10-11Па-1 (323 К).
На воздухе цезий мгновенно окисляется с воспламенением и образованием перекиси и надперекиси. С водой цезий и рубидий бурно реагируют с образованием гидроокисей и выделением водорода. Эта реакция протекает даже при температуре -100° С.
Цезий растворяется в жидком аммиаке, со спиртом образуют алкоголяты, способные присоединить одну молекулу спирта. Из-за высокой реакционной способности цезий хранят в герметических стальных сосудах под слоем парафина.
Цезий, как натрий и калий, обладает единственным 5-электроном сверх конфигурации инертных газов. Структура электронных оболочек цезия определяет многие его физико-химические свойства. Конфигурация электронных оболочек следующая: КЬ - [Кг] криптон. 5s и Сз - [Хе] ксенон 6s. Вследствие небольшой разницы в энергиях атомных орбит - 5d и 6s для цезия атомы их легко возбуждаются. По этой причине металлы обладают низкими значениями ионизационных потенциалов, хорошей электропроводностью и явлением фотоэффекта. Способность световых лучей заряжать тела положительным электричеством или отнимать от них отрицательный заряд была названа фотоэффектом (от греческого слова «фотос» - свет и латинского - «эффект» - действие). Световые лучи «выбивают» из цезия электроны, которые образуют электрический ток. У цезия очень легко «выбить» электрон, так как на внешнем электронном слое он один. Чем дальше от ядра атома удален электрон, тем легче его оторвать. Так, у цезия шесть электронных слоев, а у натрия только три; между ядром и внешним электроном у цезия 54 электрона, а у натрия только 10. Следовательно, цезий легче всего отдает свой электрон, потому что он обладает наибольшим атомным радиусом и наименьшим ионизационным потенциалом. Цезий встречается в природе только в виде стабильного изотопа 135Сз
Самое замечательное свойство цезия - его исключительно высокая активность. По чувствительности к свету он превосходит все другие металлы. Цезиевый катод испускает поток электронов даже под действием инфракрасных лучей с длиной волны 0,80 мкм. Кроме того, максимальная электронная эмиссия, превосходящая нормальный фотоэлектрический эффект в сотни раз, наступает у цезия при освещении зеленым светом, тогда как у других светочувствительных металлов этот максимум проявляется лишь при воздействии фиолетовых или ультрафиолетовых лучей.
Долгое время ученые надеялись найти радиоактивные изотопы цезия в природе, поскольку они есть у рубидия и калия. Но в природном цезии не удалось обнаружить каких-либо иных изотопов, кроме вполне стабильного 133Cs. Правда, искусственным путем получено 22 радиоактивных изотопа цезия с атомными массами от 123 до 144. В большинстве случаев они недолговечны: периоды полураспада измеряются секундами и минутами, реже - несколькими часами или днями. Однако три из них распадаются не столь быстро - это 134Cs, 137Cs и 135Cs, живущие 2,07; 26,6 и 3·106 лет. Все три изотопа образуются в атомных реакторах при распаде урана, тория и плутония; их удаление из реакторов довольно затруднительно.
Химическая активность цезия необычайна. Он очень быстро реагирует с кислородом и не только моментально воспламеняется на воздухе, но способен поглощать малейшие следы кислорода в условиях глубокого вакуума. Воду он бурно разлагает уже при обычной температуре; при этом выделяется много тепла, и вытесняемый из воды водород тут же воспламеняется. Цезий взаимодействует даже со льдом при -116 °C. Его хранение требует большой предосторожности.
Цезий взаимодействует и с углеродом. Только самая совершенная модификация углерода - алмаз - в состоянии противостоять его «натиску». Жидкий расплавленный цезий и его пары разрыхляют сажу, древесный уголь и даже графит, внедряясь между атомами углерода и образуя своеобразные, довольно прочные соединения золотисто-желтого цвета, которые в пределе, по-видимому, отвечают составу C8Cs5. Они воспламеняются на воздухе, вытесняют водород из воды, а при нагревании разлагаются и отдают весь поглощенный цезий.
Даже при обычной температуре реакции цезия с фтором, хлором и другими галогенами сопровождаются воспламенением, а с серой и фосфором - взрывом. При нагревании цезий соединяется с водородом, азотом и другими элементами, а при 300 °C разрушает стекло и фарфор. Гидриды и дейтериды цезия легко воспламеняются на воздухе, а также в атмосфере фтора и хлора. Неустойчивы, а иногда огнеопасны и взрывчаты соединения цезия с азотом, бором, кремнием и германием, а также с окисью углерода. Галоидные соединения цезия и цезиевые соли большинства кислот, напротив, очень прочны и устойчивы. Активность исходного цезия проявляется у них разве только в хорошей растворимости подавляющего большинства солей. Кроме того, они легко превращаются в более сложные комплексные соединения.
Все щелочные металлы сильно изменяются под действием высокого давления. Но именно цезий реагирует на него наиболее своеобразно и резко. При давлении в 100 тыс. атм. его объем уменьшается почти втрое - сильнее, чем у других щелочных металлов. Кроме того, именно в условиях высокого давления были обнаружены две новые модификации элементарного цезия. Электрическое сопротивление всех щелочных металлов с ростом давления увеличивается; у цезия это свойство выражено особенно сильно.
Сплавы и интерметаллические соединения цезия всегда сравнительно легкоплавки.
У цезия имеется еще одно весьма важное свойство, тесно связанное с его электронной структурой. Дело в том, что он теряет свой единственный валентный электрон легче, чем любой другой металл; для этого необходима очень незначительная энергия - всего 3,89 эВ. Поэтому получение плазмы из цезия требует гораздо меньших энергетических затрат, чем при использовании любого другого химического элемента.
Ядро атома цезия и его валентный электрон обладают собственными магнитными моментами. Эти моменты могут быть ориентированы двояко - параллельно или антипараллельно. Разница между энергиями обоих состояний постоянна, и, естественно, переход из одного состояния в другое сопровождается колебаниями со строго постоянными характеристиками (длина волны 3,26 см). Используя это свойство, ученые создали цезиевые «атомные часы» - едва ли не самые точные в мире.
Цезий химически очень активен, стандартный электродный потенциал составляет 2,923 В. на воздухе мгновенно окисляется с воспламенением, образуя надпероксид Сs02с примесью пероксида Сs202. При ограниченном доступе O2 Окисляется до оксида цезия Cs20; Сs02 переходит в озонид Cs03 в токе озонированного O2 при 40 °С. С водой цезий реагирует со взрывом с образованием гидроксида CsОН и выделением Н2. Взаимодействует с сухим Н2 при 200-350 °С под давлением 5-10 МПа или в присутствии катализатора с образованием гидрида СsН.
Все многочисленные соединения цезия можно подразделить на две группы: простые и комплексные.
Простые соединения.
Оксид цезия Сs2О, кристаллы, расплывающиеся на воздухе; в вакууме (10-3 Па) возгоняется при 350-450 °С, при 500 °С разлагается: 2Cs20 >Сs202 + 2Cs; энергично реагирует с водой, давая CsОН, с влажным СО2, при 150-200 °С - с Н2, Р2, С12, а также с расплавленной серой; разлагается на свету; получают медленным окислением Cs кислородом (2/3 стехиометрического колличества), остаток Cs отгоняют в вакууме при 180-200 °С. При окислении Cs кислородом получают также его пероксид и надперокид.
Таблица 2
Свойства оксида, пероксида и надпероксида |
|||||
Показатель |
Cs2O |
Cs2O2 |
CsO2 |
||
Цвет |
Коричнево-красный |
Бледно-желтый |
Золотисто-коричневый |
||
Сингония |
Гексагональная |
Ромбическая |
Тетрагональная |
Кубическая |
|
Параметры кристалической решетки, нм: |
|||||
? |
0,674 |
0,4322 |
0,4477 |
0,662 |
|
b |
- |
0,7517 |
- |
- |
|
с |
1,882 |
0,6340 |
0,7350 |
- |
|
Пространственная группа |
R3m |
/mmm |
14/mmm |
Fm3m |
|
Температура плавления,?С |
595? |
594? |
130? |
450? |
|
Плотность, г/см3 |
4,36 |
4,47 (15?С) |
3,76 (19?С) |
- |
|
С?р, Дж/(моль? К) |
76,0? |
95,0? |
79,1? |
- |
|
?Н?обр, кДж/моль |
-346,4? |
-440? |
-286? |
- |
|
?Н?пл, кДж/моль |
20? |
22? |
- |
18? |
|
S?298, Дж/(моль? К) |
146,9? |
180? |
142? |
- |
|
Пероксид Сs202 - гигроскопичные кристаллы, выше 650 °С разлагается с выделением атомарного кислорода и активно окисляет Ni, Аg, Рt, Аu; давление диссоциации 2261 Па (1103 °С); растворяется в ледяной воде без разложения, при температуре выше 25° С протекает реакция с образованием гидроокисей:
2Ме202 + 2Н20 = MеОН + О2,
а в кислоте происходит выделение перекиси водорода:
Ме202 + Н2S04 = Ме2S04 + Н202.
Гидриды цезия (СsН) - твердые кристаллические вещества, имеют кубическую гранецентрированную решетку типа хлорида натрия, СsН 3,4 г/см3. Они относятся к солеобразным соединениям, в которых анион Н~ по физическим свойствам близок к ионам галогенида.
Гидриды воспламеняются на воздухе, содержащем следы влаги, самовоспламеняются в атмосфере хлора и фгора; бурно реагируют с водой, выделяя водород:
СsН+ Н20= СsОН+ Н2
Гидриды получаются путем гидрирования чистых металлов водородом.
Цезий очень энергично соединяеся с кислородом. Все соединения цезия, содержащие кислород, активно взаимодействуют с влагой и двуокисью углерода воздуха.
Из соединений цезия с более высоким содержанием кислорода известны четыре типа: перекиси (Ме20.2), триокиси [Ме± (02)3], надперекиси (Ме02) и озониды (Ме03).
Окиси цезия представляют собой прозрачные иглы, расплывающиеся на воздухе. Под действием света окиси разлагаются, давая металл. В вакууме окись цезия возгоняется при температуре (350-450° С), а уже при 500° С образуется 0>202, которая полностью сублимирует. Окиси цезия бурно реагируют с расплавленной серой по реакции:
4Ме20 + 7S = Мe2S04 + 6Mе.
Безводные гидроокиси цезия представляют собой кристаллические, очень гигроскопичные вещества, переходящие вследствие взаимодействия с Н20 и СО в карбонаты. Известно пять кристаллогидратов гидроокисей: МеОН-Н20; МеОН-2НаО; МeOН-ЗН, 0; МeOН-4Н20 и ЗМеОН-Н20. Отмечается, что кристаллизационная вода остается в образцах при температурах, значительно превышающих их температуры плавления.
Растворимость гидроокисей уменьшается с повышением температуры и составляет при 15° С 79,41% (по массе) CsОН. Гидроокиси хорошо растворяются в этаноле, жидком аммиаке и этиловом спирте. На воздухе они расплываются и постепенно переходят в карбонаты, а при 400 - 500° С образуют перекиси.
Расплавленные гидроокиси очень агрессивны: они взаимодействуют с железом, кобальтом, никелем, платиной, разрушают изделия из корунда и двуокиси циркония, растворяют серебро и золото.
Цезий горит в атмосфере галогенов, давая галогениды цезия. Галогениды цезия СsХ, где X = F, С1, Вr, I, - бесцветные кристаллы. Плавятся без разложения, выше температуры плавления летучи, давление пара повышается, а термическая устойчивость понижается при переходе от СsF к CsI; CsВr и CsI в парах частично разлагаются с выделением соответственно Вг2 и I2. СsI легко окисляется при обычной температуре, на свету его водные растворы желтеют вследствие выделения I2. Растворимость галогенидов цезия в воде (г в 100 г.): CsР - 530 (25 °С), 608 (50 °С); CsС1 - 162,3 (0,7 °С), 191,8 (25 °С), 229,4 (50 *С); СsВr - 123,5 (25 °С); СU - 43,1 (0 °С), 85,6 (25 °С), 160 (61 °С), Из водных растворов кристаллизуются безводные СsСl, CsВr, CsI, кристаллогидраты СsF·nН20, где n = 1, 1,5, 3.
Галогениды цезия хорошо растворимы в метаноле, этаноле, муравьиной кислоте, гидразине, плохо - в ацетоне, эфирах, пиридине, ацетонитриле, нитробензоле.
Таблица 3. Растворимость в галогеноводородных кислотах НХ:
Вещество |
Концетрация в растворе HX и CsX, % по массе (25?С) |
|||||
HBr |
5,0 |
10,0 |
15,0 |
20,0 |
25,0 |
|
CsBr |
49,0 |
40,6 |
33,3 |
27,9 |
23,4 |
|
HCl |
4,2 |
11,0 |
15,4 |
20,2 |
22,4 |
|
CsCl |
57,9 |
49,1 |
45,5 |
43,1 |
42,4 |
|
Растворы CsС1 в соляной кислоте используют для его первичного отделения от NaС1 и КС1.
Безводный CsF гигроскопичен, его водные растворы имеют щелочную среду: 2CsР + Н20 CsНF2 + CsОН. Фторид образует гидрофториды: CsF·nНF, где n=1, 2, 3, 6, - бесцветные кристаллы, при п > 2 легко расплываются и разлагаются на воздухе; CsНF2 термически устойчив, отщепляет НF при 500-600 °С; хорошо растворим в воде.
Галогениды цезия образуют с соответствующими КХ и RbХ твердые раствворы, с NаХ - эвтектические смеси, с LiХ - аддукты, например LiCl·2CsС1. Комплексы CsХ с галогенидами многих элементов, например Cs3[Sb2С19], используют для выделения и определения цезия.
Получают CsХ нейтрализацией Сs2С03 соответствующей кислотой НХ либо взаимодействием СsSО4 с ВаХ2 в растворе. CsВr и CsI получают в горячем растворе по реакции:
6СsОН + ЗХ2>5CsХ + СsХ03 + ЗН20
Далее в раствор добавляют активированный уголь, упаривают досуха и прокаливают при 300-450 °С. СsВг и СsI можно получить из Сs2СО3 или СsНС03 в присутствии восстановителей:
2Сs2С03 + 2Х2 + N2H 4>4СsХ + N2 + 2Н20 + 2С02
Галогениды CsВr и Cs1 обладают оптической прозрачностью в интервале длин волн от 500 до 6 * 104 нм, их используют для изготовления призм в ИК спектроскопии; пары CsВг - рабочее тело в плазменных СВЧ установках; монокристаллы Cs1, активированные Т1, используют в сцинтилляционных счетчиках. СsХ - компоненты люминофоров для флуоресцирующих экранов. СsF применяют при получении пьезоэлектрической. керамики, как компонент специальных стекол и эвтектических, композиций для аккумуляторов тепла, CsС1 - электролит в топливных элементах, флюс при сварке Мо.
Таблица 4
Свойства галогенидов цезия |
|||||||||||
Показатель |
CsF |
CsHF2 |
CsCl |
CsBr |
Csl |
||||||
Сингония |
Кубическая |
Тетрагоническая |
Кубическая |
Кубическая |
Кубическая |
Кубическая |
Кубическая |
Кубическая |
Кубическая |
Кубическая |
|
Параметр кристалической решетки a, нм |
0,601 |
0,6146 |
0,412 |
- |
0,411 |
0,694 |
0,429 |
0,723 |
0,457 |
0,766 |
|
Число формульных единиц в ячейке |
4 |
- |
1 |
- |
1 |
4 |
1 |
4 |
1 |
4 |
|
Пространственная группа |
Fm3m |
14/mcm |
Pm3m |
- |
Pm3m |
Fm3m |
Pm3m |
Fm3m |
Pm3m |
Fm3m |
|
Температура плавления,?С |
703? |
58? |
177? |
180? |
470? |
646? |
- |
637? |
- |
632? |
|
Температура кипения,?С |
1253? |
- |
- |
- |
- |
1295? |
- |
1297? |
- |
1280? |
|
Плотность (25?С), г/см3 |
3,59 |
3,68 |
3,81 |
- |
3,983 |
- |
4,43 |
4,509 |
- |
||
С?р, Дж/(моль·К) |
51,09 |
87,34 |
- |
- |
52,47 |
- |
52,93 |
- |
52,47 |
- |
|
?Н?обр, кДж/ моль |
-557,1? |
-973,2? |
4,15? |
- |
-442,3? |
2,93? |
-405,6? |
- |
-348,1? |
||
?Н?пл, кДж/моль |
21,7? |
2,43? |
- |
2,76? |
- |
20,38? |
- |
23,6? |
- |
25,65? |
|
S?298, Дж/(моль·К) |
92,96 |
135,3 |
- |
- |
101,17 |
- |
112,94 |
- |
122,20 |
- |
|
Показатель преломления прн 20?С (? 589 нм) |
1,480 |
- |
- |
- |
1,6397 |
- |
1,6984 |
- |
1,7876 |
- |
|
Фториды цезия выделяются из водных растворов в виде кристаллогидратов. Они довольно устойчивы; заметно возгоняются при температуре выше 800-900 °С. Фториды хорошо растворяются в воде; их получают нейтрализацией карбонатов цезия избытком плавиковой кислоты с последующим упариванием раствора досуха.
Хлориды цезия выделяются из водных растворов в виде негигроскопичных безводных кристаллов ромбической формы.
Хлориды цезия термически устойчивые соединения, плавящиеся без разложения; они хорошо растворяются в воде и в муравьиной кислоте. В соляной кислоте растворимость хлоридов уменьшается с повышением концентрации НС1. Это свойство широко используется в промышленности.
Бромиды цезия кристаллизуются в виде негигроскопичных безводных кубиков или ромбических додекаэдров. Термически это довольно устойчивые соединения. При нагревании выше температур плавления (682° С для КЬВг; 627° С для ОзВг) они частично разлагаются с выделением брома или бромистово-дородной кислоты.
Бромиды получают взаимодействием нагретого водного раствора гидроокиси цезия и брома:
6CsОН + ЗВг2 = 5СsВг + СsВrOз + ЗН20.
После окончания реакции в раствор вводят порошок активированного угля, смесь упаривают досуха, и остаток осторожно прокаливают с углеродом при 300-450° С:
2СsВr03+ЗС= 2СsВг + ЗС02.
Иодиды цезия выделяются из водных растворов в виде безводных хорошо выраженных кубических кристаллов, стабильных при нормальной температуре и хорошо растворимых в абсолютном спирте и эфире. Сг13 стабилен при нормальной температуре и начинает разлагаться с отделением при 115° С. С повышением температуры растворимость иодидов, как и бромидов цезия, возрастает.
Возгонка иодидов цезия на воздухе сопровождается их частичной диссоциацией с выделением элементарного йода. Иодиды цезия отличаются от других галогенидов повышенной окисляемостью и способностью к образованию продуктов типа MeI * 4S02. Под действием окислителей иод легко выделяется из разбавленных растворов иодидов рубидия и цезия.
Иодиды цезия можно получить при взаимодействии либо гидроохиси с иодом при нагревании, либо карбонатов с иодом в присутствии восстановителя. В обоих случаях сухой остаток после выпаривания раствора прокаливают и выщелачивают водой. Для очистки иодидов цезияот калия кристаллизацию проводят в присутствии иодистоводородной кислоты при 30° С. При этом содержание примеси калия понижается до 1-10-30% (по массе). Кристаллы иодидов промывают холодным сухим ацетоном и высушивают в вакууме при 75С.
Сульфиды СsSn, (n=1-6) получают взаимодействием металла с S в жидком NН3.
Сульфаты цезия изоморфны и кристаллизуются в виде бесцветных ромбических кристаллов. Сульфаты и цезия характеризуются сравнительно высокими температурами плавления и летучестью (температура плавления сульфата цезия 1019 °С). Заметное улетучивание сульфатов происходит выше 1400 °С без изменения состава.
При прокаливании в токе водорода или аммиака сульфаты цезия (620-770° С) переходят в сравнительно легкоиспаряющиеся сульфиды. Сульфаты цезия хорошо растворимы в воде, во много раз: лучше, чем сульфат калия. Ниже приведены растворимости сульфатов в воде в зависимости от температуры:
Таблица 5
Температура, ?С |
0 |
20 |
40 |
60 |
80 |
100 |
|
Растворимость, г/100 г. воды |
|||||||
K2SO4 |
7,33 |
11,15 |
14,79 |
18,2 |
21,29 |
24,1 |
|
Rb2SO4 |
36,4 |
48,2 |
58,5 |
67,4 |
75 |
81,8 |
|
Cs2SO4 |
167,1 |
178,7 |
189,9 |
199,9 |
210,3 |
220,3 |
|
Сульфаты легко получают взаимодействием серной кислоты с карбонатами цезия или их хлоридами, а также из квасцов, осаждая алюминий квасцов избытком аммиака.
Известны также гидросульфаты (МеНS04), дисульфаты (Ме2S2О7), пероксосульфаты (Ме2S2О8) цезия. Для получения гидросульфатов сульфаты, карбонаты или хлориды нагревают с избытком серной кислоты при 400-500° С до получения сухого остатка, который растворяют в минимальном количестве воды; раствор упаривают досуха, остаток промывают абсолютным этанолом, затем эфиром.
Шениты цезия Ме2SO4·МеSO4·6Н20, где Ме-Сз, а Ме - Сu, Со, Мg, Мn, Сd, Ni, образуют изоморфные бесцветные или ярко окрашенные кристаллы моноклинной сингонии. При нагревании шениты сначала переходят в дигидраты (70-100° С), а затем полностью обезвоживаются (140 - 200° С). Безводные соли не разлагаются даже при нагревании до 1000° С. В ряду шенитов рубидиевые соли обладают наименьшей растворимостью, что благоприятно при получении чистых препаратов рубидия методом фракционной кристаллизации.
Цезиевыми квасцами называют соединения, общая формула которых Ме-Э (S04)· 12НаО, где Ме - Cs, а Э - один из следующих трехвалентных катионов: А1, Сr, Fе, Тi, V, Мn, Gа, In, Со. Наибольшее значение в технологии цезия имеют алюмоцезиевые квасцы кристаллизующиеся в виде больших блестящих и прозрачных изотропных октаэдрическнх кристаллов, имеющих кубическую гранецентрировакную решетку типа NaCl.
В ряду щелочных металлов: Na К, Rb и Cs растворимость квасцов понижается с увеличением атомной массы. Например, растворимость разных квасцов в пересчете на безводную соль при 15° С такова, %:
Натриевые 27,9
Калиевые 4,8
Рубидиевые 0,25
Цезиевые 0,35
На рис. 1, где показано влияние температуры на растворимость различных квасцов, видно, что алюмоцезиевые квасцы обладают наименьшей растворимостью по сравнению с другими квасцами
Рис. 1 Растворимость алюмоквасцов аммония (1), калия(2), рубидия(3) и цезия (4) в воде
Алюмоквасцы - это один из первых промежуточных продуктов производства рубидий и цезия из лепидолитов, которые представляют собой изоморфную смесь калиевых, рубидиевых и це-зиевых квасиов. Последующее разделение этих квасцов основано на различной их растворимости и осуществляется многократной фракционной кристаллизацией.
При нагревании алюмоцезиевые квасцы сначала плавятся (при 109 и 122° С соответственно), а затем постепенно теряют гидратную воду. Полное обезвоживание для СsА1 (S04)·12Н20 температуры равны соответственно 235 и 780° С.
Железоцезиевые квасцы имеют достаточно высокий температурный коэффициент растворимости и резко отличаются по растворимости и устойчивости от квасцов щелочных металлов. Этим можно воспользоваться для эффективного отделения цезия от других щелочных металлов.
Для получения квасцов железный купорос сначала окисляют в водном растворе азотной кислотой, а затем смешивают с сернокислым раствором сульфата цезия и упаривают до начала кристаллизации.
Среди марганцевых квасцов наиболее устойчивыми являются цезиево-марганцевые СзМн (304)г-12Н20. В воде эти квасны гидролизуются с выделением гидратированной трехокиси марганца, плавятся они при 40° С.
Нитраты цезия(МеNОз) представляют собой бесцветные гигроскопичные иглы и призмы. У нитрата цезия известны четыре две модификации.
Термическое разложение нитратов цезияс выделением кислорода
происходит по реакции: 2МеNОз = 2МеNО2 + О2, при 490° С для цезия.
Как видно на рис. 2 растворимость нитратов в воде с повышением температуры возрастает, но в органических растворителях они нерастворимы.
Нитраты цезия легко получают взаимодействием азотной кислоты с их карбонатами, хлоридами или гидроокисями. Растворимость нитратов в азотной кислоте возрастает в ряду щелочных металлов и не подчиняется правилу периодичности свойств:
NaNОз< RbNОз<СsNОз< КNОз
Карбонаты цезия представляют собой белые очень гигроскопичные непрозрачные ромбические кристаллы, расплывающиеся на воздухе и переходящие вследствие поглощения С02 в соответствующие гидрокарбонаты МеНСО3·К2С03 с выделением тепла, для Сs2С03 11,87 ккал / моль. В атмосфере двуокиси углерода он плавится без заметного разложения при 873° С, но при нагревании их выше температур плавления (особенно в вакууме) наблюдается диссоциация с отщеплением СО2.
В отличие от карбоната лития карбонаты цезия легко раство
ряются в воде (при 25° С растворимость карбонатов калия, цезия на
100 г. воды соответственно следующая, г: 111,8; 223,0 н 308,3). Карбонат цезия (в отличие от карбонатов рубидия и калия) растворим в абсолютном спирте до 10% при 20° С. На этом свойстве
карбоната цезия основана очистка цезия рубидия и калия.
Карбонаты цезия образуют целый ряд кристаллогидратов, точный состав которых до сих пор окончательно не установлен. Для карбоната цезия известны кристаллогидраты: Сs2С03·8Н2O и Сs2С08·5Н2О при низких температурах и 2Сs2С03·7Н20 - стабильный при обычной температуре. Полная дегидратация Сs5С03 проходит при 150° С.
Основной метод получения карбонатов цезия - прокаливание:их тетраоксалатов или кислых тартратов]
Гидрокарбонаты (бикарбонаты) цезияMеНСО3 выделяются в виде безводных призм или игл ромбической сингонии из 13-20%-ных растворов карбонатов при пропускании двуокиси углерода. При нагревании выше 170-180? С. гидрокарбонаты разлагаются с выделением двуокиси углерода.
Комплексные соединения цезия. Гетерополисоединения цезия представляют собой соли с комплексными анионами сложного строения.
Крeмнемолибдаты цезия Ме3Н6 [Si(Мо2О7)6]·Н20 сравнительно мало растворимы в воде, серной, азотной и щавелевой кислотах. Растворимость почти не зависит от температуры и при 25° С составляет 0,48г на 100 г. воды. В соляной кислоте растворимость еще меньше.
Рис. 2. Растворимость нитратов цезия (1), калия(2) и рубидия
Кремневольфраматы цезия состава (Сs)8Si(W8O7)8·nН2О Плохо растворимы в воде, нерастворимы в спирте и разбавленной соляной кислоте. Обычным методом получения кремнсвольфраматов является взаимодействие кремневольфрамовой кислоты и хлоридов цезия.
Фосфоромолибдаты цезия состава Ме3H4 [Р(Мо3O7)6)]·nН2О выпадают при взаимодействии фосформолибденовой кислоты и 1%-ных водного раствора CsCl. Растворимость фосфоромолибдатов К RЬ и Сs при 20° С равна 3,8·10-9, 6,2-10-4; 5,6-10-4 г в 100 г. воды соответственно; в 0,1н. азотной кислоте растворимость этих солей К, КЬ и Сs составляет соответственно 8,02; 1,7-10-9 и 9,4-10-4 г в 100 г. растворителя. Эннеахлордиарсенаты цезия Ме9[As2С19] мало растворимы в концентрированной соляной кислоте, растворимость их при 20° С в 100 г. воды 36%-ной НС1 составляет 2,935 и 0,429 г. соответственно. Аналогичной соли калия не обнаружено.
Эннеахлордистнблаты цезияМе3 [SЬ2С19] - довольно устойчивые на воздухе соединения, разлагающиеся с выделением SbС18 только при нагревании до 450° С в вакууме. В воде Cs3 [Sb2 С19] подвергаются сильному гидролизу.
Селенид Сs2 Sе и теллурид Cs2Te синтезируют сплавлением цезий соответственно с Sе и Те в вакууме. CsN2 в обычных условиях цезий не взаимодействует, с жидким N2 при электрическом разряде между электродами, изготовленными из цезия, образует нитрид Cs3N. Цезий растворяется в жидком NH3, алкиламинах и полиэфирах, образуя синие растворы, обладающие электронной проводимостью; в аммиачном растворе цезий медленно реагирует с NH3 с выделением Н2 и образованием амида СsNH2. С газообразным NH3 при 120 °С образует Cs NH2, с красным Р в вакууме при 400-430 °С - фосфид Cs2P, с порошком графита при 200-500 °С - карбид С8Cs, а при более высоких температурах - С24Cs, Cs36Cs и др. карбиды, с ацетиленом при 300 °С в вакууме - ацетиленид Cs2C2, с Si и Gе в атмосфере Аr при 600 °С - соответственно силицид CsSi и германид CsСе. Цезий, взаимодействуя с С02, ССl4 со взрывом. Выше 300 ?С разрушает стекло, восстанавливая Si из SiO2 и силикатов. Цезий реагирует со всеми компонентами с образованием соответствующих солей, со спиртами дает алкоголяты.
Цезий образует твердые растворы с К и КЬ, эвтектическая смесь с Nа, не смешивается с Li, Со многими металлами дает интерметаллады, например CsАu, CsSn4.
В литературе нет точных данных о том, сколько цезия имеется на земном шаре. Известно лишь, что он относится к числу редких химических элементов. Полагают, что его содержание в земной коре во всяком случае в несколько сот раз меньше, чем рубидия, и не превышает 7·10-4%.
Цезий встречается в крайне рассеянном состоянии (порядка тысячных долей процента) во многих горных породах; ничтожные количества этого металла были обнаружены и в морской воде. В большей концентрации (до нескольких десятых процента) он содержится в некоторых калиевых и литиевых минералах, главным образом в лепидолите. Но особенно существенно то, что, в отличие от рубидия и большинства других редких элементов, цезий образует собственные минералы - поллуцит, авогадрит и родицит. Родицит крайне редок, притом некоторые авторы причисляют его к литиевым минералам, так как в его состав (R2O · 2Al2O3 · 3B2O3, где R2O - сумма окисей щелочных металлов) входит обычно больше лития, чем цезия. Авогадрит (K, Cs) [BF4] тоже редок, да и поллуциты встречаются нечасто; их залежи маломощны, зато цезия они содержат не менее 20, а иногда и до 35%. Наибольшее практическое значение имеют поллуциты США (Южная Дакота и Мэн), Юго-Западной Африки, Швеции и Советского Союза (Казахстан и др.).
Поллуциты - это алюмосиликаты, сложные и весьма прочные соединения. Их состав определяют формулой (Cs, Na) [AlSi2O6] · nH2O, и хотя цезия в них много, извлечь его не так просто. Чтобы «вскрыть» минерал и перевести в растворимую форму ценные компоненты, его обрабатывают при нагревании концентрированными минеральными кислотами - плавиковой или соляной и серной. Затем освобождают раствор от всех тяжелых и легких металлов и, что особенно трудно, от постоянных спутников цезия - щелочных металлов: калия, натрия и рубидия.
Для извлечения цезия из поллуцита используют следующие методы: кислотные, спекание и сплавление, прямое получение металлического цезия в кислотных методах применяют галогеноводородные кислоты (чаще соляную) или Н2S04. Поллуцит разлагают концентрированной соляной кислотой. При разложении поллуцита серной кислотой получают алюмоцезиевые квасцы CsАl(SO4)2•12H2O
Из методов спекания и сплавления наиболее, распространен метод Аревда: поллуцит спекают со смесью СаО и СаС12, спек выщелачивают в автоклаве горячей водой, раствор упаривают досуха с Н2S04 для отделения СаS504, остаток обрабатывают горячей водой; из полученного раствора осаждают Сs3[Sb2С19]. Прямое извлечение металлического цезия осуществляют путем нагревания до 900 °С в вакууме смеси (1:3) измельченного поллуцита и Са (или А1).
Цезий из лепидолита получают попутно при его переработке на соединения лития. Цезий осаждают из маточных растворов после выделения Li2СОз или LiОН в виде смеси алюмоцезиевых, алюморубидиевых и алюмокалиевых квасцов.
Для разделения Cs, RЬ и К и получения чистых соединений цезия применяют методы фракционированной кристаллизации квасцов и нитратов, осаждения и перекристаллизации Сs3[Sb2Cl9], Сs
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |