Конспект лекций по предмету "Математический анализ"


Структура общего решения неоднородного уравнения. Метод вариации произвольных постоянных Лагранжа

Пусть дано неоднородное дифференциальное уравнение

Докажем следующее утверждение.
Теорема 1(о структуре общего решения неоднородного уравнения). Если в уравнении (1) все коэффициенты и правая часть непрерывны на отрезке , то общее решение уравнения (1) (на этом отрезке) имеет вид

где – фундаментальная система решений соответствующего однородного уравнения а – частное решение неоднородного уравнения (1), произвольные постоянные.
Доказательство. Применяя оператор к функции (2), будем иметь

Это означает, что функция (2) является решением уравнения (1) при произвольных значениях постоянных . Пусть теперь --- произвольная точка в ( ). Покажем, что решение задачи Коши

можно получить из (2) выбором определенных значений постоянных. Подчиняя (2) условиям (3), будем иметь

Определитель этой системы совпадает с вронскианом в точке и поскольку фундаментальная система решений линейно независима на отрезке , то указанный определитель системы (4) не равен нулю. Следовательно, система (4) имеет единственное решение а значит функция является решением задачи Коши (3). Тем самым показано, что функция (2) является общим решением неоднородного уравнения (1). Теорема доказана.


Не сдавайте скачаную работу преподавателю!
Данный конспект лекций Вы можете использовать для создания шпаргалок и подготовки к экзаменам.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем конспект самостоятельно:
! Как написать конспект Как правильно подойти к написанию чтобы быстро и информативно все зафиксировать.