Реферат по предмету "Медицина"


Совершенствование лекарств и новые фармацевтические технологии

--PAGE_BREAK--Необходимо отметить, что стоимость препаратов-генериков ино­гда составляет 20-60% от стоимости аналогичных импортных лекарств.
Выявление новых свойств у лекарственных препаратов, уже при­меняющихся в клинике, путем тщательного наблюдения за их действием на различные системы организма. Таким образом было установлено гипотензивное свойство р-адреноблокаторов, проти-вотромбическая активность ацетилсалициловой кислоты.
Составление композиций комбинированных препаратов — один из путей поиска новых лекарств. Принципы, на основе которых созда­ются эти лекарства, могут быть различными.
Чаще всего в комбинированные препараты включают лекарст­венные вещества, оказывающие адекватное действие на причину заболевания и основные звенья патогенеза болезни. В комбиниро­ванный препарат обычно включают лекарственные вещества в ма­лых или средних дозах, когда между ними существуют явления синергизма — взаимного усиления действия в виде потенцирования или суммирования. Комбинированные препараты интересны тем, что принципы синергизма, на основе которых они созданы, позво­ляют добиться лечебного эффекта при отсутствии или минимуме отрицательных явлений. Кроме того, введение малых доз лекарст­венных веществ не нарушает естественных защитных или компен­саторных механизмов, развивающихся в организме в ответ на бо­лезнь. К средствам, подавляющим отдельные звенья патологии, желательно добавлять лекарственные вещества, стимулирующие за­щитные силы организма.
В комбинированные препараты, регулирующие деятельность цен­тральной нервной системы, необходимо включать вещества, соот­ветственно влияющие на деятельность исполнительных органов — сердце, сосуды, почки и др.
Комбинированные препараты противомикробного действия со­ставляются из таких ингредиентов, каждый из которых повреждает разные системы размножения и жизнеобеспечения микробов.
В комбинированные препараты очень часто включаются допол­нительные ингредиенты, которые усиливают (расширяют) эффек­тивность основного вещества или устраняют его отрицательное действие. Так, комбинированный препарат «Солпадеин R», содер­жащий парацетамол и кодеин, обеспечивает более выраженный анальгизирующий эффект по сравнению с используемыми субстан­циями, взятыми отдельно, поскольку болевые импульсы «перекры­ваются» на всем протяжении от периферии до центра и наоборот (кодеин оказывает центральное действие, а парацетамол наряду с этим — периферическое). Кроме того, такое сочетание двух субстан­ций позволяет уменьшить их дозу, сохранив продолжительность и эффективность действия.
Для профилактики и лечения многих заболеваний, а также для повышения сопротивляемости организма к инфекциям и во многих других случаях используются поливитаминные препараты, часто содержащие микроэлементы. Их составы формируются с учетом назначения: поливитамины общего назначения («Альвитил», «Вит-рум», «Дуовит», «Мегавит», «Мульти-табс», «Олиговит», «Супра-дин», «Юникап Ю» и др.); для профилактики заболеваний нервной и сердечно-сосудистой системы («Биовиталь», «Мультивитамины плюс», «Желе Роял»); для профилактики кариеса («Ви-Дайлин Ф», «Ви-Дайлин Ф-АДС с железом», «Витафтор»); для профилактики онкозаболеваний («Детский антиоксидант», «Супрантиоксидант», «Триовит»); для применения в период беременности («Гравинова», «Матерна», «Поливит нова вита», «Прегнавит»). Они имеют раз­личные лекарственные формы (таблетки, таблетки шипучие, драже, сиропы, капли, капсулы, растворы и т.д.), различный режим дози­рования и условия применения.
Широкий ассортимент комбинированных витаминных составов позволяет осуществить индивидуальный подбор лекарств для каж­дого конкретного случая.

1.2.Экспериментальное изучение и клинические испытания лекарств.
Реализация жесткого требования современной фармакотерапии — минимальной дозой лекарства обеспечить оптимальный терапевти­ческий эффект без побочных явлений — возможна лишь при тща­тельном изучении новых лекарственных препаратов на доклиническом и клиническом этапах.
Доклиническое (экспериментальное) изучение биологически ак­тивных веществ принято условно подразделять на фармакологическое и токсикологическое. Эти исследования взаимозависимы и стро­ятся на одних и тех же научных принципах. Результаты изучения острой токсичности потенциального фармакологического веще­ства дают информацию для проведения последующих фармаколо­гических исследований, которые в свою очередь определяют сте­пень и продолжительность изучения хронической токсичности вещества.
Целью фармакологических исследований является определение терапевтической эффективности исследуемого продукта — будущего лекарственного вещества, его влияния на основные системы орга­низма, а также установление возможных побочных эффектов, свя­занных с фармакологической активностью.
Очень важно установить механизм действия фармакологического средства, а при наличии — и не основных видов действия, а также возможное взаимодействие с другими лекарственными средствами.
Фармакологические исследования проводятся на моделях соот­ветствующих заболеваний или патологических состояний с приме­нением однократно вводимых, постоянно возрастающих доз ве­ществ с целью поиска необходимого эффекта. Данные начальных фармакологических исследований уже могут дать некоторые пред­ставления о токсичности вещества, которые должны быть углублены и расширены при специальных исследованиях.
При токсикологических исследованиях фармакологического сред­ства устанавливается характер и выраженность возможного повреж­дающего воздействия на организм экспериментальных животных. Выделяются четыре этапа исследований.
1. Изучение основного вида фармакологической активности на нескольких экспериментальных моделях у животных, а также уста­новление фармакодинамики лекарственного средства.
2.Изучение острой токсичности средства при однократном при­
менении (введении) проводят с целью определения наличия побоч­
ных реакций при однократном приеме увеличенной дозы и установ­
лении причин летальности; широты терапевтического действия или
терапевтического индекса Эрлиха (отношение максимально перено­
симой дозы к максимальной терапевтической), что невозможно
установить в клинических условиях. При изучении острой токсич­
ности определяют показатель DLso для различных видов животных
и рассчитывают коэффициент видовой чувствительности по отно­
шению DL50max/DE50min.  Если этот коэффициент равен  1 или
близок к ней, то это свидетельствует об отсутствии видовой чувст­
вительности.  Если же коэффициент значительно отличается от
единицы, это указывает на различную выраженность токсического
действия фармакологического средства на разные виды млекопита­
ющих, что необходимо учитывать при пересчете экспериментальной
эффективной дозы для человека.
3.Определение хронической токсичности соединения, которое
включает в себя повторные введения фармакологического средства
на протяжении определенного времени в зависимости от предпола­
гаемого курса его применения в клинике. Исследуемое средство
обычно вводят ежедневно в трех дозах: близкой к терапевтической,
предполагаемой терапевтической и максимальной с целью выявле­
ния токсичности. Во время эксперимента определяется объем по­
требления животными корма и воды, динамика их массы, изменение
общего состояния и поведения (реакций); проводятся гематологи­
ческие и биохимические исследования. По окончании эксперимента
животных забивают и проводят патоморфологические исследования
внутренних органов, мозга, костей, глаз.
4.Установление специфической токсичности фармакологи­
ческого средства (канцерогенное™, мутагенности, эмбриотоксич-
ности, гонадотоксичности, аллергизирующих свойств, а также спо­
собности вызывать лекарственную зависимость, иммунотоксичес-
кого действия).
Выявление повреждающего действия испытуемого средства на организм экспериментальных животных дает исследователям ин­формацию о том, какие органы и ткани наиболее чувствительны к потенциальному лекарственному средству и на что следует обратить особое внимание при проведении клинических испытаний.
Исследование новых фармакологических средств на животных основывается на данных о существовании определенной корреля­ции между влиянием этих соединений на животных и человека, физиологические и биохимические процессы которых во многом сходны. В связи с тем, что между животными имеются существенные видовые различия в интенсивности обмена веществ, активности ферментных систем, чувствительных рецепторов и т.д., исследова­ния проводят на нескольких видах животных, включая кошек, собак, обезьян, которые в филогенетическом отношении стоят ближе к человеку.
Следует отметить, что аналогичная схема проведения лаборатор­ных (экспериментальных) исследований приемлема как для просто­го, так и для сложного лекарственного препарата, в эксперименте с которым планируются обязательные дополнительные биофармацев­тические исследования, подтверждающие оптимальный выбор вида лекарственной формы и ее состава.
Экспериментальное доклиническое изучение нового средства (его фармацевтических, фармакологических и токсикологических свойств) проводится по стандартным унифицированным методи­кам, которые обычно описываются в методических рекомендациях Фармакологического комитета, и должно отвечать требованиям Good Laboratory Practice (GLP) — Надлежащей лабораторной прак­тики (НЛП).
Доклинические исследования фармакологических веществ по­зволяют разработать схему рациональных испытаний лекарственных препаратов в условиях клиники, повысить их безопасность. Несмот­ря на большую значимость доклинических исследований новых веществ (препаратов), окончательное суждение об их эффективнос­ти и переносимости складывается только после проведения клини­ческих испытаний, а нередко, и после определенного периода их широкого применения в медицинской практике.
Клинические испытания новых лекарственных средств и пре­паратов должны проводиться с максимальным соблюдением тре­бований международного стандарта «Надлежащая клиническая практика» (Good Clinical Practice (GCP)), который регламентиру­ет планирование, проведение (дизайн), мониторинг, длитель­ность, аудит, анализ, отчетность и ведение документации иссле­дования.
При проведении клинических испытаний лекарственных пре­паратов используются специальные термины, в содержание которых вкладывается определенный смысл. Рассмотрим основные термины, принятые GCP.
Клинические испытания — систематическое изучение исследуемо­го препарата на людях в целях проверки его лечебного действия или выявления нежелательной реакции, а также изучение всасывания, распределения, метаболизма и выведения из организма для опреде­ления его эффективности и безопасности.
Исследуемый продукт — фармацевтическая форма активного ве­щества или плацебо, изучаемого или используемого для сравнения в клиническом испытании.
Спонсор (заказчик) — физическое или юридическое лицо, которое принимает на себя ответственность за инициативу, управление и/или финансирование клинических испытаний.
Исследователь — лицо, ответственное за проведение клини­ческого испытания.
Субъект испытания — лицо, участвующее в клинических испы­таниях исследуемого продукта.
Гарантия качества клинических испытаний — комплекс мер, обеспечивающих соответствие проводимых испытаний требованиям GCP, основанных на нормах общей и профессиональной этики, стандартных операционных процедурах и отчетности.
Для проведения клинических испытаний заводом-изготовителем нарабатывается определенное количество препарата, контролирует­ся его качество в соответствии с требованиями, заложенными в проекте ВФС, затем он фасуется, маркируется (указывается «Для клинических испытаний») и направляется в медицинские учрежде­ния. Одновременно с лекарственным препаратом в адрес клиничес­ких баз направляется следующая документация: представление, ре­шение ГНЭЦЛС, программа клинических испытаний и др.
Решение о проведении клинических испытаний с правовой точки зрения и их оправданность в этическом отношении основывается на оценке экспериментальных данных, полученных в опытах на животных. Результаты экспериментальных, фармакологических и токсикологических исследований должны убедительно свидетельст­вовать о целесообразности проведения испытаний нового лекарст­венного препарата на людях.
В соответствии с существующим законодательством клинические испытания нового лекарственного препарата проводятся на боль­ных, страдающих теми заболеваниями, для лечения которых пред­назначено данное лекарство.
Министерством здравоохранения утверждены методические ре­комендации по клиническому изучению новых лекарств, относя­щихся к различным фармакологическим категориям. Они разраба­тываются ведущими учеными медицинских учреждений, обсужда­ются и утверждаются Президиумом ГНЭЦЛС. Применение этих рекомендаций гарантирует безопасность больных и способствует повышению уровня клинических испытаний.
Любое исследование на человеке должно быть хорошо органи­зовано и проводиться под контролем специалистов. Неправильно проведенные испытания признаются неэтичными. В связи с этим большое внимание уделяется планированию клинических испы­таний.
Для того чтобы в работе врачей не проявлялись узкопрофессио­нальные интересы, которые не всегда отвечают интересам больного и общества, а также с целью обеспечения прав человека, во многих странах мира (США, Великобритания, Германия и др.) созданы специальные этические комитеты, призванные контролировать на­учные исследования лекарств на людях. Этический комитет создан и в Украине.
Приняты международные акты об этических аспектах проведения медицинских исследований на людях, например, Нюрнбергский кодекс (1947), в котором отражены вопросы защиты интересов человека, в частности, неприкосновенности его здоровья, а также Хельсинская декларация (1964), содержащая рекомендации для вра­чей по биомедицинским исследованиям на людях. Изложенные в них положения носят рекомендательный характер и в то же время не освобождают от уголовной, гражданской и моральной ответст­венности, предусмотренной законодательствами этих стран.
Медико-правовые основы этой системы гарантируют как без­опасность и своевременное адекватное лечение больных, так и обеспечение общества наиболее эффективными и безопасными лекарствами. Только на основе официальных испытаний, методи­чески верно спланированных, объективно оценивающих состояние больных, а также научно проанализированных экспериментальных данных можно сделать правильные выводы о свойствах новых лекарств.
Программы клинических испытаний для различных фармакоте-рапевтических групп лекарственных препаратов могут значительно отличаться. Однако имеется ряд основных положений, которые всегда отражаются в программе: четкая формулировка целей и задач испытания; определение критериев выбора для испытаний; указание методов распределения больных в испытуемую и контрольную группы; число больных в каждой группе; метод установления эффективных доз лекарственного препарата; длительность и метод проведения испыта­ния контролируемого препарата; указание препарата сравнения и/или плацебо; методы количественной оценки действия используемого препарата (подлежащие регистрации показатели); методы статистичес­кой обработки полученных результатов (рис. 2.3).


 Программа клинических испытаний проходит обязательную экс­пертизу в комиссии по вопросам этики.
Участвующие в испытании нового препарата пациенты (добро­вольцы) должны получить информацию о сути и возможных послед­ствиях испытаний, ожидаемой эффективности лекарства, степени риска, заключить договор о страховании жизни и здоровья в поряд­ке, предусмотренном законодательством, а во время испытаний находиться под постоянным наблюдением квалифицированного пер­сонала. В случае возникновения угрозы здоровью или жизни паци­ента, а также по желанию пациента или его законного представите­ля, руководитель клинических испытаний обязан приостановить испытания. Кроме того, клинические испытания приостанавлива­ются в случае отсутствия или недостаточной эффективности лекар­ства, а также нарушения этических норм.
Клиническая апробация генерических препаратов в Украине проводится по программе «Ограниченные клинические испытания» по установлению их биоэквивалентности.
В процессе клинических испытаний лекарства выделяют четыре взаимосвязанные фазы: 1 и 2 — дорегистрационные; 3 и 4 — пострегистрационные.
Первая фаза исследования проводятся на ограниченном числе больных (20-50 человек). Цель — установление переносимости ле­карственного препарата.
    продолжение
--PAGE_BREAK--Вторая фаза — на 60-300 больных при наличии основной и контрольной групп и использовании одного или нескольких препара­тов сравнения (эталонов), желательно с одинаковым механизмом действия. Цель — проведение контролируемого терапевтического (пи­лотного) исследования препарата (определение диапазонов: доза — режим применения и, если возможно, доза — эффект) для оптималь­ного обеспечения дальнейших испытаний. Критериями оценки обыч­но служат клинические, лабораторные и инструментальные показатели.
Третья фаза — на 250-1000 человек и более. Цель — установить краткосрочный и долгосрочный баланс безопасность — эффектив­ность лекарственного препарата, определить его общую и относи­тельную терапевтическую ценность; изучить характер встречающих­ся побочных реакций, факторы, изменяющие его действие (взаимо­действие с другими лекарственными препаратами и др.). Испытания должны быть максимально приближенными к предполагаемым ус­ловиям использования данного лекарственного препарата.
Результаты клинического испытания заносятся в индивидуаль­ную стандартную карту каждого больного. В конце испытания полученные результаты суммируются, обрабатываются статисти­чески и оформляются в виде отчета (в соответствии с требованиями ГНЭЦЛС), который заканчивается аргументированными выводами.
Отчет о клинических испытаниях лекарственного препарата на­правляется в ГНЭЦЛС, где подвергается тщательной экспертизе. Ко­нечным результатом экспертизы всех поступивших в ГНЭЦЛС мате­риалов является инструкция по применению лекарственного препара­та, регламентирующая его применение в клинических условиях.
Лекарственный препарат может быть рекомендован к клини­ческому применению в том случае, если он эффективнее известных лекарств аналогичного типа действия; обладает лучшей переносимос­тью по сравнению с известными препаратами (при одинаковой эф­фективности); эффективен при состояниях, когда применение имею­щихся лекарств безуспешно; экономически более выгоден, имеет более простую методику применения или более удобную лекарственную форму; при комбинированной терапии повышает эффективность уже существующих лекарств, не увеличивая их токсичности.
Четвертая фаза (постмаркетинговая) исследований проводится на 2000 и более человек после разрешения лекарственного препарата к медицинскому применению и промышленному производству (после поступления лекарства в аптеку). Основная цель — сбор и анализ информации о побочных эффектах, оценка терапевтической цен­ности и стратегии назначения нового лекарственного препарата. Исследования в четвертой фазе осуществляются на основе инфор­мации в инструкции по применению препарата.
При проведении клинических испытаний новых лекарственных препаратов важнейшей задачей является обеспечение их качества. Для достижения этой цели осуществляется мониторинг, аудит и инспекция клинических испытаний.
Мониторинг — деятельность по контролю, наблюдению и про­верке клинического испытания, осуществляемая монитором. Мони­тор является доверенным лицом организатора клинических испыта­ний (спонсора), на которого возлагается обязанность непосредст­венно контролировать ход исследования (соответствие полученных данных данным протокола, соблюдение этических норм и др.), оказывать помощь исследователю в проведении испытания, обеспе­чивать его связь со спонсором.
Аудит — независимая проверка клинического испытания, кото­рая проводится службами или лицами, не участвующими в нем.
Аудит может проводиться также представителями государствен­ных органов, отвечающих за регистрацию лекарственных препара­тов в стране. В этих случаях аудит называется инспекцией.
Работая параллельно для достижения единой цели, монитор, аудиторы и официальные инспекции обеспечивают необходимое качество клинических испытаний.
При проведении клинических испытаний с участием большого количества пациентов возникает необходимость в оперативной об­работке результатов исследования. С этой целью корпорацией «Pfizer» разработаны новые методы информатики (компьютерная программа «Q-NET» для обработки базы данных, полученных при исследова­нии препарата «Viagra»), позволяющие ознакомиться в течение суток с результатами клинических испытаний с участием 1450 пациентов, которые проводятся в 155 клинических центрах, нахо­дящихся в различных странах. Создание таких программ позволяет сократить до минимума время продвижения новых препаратов на этапе клинических испытаний.
Таким образом, эффективность и безопасность лекарств гаран­тируется:
·         испытаниями в условиях клиники;
·         постмаркетинговыми клиническими исследованиями при широ­ком медицинском применении лекарств;
·         тщательной экспертизой результатов на всех указанных выше этапах.
Наличие комплексной оценки эффективности и безопасности лекарств и экстраполяции результатов на трех этапах позволяет выявить механизмы возможного побочного действия, уровня ток сичности лекарства, а также разработать наиболее оптимальные схемы его применения.
Вырисовывается перспектива комплексного подхода, основанно­го на оптимальном сочетании принципов биофармации, новейших достижений химических и фармацевтических технологий, с широ­ким привлечением клинического опыта к созданию и производству новых лекарственных препаратов. Такой подход к этой проблеме является качественно новым в фармацевтической практике и, оче­видно, позволит раскрыть новые возможности в сложном процессе создания и использования лекарственных препаратов.
2. Пути совершенствования традиционных лекарств
При разработке новых лекарственных средств с уже известным действием предпринимаются попытки увеличить их специфичность. Так, сальбутанол — одно из новых бронхорасширяющих средств — стимулирует р-адренорецепторы в дозах, которые оказывают незна­чительное действие на адренергические рецепторы сердца. Предни-золон является более ценным стероидом, чем кортизон, так как при одинаковом противовоспалительном эффекте он в меньшей степени задерживает соли в организме.
С целью преодоления таких нежелательных свойств лекарствен­ных веществ, как горький или кислый вкус, неприятный запах, раздражающее действие желудочно-кишечного тракта, боль при инъекциях, незначительная абсорбция, медленный или быстрый процессы метаболизма, нестабильность и другие, в фармакотерапии
используются различные модификации лекарственных веществ (био­логическая, физико-химическая, химическая). Для того чтобы пока­зать наличие изменения структуры лекарственного вещества, введен термин «пролекарство», который обозначает химическую модифи­кацию субстанции. В организме это новое соединение подвергается ферментации и высвобождается в виде его немодифицированной формы. В настоящее время за рубежом выпускается более 100 наименований лекарственных препаратов, содержащих антибиоти­ки, стероидные гормоны, простагландины в виде пролекарств.
Особого внимания заслуживают так называемые комбинирован­ные лекарственные препараты, в которых сочетание составных компонентов осуществляется на базе обоснованного научного экс­перимента.
Поскольку патогенез (причина возникновения и развития болез­ненного процесса в организме) вирусных респираторных инфекций представляет собой сложный комплексный процесс, затрагивающий разные участки верхних дыхательных путей, то и противопростудные препараты должны быть комплексными и обладать полифармакоте-рапевтическими эффектами. Другими словами, в комплексный пре­парат должны входить вещества, действующие на различные звенья патогенетической цепи и устранять основные симптомы простудных заболеваний.
Таблетки «Колдрекса» состоят из 500 мг парацетамола, 5 мг фенилэфрина гидрохлорида (метазона), 25 мг кофеина, 20 мг тер-пингидрата, 30 мг кислоты аскорбиновой.
Парацетамол обладает обезболивающим и жаропонижающим дей­ствием, близок по химической структуре к фенацетину и является его активным метаболитом, обусловливающим анальгетический эф­фект. Однако в отличие от фенацетина он не вызывает метгемогло-бинемии, не оказывает токсического действия на канальцевый аппарат почек. Кроме того, в отличие от аспирина парацетамол не обладает ульцерогенным действием, не вызывает желудочно-кишеч­ных кровотечений и может применяться даже больными с язвенной болезнью; в отличие от анальгина не вызывает осложнений со стороны крови в виде гранулоцитопений и гранулоцитоза.
Фенилэфрин гидрохлорид (метазон) путем воздействия на альфа-адренорецепторы вызывает сужение артериол в слизистой оболочке носа, способствуя снятию отека и устранению слизи, ощущения заложенности носа, уменьшению ринорреи и нормализации носо­вого дыхания.
Кофеин потенцирует обезболивающее действие парацетамола, оказывает общетонизирующее действие, улучшает самочувствие боль­ного.
Терпингидрат способствует разложению секрета в бронхах и более легкому его отхаркиванию; освобождая от закупорки дыха­тельные пути, способствует облегчению дыхания; обладает проти­вовоспалительным действием.
Аскорбиновая кислота восполняет дефицит витамина С в орга­низме, активирует иммунную систему, нормализует тканевое дыха­ние, способствуя таким образом усилению защитных механизмов организма.
Известны и другие комбинированные препараты «Колдрекса»: «Колдрекс хот рем» (порошок в пакетах для растворения в горячей воде) и «Колдрекс найт» (сироп), которые содержат, кроме параце­тамола, прометазин гидрохлорид, обладающий седативным и жаро­понижающим эффектами, а также антиаллергическими свойствами, и декстраметорфан гидробромид, оказывающий противокашлевое действие. Он в отличие от кодеина не угнетает дыхание, не вызывает привыкания. Прием этих комбинированных препаратов целесооб­разен при болях в горле или затрудненном дыхании. Их прием в вечернее время обеспечивает противокашлевый эффект в течение ночи, что способствует нормализации сна.
Примером комбинированного препарата может служить также «Солпадеин солюбл», выпускаемый той же фармацевтической ком­панией в виде таблеток (500 мг парацетамола, 8 мг кодеина, 30 мг кофеина). Благодаря быстрому многонаправленному воздействию на периферические и центральные болевые рецепторы, препарат рекомендуется для купирования послеоперационного болевого син­дрома. По эффективности превосходит анальгин.
Комбинированный препарат «Пафеин», выпускаемый в виде таблеток, содержащих 500 мг парацетамола и 50 мг кофеина (про­изводитель ФФ «Дарница»), обладает мягким обезболивающим, жаропонижающим и противовоспалительным действием. Кофеин, входящий в состав «Пафеина», повышает, пролонгирует и ускоряет фармацевтическое действие парацетамола. Под действием «Пафеи­на» уменьшаются катаральные явления (слезотечение, першение в горле, насморк), быстро исчезают симптомы интоксикации (сла­бость, потливость и др.). «Пафеин» особенно эффективен при проявлении первых признаков заболевания.
Комбинированный препарат «Панадол экстра» содержит 500 мг парацетамола и 65 мг кофеина, является эффективным анальгети­ком.
В последние годы на рынке лекарств реализуются многочислен­ные комбинированные препараты, содержащие парацетамол и анти-гистаминные, отхаркивающие, противокашлевые, бронхорасширя-ющие и противовоспалительные лекарственные средства. Так в «Томапирине» (производитель фирма «Берингер Инчельхайм») па­рацетамол (200 мг) сочетается с ацетилсалициловой кислотой (250 мг), что приводит к потенцированию анальгетического и жаропонижа­ющего эффектов этих веществ. Сочетание этих веществ с кофеином (50 мг) приводит к повышению эффективности комбинации данно­го состава примерно на 40%, за счет чего появляется возможность уменьшения дозы парацетамола и ацетилсалициловой кислоты. Кроме того, это приводит к улучшению переносимости комбинированного препарата.
Димедрол и другие антигистаминные средства в сочетании с парацетамолом применяются для облегчения симптомов заболева­ния при бронхитах, аллергических ринитах. Такие лекарственные средства, как фенилэфрин, эфедрин, псевдоэфедрин и др. являются эффективными сосудосуживающими препаратами, снижающими отек слизистой оболочки носовых ходов. В комбинации с парацета­молом они используются для купирования головной боли, лихорад­ки, застойных явлений в слизистой оболочке верхних дыхательных путей у детей с ринитами, острыми респираторными заболеваниями. Противокашлевые средства (дифенгидрамин) в сочетании с параце­тамолом используются для облегчения головной боли, лихорадки, боли в горле и при кашле у больных гриппом и простудными заболеваниями.Консультативной комиссией по безрецептурным лекарствен­ным препаратам при ВДА США допускаются комбинированные составы, содержащие парацетамол и три дополнительных компо­нента, в случае их использования для облегчения симптоматики, связанной с простудой, гриппом, аллергическим ринитом, брон­хитом.
Известный комбинированный препарат «Гиналгин» в виде ваги­нальных таблеток (производитель «Польфа») содержит хлорхиналь-дол и метронидазол. Благодаря этому имеет широкий спектр дейст­вия в отношении анаэробных грамотрицательных и грамположи-тельньгх бактерий. «Гиналгин» обладает высокой эффективностью при лечении вагинитов, вызванных бактерилаьной флорой, ваги­нального трихомониаза и вагинитов, вызванных одновременным воздействием бактерий, трихомонад и грибов.
В последнее время в медицинской практике широко применяют­ся научно обоснованные составы комбинированных препаратов в виде мазей.
Использование комбинированных лекарственных препаратов, об­ладающих многонаправленным действием на симптомы того или иного заболевания позволяет максимально реализовать требования современной фармакотерапии, повысить ее эффективность и избе­жать многих, часто непредвиденных, побочных явлений.
Важным вопросом фармацевтической технологии является по­вышение растворимости труднорастворимых лекарственных веществ в воде и липидах, поскольку их биологическая доступность в значи­тельной степени зависит от размера частиц. Известно также, что процесс растворения вещества связан с явлениями фазового пере­хода на границе твердое вещество — раствор. Интенсивность этого процесса зависит от площади поверхности раздела фаз. Однако диспергирование, даже микронизация веществ не всегда приводит к увеличению скорости их растворения и абсорбции. Увеличение межмолекулярных сил сцепления, наличие электрического заряда частиц ведет к их укрупнению — агрегации. Все это не позволяет получить водные растворы труднорастворимых веществ, а значит, и избежать таких нежелательных явлений, как абсцессы, денатурация белков, некрозы, обезвоживание тканей, эмболии, и прочих ослож­нений, которые наблюдаются при применении масляных и спирто­вых растворов в виде инъекций.
Повышение растворимости лекарственных веществ в воде и других растворителях предполагает значительное повышение их эффективности. Добиться этого можно за счет использования:
·        сорастворителей (бензил-бензоат, бензиловый спирт, пропилен-гликоль, полиэтиленоксиды и др.);
·        гидротропных средств (гексаметилентетрамин, мочевина, на­трия бензоат, натрия салицилат, новокаин и др.);
·        явления солюбилизации, например, витаминов A, D, Е, К, стеро­идных гормонов, барбитуратов, антибиотиков, сульфанилами­дов, эфирных масел и т.д., которое позволяет повысить не только растворимость веществ, но и значительно увеличить их стабиль­ность. Примером может служить лекарственная система в аэрозольной упаковке «Ингалипт »;
·        явления комплексообразования, например, иод хорошо растворяется в концентрированных растворах калия иодида, полиеновые анти­биотики — в присутствии поливинилпирролидона. Кроме повыше­ния растворимости лекарственных веществ, явление комплексооб­разования может значительно уменьшить раздражающую способ­ность лекарственного вещества на слизистую или кожу. Например, такой антисептик, как иод, образуя комплексное соединение с поливиниловым спиртом, теряет присущее ему прижигающее дей­ствие, что и используется при получении «Иодинола ». В некоторых случаях образование комплексных соединений при­водит к заметному повышению биологической доступности образовав­шегося продукта и одновременно — к значительному повышению его терапевтической эффективности. Так, комплекс левомицетин — поли-этиленоксид эффективнее самого антибиотика в 10-100 раз.
Значительному увеличению скорости растворения труднораство­римых веществ может способствовать использование так называе­мых твердых дисперсных систем, представляющих собой лекарст­венное вещество, диспергированное путем сплавления или раство­рения (с последующей отгонкой растворителя) в твердом носителе-матрице. Так, растворимость аймалина увеличивается в 40 раз, цинаризина — в 120 раз, резерпина — 200 раз и т.д. Кроме того, изменяя физико-химические свойства полимеров-носителей (моле­кулярную массу, растворимость), можно регулировать биодоступ­ность лекарственной субстанции, создавать лекарственные формы направленного действия.
    продолжение
--PAGE_BREAK--Важнейшей проблемой в фармацевтической технологии является стабилизация лекарственных систем. Связано это с тем, что лекар­ственные вещества, главным образом в процессе приготовления лекарственных препаратов и их хранения, под воздействием хими­ческих (гидролиз, омыление, окисление, полимеризация, рацемиза­ция и др.), физических (испарение, изменение консистенции, рас­слаивание, укрупнение частиц) и биологических (прокисание и др.) явлений изменяют свои свойства. С этой целью для стабилизации гомогенных лекарственных систем (растворов для инъекций, глаз ных капель и др.) широко используют различные химические (до­бавление стабилизаторов, антиоксидантов, консервантов и т.д.) или физические методы (использование неводных растворителей, ампу-лирование в токе инертного газа, параконденсационный способ, нанесение защитных оболочек на таблетки и драже, микрокапсули-рование и др.).
Для стабилизации гетерогенных лекарственных систем (суспен­зии, эмульсии) используют загустители и эмульгаторы в виде ПАВ и ВМС.
Здесь уместно привести пример «иммобилизованных» лекарст­венных средств: ферментов, гормонов, мукополисахаридов, железо-производных декстранов и альбумина для лечения анемии; гамма-глобулинов, нуклеиновых кислот, интерферона и др., которые со­здаются с целью стабилизации и пролонгации их действия (см. подразд. 9.2).
Не менее важной проблемой фармацевтической технологии яв­ляется продление времени действия лекарственных средств, так как во многих случаях необходимо длительное поддержание строго определенной концентрации препаратов в биожидкостях и тканях организма. Это требование фармакотерапии особо важно соблюдать при приеме антибиотиков, сульфаниламидов и других антибактери­альных лекарств, при снижении концентрации которых падает эф­фективность лечения и вырабатываются резистентные штаммы мик­роорганизмов, для уничтожения которых требуются более высокие дозы лекарства, а это, в свою очередь, ведет к увеличению побочного действия.
Пролонгированного действия лекарств можно достигнуть ис­пользованием различных методов:
·         физиологического, который обеспечивает изменение скорости всасывания или выведения вещества из организма. Это наиболее часто достигается путем охлаждения тканей в месте инъекции лекарства, использования кровососной банки или путем введения гипертонических или сосудосуживающих растворов, подавления выделительной функции почек;
·         химического — посредством изменения химической структуры лекарственного вещества (путем комплексообразования, полиме­ризации, этерификации и пр.);
·         технологического — за счет подбора носителя с определенными свойствами, изменения вязкости раствора, подбора вида лекар­ственной формы и т.п. Например, глазные капли с пилокарпином гидрохлоридом, приготовленные на дистиллированной воде, вы­мываются с поверхности роговицы глаза через 6-8 мин. Эти же
·        капли, приготовленные на 1% растворе метилцеллюлозы и имеющие большую вязкость, а значит, и адгезию к поверхности всасывания, удерживаются на ней в течение 1 ч.
         Заменив глазные капли мазью, можно увеличить время действия последней по сравнению с водным раствором пилокарпина гидрохлорида почти в 15 раз. Таким образом, изменяя такой технологический показатель, как вязкость или вид лекарственной формы, можно увеличить время действия препарата и его эффективность.
Существуют и другие проблемы в фармацевтической технологии, решение которых может привести к созданию более совершенных лекарственных препаратов, а следовательно, и к более высокой их терапевтической эффективности, например, создание возрастных лекарств, повышение микробной чистоты лекарств, создание более прогрессивной тары и тароукупорочных материалов, внедрение мало­отходных и экологически чистых технологий, дальнейшее развитие биотехнологии и т.д., что, в свою очередь, шаг за шагом будет повышать качество и терапевтическую эффективность лекарств.
В последнее время фармакотехнологов и других специалистов привлекает проблема создания лекарств принципиально нового типа, так называемых лекарств направленного действия с заданными фар-макокинетическими свойствами, которые в отличие от традицион­ных или классических лекарств характеризуются:
·         пролонгированным действием;
·         контролируемым высвобождением действующих веществ;
·         их целевым транспортом к мишени.
Лекарства нового поколения принято называть терапевтически­ми системами, которые частично или полностью отвечают выше­указанным требованиям.
Терапевтическая лекарственная система (ТЛС) — это уст­ройство, содержащее лекарственное вещество или вещества, элемент, контролирующий высвобождение лекарственного вещества, платформу, на которой размещена система, и терапевтическую программу.
ТЛС обеспечивает постоянное снабжение организма лекарствен­ными веществами в строго определенный промежуток времени. Они используются как для местного, так и для системного лечения. Примером таких лекарств могут быть «Окусерт», «Прогестасерт», «Трансдерм» и другие, которые являются пассивными системами (см. подразд. 9.9). Имеются образцы активных терапевтических систем, действие которых запрограммировано извне или самолро-граммируется. Такие терапевтические системы создаются за рубе­жом, дорогостоящие и поэтому не получили широкого распростра­нения в медицинской практике.
Следует отметить, что оптимальную стратегию по созданию со­временных лекарственных препаратов можно выработать только на базе тщательно спланированных технологических и биофармацев­тических экспериментальных исследований и квалифицированной интерпретации полученных данных.
2.1. Биотехнология традиционных лекарств и лекарств будущего
С целью улучшения лечебных свойств традиционных лекарств усилия всех специалистов, разрабатывающих лекарственные пре­параты, направлены на использование новых технологий их полу­чения, совершенствование составов, повышение специфичности и изучение как можно более полного механизма их действия на различные системы и органы человека. Продвижения в этом направ­лении все ощутимее и появляется надежда, что лекарственные препараты в следующем тысячелетии станут более действенными и эффективными средствами лечения многих заболеваний. Широко будут применяться лекарственные препараты в виде терапевтиче­ских систем и биопродуктов, особенно таких, как пептиды и про­белки, которые практически невозможно получить синтетически. Поэтому становится понятным возрастающее значение биотехноло­гии для фармацевтической промышленности.
Сегодня биотехнология стремительно выдвигается на передний край научно-технического прогресса. Этому, с одной стороны, способствует бурное развитие современной молекулярной биологии и генетики, опирающихся на достижения химии и физики, а с другой стороны, — острая потребность в новых технологиях, спо­собных улучшить состояние здравоохранения и охраны окружающей среды, а главное — ликвидировать нехватку продовольствия, энер­гии и минеральных ресурсов.
В качестве первоочередной задачи перед биотехнологией стоит создание и освоение производства лекарственных препаратов для медицины: интерферонов, инсулинов, гормонов, антибиотиков, вакцин, моноклональных антител и других, позволяющих осуществлять ран­нюю диагностику и лечение сердчено-сосудистых, злокачественных, наследственных, инфекционных, в том числе вирусных заболеваний.
По оценкам специалистов мировой рынок биотехнологической продукции уже к середине 90-х годов составил около 150 млрд долларов. По объему выпускаемой продукции и числу зарегистри­рованных патентов Япония занимает первое место среди стран, преуспевающих в области биотехнологии, и второе — по производ­ству фармацевтической продукции. В 1979 году на мировой рынок было выпущено 11 новых антибиотиков, 7 из них синтезировано в Японии. В 1980 году фармацевтическая промышленность Японии освоила производство веществ широкой номенклатуры: пеницилли-нов, цефалоспорина С, стрептомицина, полусинтетических анти­биотиков второго и третьего поколений, противоопухолевых пре­паратов и иммуномодуляторов. Среди десяти ведущих мировых производителей интерферона — пять японских. С 1980 года фирмы активно включились в разработку технологий, связанных с иммо­билизованными ферментами и клетками. Проводятся активные исследования, направленные на получение термостойких и кисло­тоустойчивых ферментов. 44% новых продуктов, полученных с помощью биотехнологий, нашли применение в фармации и только 23% — в пищевой или химической промышленности.
Биотехнология оказывает воздействие на различные отрасли про­мышленности Японии, включая производство вино-водочных изделий, пива, аминокислот, нуклеидов, антибиотиков; рассматривается как одно из самых перспективных направлений развития пищевого и фармацев­тического производства и на этом основании включена в исследователь­скую программу по созданию новых промышленных технологий. Суще­ствует государственная программа, направленная на разработку новых технологий получения гормонов, интерферонов, вакцин, витаминов, аминокислот, антибиотиков и диагностических препаратов.
Второе место после Японии по объему продуктов биотехнологии и первое место по производству фармацевтической продукции принадле­жит США. На антибиотики приходится 12% мировой продукции. Зна­чительные успехи достигнуты в области синтеза инсулина, гормона роста человека, интерферона, фактора свертывания крови VIII, диа­гностических тестов, вакцины против гепатита В и других лекарст­венных препаратов, а также непрерывного процесса конверсии саха­ра в этиловый спирт. В 1983 году был синтезирован лейкоцитарный интерферон человека высокой чистоты. Методами генной инженерии овладели многие фармацевтические фирмы США. Быстро развиваются средства информации, связанные с биотехнологией. Определенные успехи в области биотехнологии имеются и в других странах мира.
Понятие «биотехнология» собирательное и охватывает такие области, как ферментационная технология, применение биофакто­ров с использованием иммобилизованных микроорганизмов или энзимов, генная инженерия, иммунная и белковая технологии, технология с использованием клеточных культур как животного, так и растительного происхождения.
Биотехнология — это совокупность технологических мето­дов, в том числе и генной инженерии, использующих живые организмы и биологические процессы для производства лекар­ственных средств, или наука о разработке и применении живых систем, а также неживых систем биологического происхождения в рамках технологических процессов и инду­стриального производства.
Современная биотехнология — это химия, где изменение и превра­щение веществ происходит с помощью биологических процессов. В острой конкуренции успешно развиваются две химии: синтетическая и биологическая. Синтетическая химия, сочетая и перетасовывая атомы, переделывая молекулы, создавая новые вещества, неведомые в природе, окружила нас новым миром, который стал привычным и необходимым. Это — лекарства, моющие средства и красители, цемент, бетон и бумага, синтетические ткани и меха, пластинки и драгоценные камни, духи и искусственные алмазы. Но чтобы получить вещества «второй природы» необходимы жесткие условия и специфические катализаторы. Напри­мер, связывание азота происходит в промышленных прочных аппаратах при высокой температуре и огромном давлении. При этом в воздух выбрасываются столбы дыма, а в реки — потоки сточных вод. Для азотофиксирующих бактерий этого совсем не требуется. Имеющиеся в их распоряжении энзимы осуществляют эту реакцию в мягких условиях, образуя чистый продукт без отходов. Но самое неприятное заключается в том, что пребывание человека в окружении «второй природы» стало оборачиваться аллергией и другими опасностями. Неплохо бы держаться поближе к природе-матери. И если делать искусственные ткани, пленки, то хотя бы из микробного белка, если применять лекарственные пре­параты, то прежде всего те, которые вырабатываются в организме. Отсюда вырисовываются перспективы развития и использования в фармацевтической промышленности биотехнологий, где применяются живые клетки (в основном такие микроорганизмы, как бактерии и дрожжевые грибки или отдельные энзимы, выполняющие роль катали­заторов только определенных химических реакций). Обладая феноме­нальной избирательностью, энзимы осуществляют одну-единственную реакцию и позволяют получить чистый продукт без отходов.
Однако энзимы нестойкие и быстро разрушаются, например, при повышении температуры трудно выделяются, их нельзя использо­вать многократно. Это и обусловило, главным образом, развитие науки об обездвиженных (иммобилизованных) ферментах. Основа, на которую «сажают» фермент, может иметь вид гранул, волокон, пленок из полимеров, стекла, керамики. Потери энзима при этом минимальны, а активность сохраняется месяцами. В настоящее время научились получать иммобилизованные бактерии, которые вырабатывают энзимы. Это упростило их использование в произ­водстве и сделало метод более дешевым (не надо выделять энзим, очищать его). Кроме того, бактерии работают в десять раз дольше, что сделало технологический процесс экономичнее й проще. Тра­диционная ферментационная технология превратилась в биотехно­логию со всеми признаками передовой технологии.
Ферментные технологии с большим экономическим эффектом стали применять для получения чистых аминокислот, переработки крахмалосодержащего сырья (например, кукурузного зерна в сироп, состоящий из глюкозы и фруктоы). За последние годы это произ­водство превратилось в многотоннажное. Развиваются производства по переработке опилок, соломы, бытовых отходов в кормовой белок или спирт, который используют для замены бензина. Ферменты сегодня широко используются в медицине как фиброиолитические препараты (фибринолизин + гепарин, стрептолиаза); при расстрой­ствах пищеварения (пепсин + хлористоводородная кислота, пепси-дил, абомин, панкреатин, ораза, панкурмен, фестал, дигестал, три-фермент, холензим и др.); для лечения гнойных ран, При образова­нии спаек, рубцов после ожогов и операций и т.д. Биотехнология позволяет получать большое количество ферментов медицинского назначения. Их используют для растворения тромбов, лечения на­следственных заболеваний, удаления нежизнеспособных, денатури­рованных структур, клеточных и тканевых фрагментов, освобожде­ния организма от токсических веществ. Так, с помощью тромболи-тических ферментов (стрептокиназы, урокиназы) спасена жизнь многим больным с тромбозом конечностей, легких, коронарных сосудов сердца. Протеазы в современной медицине применяются для освобождения организма от патологических продуктов, для лечения ожогов.
Известно около 200 наследственных заболеваний, обусловленных дефицитом какого-либо фермента или иного белкового фактора. В настоящее время делаются попытки лечения этих заболеваний с применением ферментов.
В последние годы все больше внимания уделяют ингибиторам ферментов. Ингибиторы протеаз, получаемые из актиномицетов (лейпептин, антипаин, химостатин) и генноинженерных штаммов E.coli (эглин) и дрожжей (ос-1 антитрипсин) эффективны при сеп­тических процессах, инфаркте миокарда, панкреатите, эмфиземе легких. Концентрацию глюкозы в крови больных диабетом можно уменьшить путем использования ингибиторов кишечных инвертаз и амилаз, отвечающих за превращение крахмала и сахарозы в глюкозу. Особой задачей является поиск ингибиторов ферментов, с помощью которых патогенные микроорганизмы разрушают анти­биотики, вводимые в организм больного.
Новые возможности открывает генная инженерия и другие ме­тоды биотехнологии в производстве антибиотиков, обладающих высокой избирательной физиологической активностью по отноше­нию к определенным группам микроорганизмов. Однако антибио­тики имеют и ряд недостатков (токсичность, аллергенность, устой­чивость патогенных микроорганизмов и др.), которые существенно можно ослабить за счет их химической модификации (пеницилли-ны, цефалоспорины), мутасинтеза, генной инженерии и других способов. Многообещающим подходом может служить инкапсули­рование антибиотиков, в частности, включение их в липосомы, что позволяет прицельно доставлять лекарственное вещество только к определенным органам и тканям, повышает его эффективность и снижает побочное действие.
    продолжение
--PAGE_BREAK--С помощью генной инженерии можно заставить бактерии выра­батывать интерферон — белок, выделяемый клетками человека в низких концентрациях при попадании в организм вируса. Он уси­ливает иммунитет организма, подавляет размножение аномальных клеток (противоопухолевое действие), используется для лечения болезней, вызываемых вирусами герпеса, бешенства, гепатитов, цитомегаловирусом, вызывающим опасное поражение сердца, а также для профилактики вирусных инфекций. Вдыхание аэрозоля интерферона позволяет предупредить развитие ОРЗ. Интерфероны оказывают лечебное действие при заболевании раком груди, кожи, гортани, легких, мозга, а также рассеяного склероза. Они полезны при лечении лиц, страдающих приобретенными иммунодефицитами (рассеянной миеломой и саркомой Капоци).
В организме человека вырабатывается несколько классов интер­ферона: лейкоцитарный (а), фибробластный (р-интерферон, удоб­ный для массового производства, поскольку фибробласты в отличие от лейкоцитов размножаются в культуре), иммунный (у) из Т-лим-фоцитов и е-интерферон, образуемый эпителиальными клетками.
До введения методов генной инженерии интерфероны получали из лейкоцитов донорской крови. Технология сложная и дорогостоя­щая: из 1 л крови получали 1 мг интерферона (одна доза для инъекций).
В настоящее время а-, (3- и у-интерфероны получают с примене­нием штамма E.coli, дрожжей, культивируемых клеток насекомых (Dro-zophila). Очищают с использованием моноклональных (клон — совокуп­ность клеток или особей, произошедших от общего предка путем бесполого размножения) антител или другими способами.
Биотехнологическим методом получают и интерлейкины — срав­нительно короткие (около 150 аминокислотных остатков) полипеп­тиды, участвующие в организации иммунного ответа. Образуются в организме определенной группой лейкоцитов (микрофагами) в от­вет на введение антигена. Используются как лечебные средства при иммунных расстройствах. Путем клонирования соответствующих генов в E.coli или культивирования лимфоцитов in vitro получают интерлейкин-L (для лечения ряда опухолевых заболеваний), фактор крови VIII (культивированием клеток млекопитающих), фактор IX (необходим для терапии гемофилии), а также фактор роста [3-лим-фоцитов, фактор активизации макрофагов, Т-заместительный фак­тор, активатор тканевого плазминогена. Осуществлен биосинтез инсулина, в котором нуждаются миллио­ны больных во всем мире. Диабет, для лечения которого необходим инсулин, характеризуется избирательной гибелью клеток (островков Лангерганса поджелудочной железы), синтезирующих этот пептид­ный гормон.
До недавнего времени инсулин получали из поджелудочной железы быка и свиньи, первое производство которого освоила американская компания «Эли Лилли» (1922). Поджелудочная желе­за крупного рогатого скота и свиней извлекалась из туш животных, быстро замораживалась и в вагонах-рефрижераторах направлялась на фармацевтические предприятия, где и производилась экстракция гормона. 100 г кристаллического инсулина получали из 800-1000 кг сырья (поджелудочаня железа быка весит 200-250 г).
В 1935 году был разработан инсулин пролонгированного действия путем добавления цинка (Дания), а в 1946 году — нейтральный кристаллический инсулин. Медицина получила в свое распоряжение пролонгированный (поглощается в течение 48 ч) и быстродействую­щий инсулины. В 60-е годы удалось разработать методы очистки гормона от глюкагона (антагонист инсулина) и соматостатина (по­давляет выделение инсулина).
Инсулин состоит из двух полипептидных цепей А и В длиной 20 и 30 аминокислот. Инсулин животный отличается от человеческого 1-3 аминокислотными радикалами, что является причиной возник­новения аллергических реакций, особенно у детей, хотя по актив­ности и времени действия они идентичны. Широкомасштабное применение инсулина в терапии сдерживалось его высокой стои­мостью и ограниченностью сырьевых ресурсов.
В результате напряженных генноинженерных поисков компа­нией «Эли Лилли» в 1982 году был произведен инсулин на основе раздельного синтеза E.coli его А- и В-цепей. Этому достижению предшествовали широкомасштабные и дорогостоящие исследова­ния по биосинтезу проинсулина, упрощению технологической схе­мы получения инсулина (на этапе экстракции и выделения), а также повышения выхода гормона, синтезируемого клетками специально сконструированных штаммов кишечной палочки. Стоимость гото­вого продукта значительно снизилась, получаемый инсулин был идентичен человеческому, фармацевтическое производство освобо­дилось от перебоев в поставках животного сырья с боен, а главное, человеческий инсулин при длительном применении не вызывал неприятных последствий: нарушений работы почек, расстройств зрения и аллергических реакций.
В настоящее время заслуживают внимания генноинженерные человеческие инсулины — хумулины фирмы «Эли Лилли», различ ной продолжительности действия и инсулины германской фирмы «Хьост Мэрлон Руссель», используемые во всем мире миллионами людей. На базе завода эндокринно-ферментативных препаратов (Киевский мясокомбинат) планируется производство украинского инсулина по лицензии фирмы «Хьост» в объеме, позволяющем полностью обеспечить годовую потребность в этом препарате. Ин­сулин по качеству будет отвечать международным стандартам.
Для лечения диабета используется также технология инкапсули­рования: клетки поджелудочной железы в капсуле, введенные одно­кратно в организм больного, продуцируют инсулин в течение года. В настоящее время актуальным является вопрос промышленного синтеза олигопептидных гормонов нервной системы — энкефалинов (построенных из 5 аминокислотных остатков), нейропептидов (вы­рабатываемых мозгом) и эндорфинов (аналогов морфина). Эти биологически активные вещества — продукты биотехнологии по праву называют лекарствами XXI века. При рациональном приме­нении эти пептиды создают хорошее настроение, повышают работо­способность, концентрируют внимание, улучшают память, приводят в порядок режим сна и бодрствования. Они с успехом могут использо­ваться для лечения трудноизлечимых заболеваний: ожирения, наруше­ния процессов пищеварения, снимают болевой синдром.
Моноклональные антитела в сочетании с токсичными вещества­ми для раковых клеток доставляют яд точно по адресу, избегаяпоражения здоровых клеток. В современной фармацевтической про­мышленности моноклональные антитела используются также для очистки лекарственных веществ.
Короткие фрагменты ДНК и РНК, несущие радиоактивную или иную метку (ДНК- или РНК-пробы), также используются для диагностики заболеваний (радиоиммунные методики).
Большое экономическое и социальное значение имеют разработ­ки вакцин. Современные биотехнологические разработки предусмат­ривают создание рекомбинатных вакцин, вакцин-антигенов, осно­ванных на генноинженерном подоходе: в ДНК известной основак-цины встраивают чужеродные гены, кодирующие иммуногенные белки возбудителей вирусов гриппа, герпеса, гепатита В и получают вакцину против соответствующей инфекции. В последние годы стало возможным создание поливалентной вакцины на основе объ­единения участков ДНК различных патогенов. Открывается воз­можность одномоментной комплексной иммунизации против мно­гих опасных инфекций.
Вакцины-антигены получают, клонируя гены возбудителя болез­ни E.coli, в дрожжах. Вакцины-антигены стабильны при хранении, содержат минимальное количество белка и поэтому малоопасны как аллергены. Однако они имеют низкую иммунногенность. Для по­вышения иммуногенности прибегают к иммобилизации или вклю­чают их в липосомы.
Отмечая несомненные успехи разработок в области фармации и медицины, нельзя не упомянуть об успехах биотехнологии в пище­вой промышленности, где ее интересы тесно переплетены с меди­циной и связаны с поиском низкокалорийных, не опасных для больных диабетом заменителей сахара (сахароза), перспективным применением корригентов типа аспартама
2.2. Состояние и перспективы развития производства терапевтических систем
В последние годы фармацевтическая технология, в частности, разработка и производство лекарств с контролируемым высвобож­дением и направленной доставкой лекарственных веществ, развива­ется исключительно быстрыми темпами, и можно смело прогнози­ровать появление новых, еще более современных лекарственных форм.
Следует отметить, что в настоящее время во всем мире большое значение придается разработке новых целенаправленных систем доставки препарата к органу-мишени. В качестве примера можно привести новые системы доставки иммуномодуляторов, факторов роста костной ткани, интерферона, применяемых для лечения зло­качественных новообразований, переломов костей я рака легкого соответственно.
В настоящее время используются следующие технологические приемы для получения систем, обеспечивающих оптимальные усло­вия транспорта белков к органам-мишеням:
·        заключение лекарственных и вспомогательных веществ в оболоч­ку или гранулу для защиты от преждевременного всасывания;
·         инкапсулирование белков, вакцин и других средств в липосомы, где они располагаются между двумя фосфолипидными слоями системы;
·        связывание субстанции с моноклональными антителами, молуча-емыми методами генной инженерии;
·         использование интраназалъной системы доставки, когда белки вводят в кровяное русло через слизистую оболочку носа (например, инсулин);
·        введение в организм предшественников лекарственных веществ, способных превращаться в биологически активные субстанции под действием ферментов;
·         использование биодеградируемых систем доставки, состоящих из комплекса лекарственных и полимерных вспомогательных ве­ществ, способных к биодеградации с заданной скоростью;
·         применение трансдермальных систем доставки (включая плас­тыри), действие которых основано на всасывании лекарственных веществ через кожу;
·        включение лекарственных веществ в природные и синтетические эритроциты; в этом случае лекарственные препараты доста­точно долго находятся в кровотоке и эффективно доставляются к мишени.
Японские фармацевты отмечают, что наиболее эффективными системами доставки противоопухолевых средств являются трансдер-мальная или моноклониальная система, а гормонов — липосомаль-ная и интраназальная системы.
В ближайшие годы ожидается быстрый рост производства новых систем доставки лекарственных средств. Причем большую часть рынка будут составлять новые системы с сердечно-сосудистыми препаратами, оральные осмотические системы (ОРОС) с противо­аллергическими, диуретическими, противопростудными, противо-астматическими средствами. Разрабатываются так называемые электро­транспортные системы доставки лекарственных веществ.
3.Фитотерапия и пути  совершенствования производства экстракционных лекарств.
Использование различных извлечений из растительного сырья известно с глубокой древности и не потеряло своего значения до настоящего времени. Препараты из растений являются основными средствами для лечения многих заболеваний. На долю препаратов растительного происхождения приходится 90% лекарств, применя­емых для лечения сердечно-сосудистой системы, 80% средств для лечения гинекологических заболеваний и 79% — для лечения дыха­тельных путей.
Возросший в последнее время интерес к фитотерапии неслучаен, поскольку лекарства растительного происхождения имеют ряд пре­имуществ перед химиотерапевтическими препаратами. В состав лекарственных растений входят природные вещества, необходимые организму для нормальной жизнедеятельности: витамины, углево­ды, макро- и микроэлементы, ферменты, гормоны и др. Комплекс веществ, содержащийся в растениях, действует поливалентно, сти­мулируя различные системы организма или компенсируя их недо­статочную функцию. Это действие (более мягкое, пролонгирован­ное), как правило, не вызывает аллергических заболеваний и ослож­нений. Кроме того, лекарственные растения обладают антиокси-дантным действием и способностью выводить токсические вещества и продукты метаболизма. За счет диуретического действия большин­ство из них может повышать антитоксическую функцию печени, стабилизировать мембраны клеток желудочно-кишечного тракта. Весьма важными моментами являются простота и дешевизна спо­собов получения лекарств из растений, а также доступность лекар­ственного растительного сырья. Сложность применения фитотерапии заключается в том, что не всегда известно действие лекарственных растений на молекулярном уровне (в сравнении с химиотерапией) и химический состав биоло­гически активных веществ. Вместе с тем химический состав расте­ний непостоянен и зависит от климатических, почвенных, экологи­ческих условий произрастания. При сушке и неправильном хране­нии растения теряют биологически активные вещества, а их фарма­кологическая ценность резко падает. Водные извлечения нестабиль­ны при хранении; в них возможны явления гидролитического рас­щепления, окислительно-восстановительные реакции, микробная порча; их трудно стандартизировать.
Однако нельзя противопоставлять лечение лекарственными рас­тениями или препаратами из них терапии синтетическими вещест­вами. В острой стадии заболевания, когда необходимо срочное воздействие лекарства, следует применять синтетические препара­ты. Затем больному назначают лекарственные препараты раститель­ного происхождения. Применение лекарств растительного проис­хождения (фитопрепаратов) совместно с синтетическими дает воз­можность уменьшить или полностью нивелировать побочные дей­ствия последних.
Различают фитопрепараты из свежих растений (натуральные и сгущенные соки и извлечения) и высушенного сырья (настойки, экстракты, максимально очищенные препараты и индивидуальные вещества).
В настоящее время, несмотря на определенные успехи в области получения экстракционных средств, многие традиционные техно­логические процессы, широко используемые на фармацевтических производствах (особенно на фармацевтических фабриках), малоэф­фективны, длительны по времени и требуют больших расходов сырья. Отсутствие инженерных расчетов процесса экстрагирования, несовершенство используемой аппаратуры и методов экстракции снижает качество экстракционных лекарств и создает условия для загрязнения окружающей среды. Указанное выше определяет пути совершенствования производства экстракционных средств. Это, преж­де всего, дальнейшая разработка теоретических основ процесса экстрагирования растительного сырья, создание методик инженер­ного расчета процесса экстрагирования и использование математи­ческих методов для расчета оптимальных условий технологий; поиск и применение новых экстрагентов, интенсификация методов эк­стракции и использование более совершенной аппаратуры, а также внедрение безотходных технологий производства лекарственных средств.
Одним из путей совершенствования производства экстракцион­ных средств из растительного сырья является поиск и применение новых экстрагентов.
Экстракция сжиженными газами известна давно, но не получила пока широкого применения в фармацевтическом производстве по ряду причин, в том числе из-за отсутствия специальной аппаратуры для экстракции. Сжиженные газы, обладая хорошей смачивающей и проникающей способностью, а также низкой вязкостью, способны легко и быстро проникать в сырье и извлекать до 88-98% действую­щих веществ, что значительно больше, чем при использовании известных методов экстрагирования: мацерации, перколяции и др. Кроме того, сжиженная углекислота легко и быстро отгоняется из экстракта при комнатной температуре, что особенно важно при производстве экстрактов из сырья, содержащего термолабильные вещества и эфирные масла. Высокая избирательная способность сжиженных газов позволяет получать нативные экстракты. Процесс извлечения проходит в несколько раз быстрее, чем при использова­нии других экстрагентов, что экономически более выгодно и часто характеризуется почти полным отсутствием водорастворимых балласт­ных веществ. Поскольку процесс идет в замкнутом пространстве, это позволяет предохранить окружающую среду от вредных выбросов.
Однако биологически активный комплекс, извлекаемый сжижен­ными газами, отличается от извлекаемого классическими раствори­телями, характеризуется повышенным содержанием жирораствори­мых и меньшим содержанием водорастворимых веществ. Поэтому сжиженные газы чаще используют для извлечения липофильных комплексов из растительного сырья (например, для производства облепихового масла). Чтобы получить извлечение комплексного состава, включающего все биологически активные вещества, при­сутствующие в исходном сырье, предлагается использовать смесь растворителей на базе сжиженных газов или же после экстрагиро­вания сжиженным газом оставшийся шрот подвергать дополнитель­ному извлечению водой с последующим упариванием и объедине­нием извлечений.
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :