Реферат по предмету "Информатика"


Мультимедиа система компьютера

--PAGE_BREAK--3.1.2. Какая информация передается с помощью MIDI
Все, что вы делаете, управляя работой своего музыкального устройства (крутите ручки, нажимаете на кнопки, играете на клавиатуре), может передаваться в виде управляющих MIDI-сообщений на ваше устройство с другого MIDI-устройства.

MIDI-сообщение передает не сам звук (аудиоинформацию) или какие-то его характеристики, а только управляющие команды, которые выполняются устройством-получателем.

Сам процесс передачи MIDI-сообщения может осуществляться в реальном времени (во время исполнения или воспроизведения музыки), но может быть и разорванным во времени. В этом случае MIDI-сообщение записывается в виде файла на дискету или жёсткий диск компьютера, а потом считывается устройством-получателем.
3.1.3. Музыкальные устройства принимающие информацию по MIDI
Технология MIDI с самого начала была предназначена для связи между самыми различными устройствами (синтезаторами, звуковыми модулями, компьютерами, устройствами цифровой обработки звука и многими другими).

MIDI-устройство должно иметь:

1)     внутри — программу или микропроцессор, который понимает MIDI-информацию;

2)     снаружи — разъемы, к которым подсоединяется MIDI-кабель.

 

3.1.4. MIDI-разъемы
По MIDI-кабелю (в отличие, скажем, от телефонного) информация передается всегда в одном направлении. Поэтому каждый MIDI-разъем используется только для одной цели в зависимости от его вида.


                                                                                                                                                           Таблица 1.

Виды MIDI-разъемов


MIDI Out

MIDI-выход. Через этот разъем устройство посылает MIDI сообщение на другое устройство

MIDI In

MIDI-вход. Через этот разъем устройство получает MIDI сообщение от другого устройства

MIDI Thru

Сквозной. Через этот разъем посылается точная копия любого MIDI-сообщения, которое поступило на разъем MIDI In



В качестве разъема для MIDI используется стандартный европейский 5-контактный разъем Рис. 5.

Рис. 5.

MIDI-разъем. Контакт 2 — земля, контакты 4 и 5 — сигнальные, контакты 1 и 3 — не используются.
Существует три вида MIDI-разъемов, они представлены выше в таблице.

MIDI-кабель соответственно должен иметь три провода, которые соединяют контакты 1, 4 и 5 на обоих его концах.


3.1.5. Соединение MIDI-устройств между собой
Всегда одно устройство передает MIDI-сообщение, другое получает. MIDI-кабель связывает разъем MIDI Out передающего устройства с разъемом MIDI In принимающего. Если вы хотите направить информацию в обратную сторону, вы должны соединить устройства по-новому (в соответствии с тем, что было сказано в предыдущем предложении) или использовать еще один кабель и, опять же, связать MIDI-выход одного устройства с MIDI-входом другого (рис. 6).



Рис. 6.

По одному MIDI-кабелю синтезатор передает MIDI-сообщение на звуковой модуль. Затем (но не одновременно) по другому MIDI-кабелю этот модуль может послать свое MIDI-сообщение на синтезатор.
У любого устройства имеется только один MIDI-выход. Поэтому, если с него нужно посылать команды на два или несколько других устройств, используется разъем MIDI Thru. Тогда подключение устройств-приемников происходит последовательно (рис. 7). Но имеются, конечно, и специальные приборы, которые способны разветвлять MIDI-сообщения. Тогда нет необходимости в последовательном подключении MIDI-устройств.



Рис. 7.

Компьютер посылает MIDI-сообщения для синтезатора и звукового модуля через свой MIDI-выход. Они оба поступают на MIDI-вход синтезатора, оба выходят через его разъем MIDI Thru. Синтезатор не может добавить никакую свою информацию, поэтому эти MIDI-сообщения в неизмененном виде поступают на MIDI-вход звукового модуля. Каждое из устройств-получателей само определяет, какие команды, находящиеся в MIDI-сообщениях, ему следует выполнять. Кривые линии красного цвета изображают MIDI-кабели, прямые линии красного цвета — схематический путь MIDI-информации.

Итак, первое — при подключении MIDI-устройств вы всегда должны учитывать направление передачи информации. Второе — при подключении третьего и следующих MIDI-устройств вы должны пользоваться разъемом MIDI Thru. Третье — передаваемая MIDI-информация аналогична управлению вашим синтезатором с помощью ручек, кнопок или клавиш.


    продолжение
--PAGE_BREAK--3.1.6. Типы MIDI-сообщений
Все типы MIDI-сообщений делятся на две большие группы (рис. 8). Системные MIDI-сообщения (System message) передают команды, которые воздействуют на общие параметры и режимы работы всех устройств-получателей.




Рис. 8.

Разделение всех типов MIDI-сообщений на две группы.
Примером системного сообщения может служить команда “Старт”, которая включает режим воспроизведения у любого секвенсора или магнитофона, находящегося в MIDI-связке.

Канальные MIDI-сообщения (Channel message) включают в себя номер MIDI-канала и передают сообщения на каждый MIDI-канал индивидуально. Всего для одного (и каждого) устройства MIDI-технология предусматривает 16 MIDI-каналов.


3.1.7. MIDI-каналы
Представьте себе обычный многодорожечный магнитофон. На одну дорожку можно записать трубу, на другую — гитару и так далее. При воспроизведении мы слышим все записанные дорожки одновременно.

MIDI-каналы предназначены для того, чтобы один синтезатор или звуковой модуль мог играть несколькими разными тембрами одновременно, причем каждый тембр (инструмент) исполняет свою независимую партию.

Когда одно устройство передает канальные MIDI-сообщения на другое, внешне это выглядит так, как если бы они были соединены шестнадцатью кабелями (и по каждому следуют указания о том, какие ноты каким тембром играть).

 




Рис. 9.

Разделение MIDI-сообщений на MIDI-каналы.
На самом деле MIDI-технология использует один кабель, но в каждое канальное MIDI-сообщение вписывается номер MIDI-канала, для которого оно предназначено. Устройство-получатель, пользуясь этим номером, направляет каждое канальное MIDI-сообщение на свой канал (рис. 9).


3.1.8. Типы сообщений из группы Channel
1)Канальные MIDI-сообщения можно разделить по типам их структуры и по их целям. В последнем случае имеются две группы MIDI-сообщений: голосовые (Voice message) и режимные (Mode message).




Рис. 10.

MIDI-сообщения из группы Channel. Все режимные сообщения по типу (а не по функциям, как они разделены на этом рисунке) являются MIDI-сообщениями типа Control Change, поэтому изображены одним цветом и обведены пунктиром.2)
Голосовые сообщения несут информацию о нотах, тембре и других характеристиках, которые должно учитывать устройство-получатель для конкретного MIDI-канала.

3)Режимные сообщения тоже делятся на две группы. Первая группа воздействует на конкретный MIDI-канал (эти сообщения устанавливают канал в состояние по умолчанию — сбрасывают все ноты, настраивают канал на стандартную высоту звука и пр.).

Сообщения второй режимной группы воздействуют на все MIDI-устройство в целом, другими словами, устанавливают режим его работы.


3.1.9. MIDI-сообщения группы System
В отличие от канальных сообщений все MIDI-сообщения группы System message принадлежат одному типу (то есть имеют одинаковый статус).

Но по своему функциональному назначению их делят на три подгруппы (рис. 11). К первой из них (System Real Time) относятся сообщения, связанные с синхронизацией работы двух MIDI-устройств.




Рис. 11.

MIDI-сообщения из группы System message (подгруппы показаны разным цветом, но по статусу принадлежат к одному типу — Control Change).
Во второй подгруппе (System Common) находятся сообщения, которые одинаково воспринимаются всеми MIDI-устройствами. Поэтому они и называются “общими”. Эта группа просто собрана из различных MIDI-сообщений, и между ними нет никакой логической связи.

Сообщения третьей группы (System Exclusive) являются одними из самых важных и самых неформализованных в MIDI-технологии. Они носят название “эксклюзивные”, потому что содержание данных определяется для каждого MIDI-устройства своей фирмой-производителем и не может быть распознано устройством другой модели или фирмы. Среди этих сообщений могут быть команды о настройке всего устройства целиком или отдельных его модулей. Другие сообщения управляют процессом передачи данных сэмплов или каких-то специальных файлов (Sample Dump, File Dump).
3.2.
Mp3 — технология сжатия звуковой информации
Само название МрЗ появилось в результате сокращения аббревиатуры MPEG-1 Layer3.

MPEG (Motion Pictures Expert Group) — это группа при Международной организации по стандартизации и Международном электрическом комитете, которая занимается разработкой стандартов для цифрового сжатия видео и аудио информации. А зачем сжимать эту информацию? Во-первых, для экономии экономических и материальных ресурсов при передаче информации на расстояние по каналам связи (в том числе и спутниковым), а во-вторых, для ее хранения.

Официальное одобрение стандарт MPEG-1 получил в 1992 году, однако до недавнего времени открытие не было востребовано в полной мере. Лишь с появлением достаточно мощных процессоров Pentium (с тактовыми частотами от 300 МГц и выше, позволяющих резко снизить время на кодирование/декодирование сигнала) и высокоскоростных модемов стандарт получил широкое признание.

Стандарт MPEG-1 является потоковым форматом и состоит из аудио, видео и системной частей. Последняя часть содержит информацию об объединении и синхронизации двух первых.

Передача данных происходит потоком независимых отдельных блоков данных — фреймов, получаемых при «нарезке» на равные по продолжительности участки, которые кодируются независимо друг от друга.

Всего в настоящее время существует пять видов (номеров) стандартов MPEG:

1) MPEG1 — сжатие аудио и видео с общей скоростью до 150 Кбайт/сек (аудио 38, 44.1, 48 килогерц);

2) MPEG2 — сжатие аудио и видео с общей скоростью до 300 Кбайт/сек (аудио 38, 44.1, 48 килогерц), сжатие аудио ИДЕНТИЧНО MPEG1;

3) MPEG2.5 — сжатие аудио с пониженным разрешением (аудио 16,22.05,24 килогерц). Интересно заметить, что стандарт MPEG2.5 (еще известный как MPEG2 LSF — LOW SAMPLE FREQUENCY — низкая частота сканирования аудио) введен фирмой IIS Fraunhofer (институт информационных технологий имени Фраунхофера из Германии). Этот стандарт является расширением «чистого» аудио MPEG2 (то есть MPEG1!) для частоты сканирования аудио в два раза меньшей, чем обычно;

4) MPEG3 — многоканальный MPEG1+MPEG2. Этот стандарт практически не используется;

5) MPEG4 — новомодный за рубежом стандарт. Его особенность: может держать до 8-и каналов аудио (то есть AC-3 — цифровое расширение системы Surround.

Чем выше индекс уровня тем выше сложность и производительность алгоритма кодирования, соответственно и увеличиваются требования к системным ресурсам.

Здесь под термином 'кодирование" понимается процесс, позволяющий получать файл в сжатом виде, который занимает меньше места на диске и соответственно быстрее передается по каналам связи. В сжатой форме файл использоваться не может, соответственно, перед использованием его необходимо декодировать. Сжатие файла происходит не всегда с положительным результатом. Результат напрямую зависит от метода компрессии и от содержимого самого файла.

Принцип кодирования сигнала в MPEG Audio основан на использовании психоакустической модели (Psycho-acoustics), суть которой в следующем.

Существует ряд звуковых частот, которые человеческое ухо не воспринимает. Происходит маскирование одних звуков другими, как с большей амплитудой, так и с близкой частотой. Так, например, если излучается сильный звук частотой 1000 Гц (маскирующий), то более слабый звук частотой 1100 Гц (маскируемый) человеческое ухо не зафиксирует из-за особенностей порога слышимости человеческого уха. Порог слышимости на краях частотного диапазона (16-20 Гц и 16-20 кГц) значительно повышается, т.к. на этих частотах слух имеет значительно меньшую чувствительность по сравнению с областью наибольшей чувствительности слуха (диапазон 1-5 кГц). Также известно, что время восстановления чувствительности слуха после громкого сигнала составляет порядка 100 мс, а время задержки восприятия этого же сигнала составляет порядка 5 мс.

Таким образом, происходит передача только той звуковой информации, которая может быть адекватно воспринята подавляющим большинством слушателей, а вся остальная, увы, безвозвратно теряется.

Как уже упоминалось, все уровни имеют одинаковую базовую структуру, при которой кодер анализирует исходный сигнал, вычисляет для него гребенку фильтров (32 полосы) и применяет психоакустическую модель. С заранее выбранной частотой квантования, величиной потока и маскирования кодер производит квантование и кодирование сигнала.

Сравнительные характеристики способов кодирования для одного канала при частоте квантования в 32 кГц представлены в таблице 2.
                                        Таблица 2.



Способ кодирования

Скорость передачи (кбит/с)

Коэффициент сжатия

Layer 1

192

1:4

Layer 2

128-96

1:6...8

Layer 3

64-56

1:10...12



Перед кодированием исходный сигнал разбивается на фреймы, каждый из которых кодируется отдельно с разными параметрами и помещается в конечном файле независимо от других. Последовательность воспроизведения определяется порядком расположения фреймов. Вся информация о фрейме содержится в его заголовке, а информация о фреймах содержится в заголовке файла. Для информации об артисте, альбоме, названии композиции, жанре и пр. предусмотрен ID3/ID2 tag — заголовок. Подавляющее большинство существующих проигрывателей используют данный заголовок для прокрутки этой информации во время проигрывания музыкального фрагмента.

Между фреймами может содержаться произвольная информация, допустим, авторские права, расположенные ровным слоем по всему файлу. Основное требование к последовательно расположенным фреймам заключается в том, чтобы отсутствовали совпадения с сигнатурой начала фрейма.

Частота следования фреймов называется битрейтом (BIT RATE — битовая скорость, чем она выше, тем ближе будет конечный результат к оригиналу).

Каждый битрейт имеет свою область применения. Для создания качественной копии, соответствующей качествуоригиналу применяются только высокие битрейты порядка 256 кбит/с. При битрейте 128 кбит/с качество конечного продукта кажется вполне нормальным, но заметить разницу между копией и оригиналом способны уже многие. В Интернете чаще всего содержатся как раз МРЗ файлы, закодированные битрейтом 128 кбит/с. Но для создания действительно качественной копии необходимо использовать скорость кодирования в 320 кбит/с, хотя конечный файл получается меньше лишь в 4,3 раза по сравнению с 10,8 раз на 128 кбит/с и 5,4 раза на 256 кбит/с. Поэтому выбирать битрейт необходимо самому, исходя из потребностей.

После фреймовой разметки исходный сигнал с помощью гребенчатых фильтров разделяется на составляющие, представляющие отдельные частотные диапазоны, в сумме дающие обрабатываемый сигнал. Для каждого такого диапазона определяется своя психоакустическая модель и участки фрейма, которые «выпадают» из процесса кодирования. Для оставшихся данных определяется максимально допустимая частота квантования, которая должна обеспечивать потери ниже величины маскирующего эффекта.

После обработки всех фреймов формируется итоговый поток, который дополнительно кодируется по методу Хаффмана. Этот алгоритм также используется в архиваторе ARJ, только с динамической, постоянно изменяющейся таблицей Хаффмана, что требует двух проходов по данным; при фиксированной же таблице Layer 3, сжатие происходит за один проход. Указанный метод позволяет «сжать» до 20 процентов от общего объема. В результате получаем конечный поток кодированных аудиоданных.
3.2.1. Модели кодирования сигнала
В рамках формата МРЗ для работы со стереозвуком существуют четыре основные модели кодирования сигнала:

1) Первая модель Dual Channel основана на том, что каждый канал получает половину потока и кодируется как моносигнал. Отсюда и ее название. Эта модель идеально подходит в случае, когда каналы содержат абсолютно разные сигналы;

2) В модели Stereo каждый из каналов кодируется отдельно, но кодеру «позволено» самому принять решение о передаче одному из каналов большего места, чем другому. Этим достигается кодирование «тишины» (либо уровень сигнала лежит ниже порога слышимости) в одном канале, когда в другом присутствует мощный сигнал;

3) Модель MS Stereo использует разложение стереосигнала на средний между каналами и разностный, который кодируется с меньшим битрейтом. Данный метод не рекомендуется использовать, если каналы не совпадают по фазе (наиболее часто встречается в записях, оцифрованных с аудиоленты);

4) Модель MS/IS Stereo позволяет несколько увеличить качество кодирования сигнала при использовании низких битрейтов. Суть метода заключается в использовании на некоторых частотных диапазонах отношения мощностей сигнала в разных каналах. Однако данный метод приводит к потере фазовой информации.
3.2.2. Продолжение
Mp3 —
Mp3
Pro
14 июня 2001 года вышло продолжение MP3 – Mp3Pro. Создателем MP3Pro является частная компания Coding Technologies.Созданная в 1997 году, компания занимается разработкой и маркетингом кодеков на основе технологии SBR (Spectral Band Replication). За спиной у компании Coding Technologies стоят два очень солидных стратегических партнера — Fraunhofer Institute и Thomson Multimedia,а также достаточное количество инвесторов, среди которых такие люди, как профессор Heinz Gerhauser — глава института Fraunhofer. В связи с этим, следует также заметить, что Coding Technologies имеет доступ ко всем разработкам института Fraunhofer, а само название MP3Pro дала новому формату компания Thomson Multimedia, которая и занимается его продвижением совместно со своей дочерней компанией RCA.

Первый проигрыватель, поддерживающий новый формат, уже появился — это Thomson mp3PRO Audio Player 1.0.2 (Рис.).Помимо проигрывающей части этот плеер содержит ещё и демо-версию кодера, сжимающего wav-файлы в MP3Pro (правда только на 64 кбит/c).

Рис.12.
Достоинства и недостатки формата
Mp3
Pro:

1) Достоинства:

·                     достойное качество звука на низких битрейтах;

·                     достаточно низкие системные требования;

·                     высокая степень сжатия.

2) Недостатки:

·                     отсутствие поддержки высоких битрейтов;

·                     синтез высоких частот из средних.
4. МУЗЫКАЛЬНОЕ ПРОГРАМНОЕ ОБЕСПЕЧЕНИЕ
На наших глазах звуковые компьютерные технологии постепенно переходят из разряда хитроумных игрушек в класс профессионального инструментария, использующегося в серьезных аудиотрактах. Первая область, которую вычислительная техника завоевала много лет назад, это — контроль сложных комплексов самого различного применения. Специализированное программное обеспечение управляет трансформацией сценического пространства, световыми и звуковыми инсталляциями, аппаратурой усиления и передачи сигналов, радио- и телеэфирами, помогает архивировать ценнейшие материалы фонотек и видеотек. Однако, с наступлением эры цифрового звука программно реализованные алгоритмы вмешались в аудиозапись, обработку и микширование звука.

 

4.1. Классификация музыкального программного обеспечения
Постараемся классифицировать программы, задействованные в традиционной технологии создания современной музыки. Прежде всего это, конечно же, программы, участвующие в создании звуков. К ним в первую очередь стоит отнести продукты, позволяющие заменить небольшой малоудобный дисплей сэмплера или синтезатора большим компьютерным экраном. Такие программы обычно ничего не делают со звуком самостоятельно, предоставляя пользователю лишь достойный цветной графический интерфейс работы с тем или иным прибором. В качестве примера можно привести программное обеспечение Multi-Mode, прилагающееся к новому 128-голосному синтезатору Proteus 2000 фирмы EMU-ENSONIQ и позволяющее управлять громкостью, панорамой, выбором предустановок для всех 32 MIDI-каналов и моментально изменять конфигурацию инструмента при работе на сцене. Подобный сервис имеют инструменты компании Korg и многие другие звуковые модули. Также выпускаются универсальные редакторы звуков (например, Mark Of The Unicorn Unisyn Macintosh/PC), поддерживающие сотни MIDI-синтезаторов и позволяющие легко и наглядно создавать звуки, корректировать их и автоматически определять названия.

Следующий тип программ уже не просто управляет неким внешним модулем, но самостоятельно синтезирует звук или работает с волновыми таблицами. При этом подобные продукты могут иметь не только волновые, но и MIDI-функции. Здесь в качестве примера можно привести хорошо известный эмулятор аналогового звукового синтеза ReBirth, программный редактор звука WaveLab или программа обработки музыкальных фраз ReCycle! — все они не требуют дополнительного аппаратного обеспечения, используя в своей работе лишь стандартные ресурсы персонального компьютера. Появились и достойные внимания чисто программные сэмплеры, однако, пройдет еще некоторое время, прежде чем они смогут реально конкурировать со своими аппаратными собратьями.

Третий тип программ, безоговорочно применяемый в сегодняшней профессиональной студийной практике, — это MIDI-секвенсеры, не занимающиеся непосредственной звуковой обработкой и поэтому не требующие серьезных вычислительных ресурсов (хотя, при насыщении аранжировки плотными MIDI-событиями, стоит серьезно задуматься о грамотной аппаратной реализации MIDI-портов). Основным MIDI-секвенсером, неким индустриальным стандартом аранжировочной и студийной практики, на сегодня остается Cubase, а также Cakewalk.

Далее следует специфический класс интегрированных программ (например, современные версии Cubase), с тем или иным успехом сочетающих в себе свойства MIDI-секвенсера, многоканальной системы записи на жесткий диск, звуковой обработки и микширования. Существуют и подобные продукты, не имеющие возможностей MIDI-секвенсирования. Такие программы могут работать со стандартными ресурсами компьютера или ориентируются на конкретное «железо» (например, ProTools). Впрочем, во многих случаях и аппаратно-независимые программы для своего функционирования с тем или иным «железом» требуют специальных драйверов. Просто проектирование аппаратно-программных комплексов подразумевает одновременный выпуск программы и «железа», а создание аппаратно-независимых продуктов сопровождается их дальнейшим «обрастанием» драйверами или их ориентацией на стандартные драйверы персональных компьютеров.

Не маловажным разделом в классификации музыкального программного обеспечения являются музыкальные проигрыватели, предназначенные, в основном, для развлечения пользователя в минуты отдыха. Так как особых требований к производительности системы они не предъявляют, то в большинстве из них поддерживаются сменные внешние виды или так называемые Skins и встраевымые внешние дополнительные модули эффектов как визуальных, так и звуковых. Эти модули обычно называют Plugins. Ярким примером служат Winamp, STP
Player, Jet
Audio и другие.

Огромное место в классификации музыкального программного обеспечения занимают звуковые редакторы (например SoundForge, Samplitude и другие), которые предназначены для обработки уже оцифрованного звука, либо для его записи. В них также имеется возможность открытия файлов наиболее распространённых звуковых форматов и переконвертирования в другие. 

Наверное, разговор о звуковых программах будет неполным, если мы не упомянем множество сервисных утилит, производящих конвертацию звука, его компрессию, архивацию и т.п. В этой области программы не имеют конкурентов ибо не работают в реальном времени и могут спокойно, солидно и не торопясь, пересчитать файл, разместить ссылку в базе данных и записать его на требуемый носитель.
4.2.
CakeWalk
Pro
Audio6.0 программа для создания
MIDI– композиций
4.2.1. Описание и требования к системе.
Cakewalk Pro Audio 6.0 — это не просто MIDI-секвенсор и нотатор, но и, в определенном смысле, многоканальный цифровой магнитофон, а если говорить точнее — HDD-рекордер (устройство многоканальной звуковой записи на жесткий диск). Конечно, с точки зрения профессионалов, Cakewalk Pro Audio имеет существенные отличия от такого программно-аппаратного устройства: этот музыкальный редактор является не только «многоканальным рекордером», но и «многоканальным плейером». С его помощью вы можете одновременно воспроизводить последовательность MIDI-команд и несколько WAVE-файлов.

Качество воспроизведения MIDI-музыки зависит от MIDI-синтезатора (исключение составляют виртуальные синтезаторы). Обработка и микширование цифрового звука целиком опирается на ресурсы центрального процессора. Это значит, что процессор должен быть относительно мощным.

Кроме относительно больших вычислительных ресурсов, цифровому звуку требуются и относительно большие ресурсы памяти. Для нормальной работы с программой желательно иметь ОЗУ емкостью 32 Мбайт и современный быстрый винчестер (E-IDE) с объемом свободного пространства порядка нескольких сотен мегабайт. Желательно также при работе с аудиоматериалом чаще проводить дефрагментацию рабочего диска. Конечно, можно пользоваться и не таким мощным компьютером, но тогда при работе с программой вы будете чувствовать себя менее комфортно.    продолжение
--PAGE_BREAK--
4.2.2. Подготовка программы к работе
Без этого этапа просто невозможно обойтись. Правда, при начальной установке программа должна сама производить все необходимые настройки. Но не все может получиться (как по Вашей вине, так и по вине программы), поэтому не исключено, что, загрузив файл с примером совместного использования MIDI и цифрового звука (например, Riff Funk Audio and MIDI Demo), вы не услышите либо MIDI, либо цифровой звук, либо и то, и другое.


Для начала заглянем в окно MIDIPorts, возможный вид которого показан на рис. 13. Вызов этого окна осуществляется с помощью пункта команды Settings > MIDI Devices. В спискеInput Ports выбираются порты ввода MIDI-информации (в нашем примере выбран вход MIDI-интерфейса звуковой карты, к которому подключена MIDI-клавиатура).Out Ports — это список MIDI-устройств, на которые будет осуществляться вывод MIDI-информации (воспроизведение). Следует заметить, что одновременно можно выбрать несколько устройств, и все они станут доступными для ввода/вывода MIDI-информации. На рис.13. показано, что в числе устройств вывода выбраны синтезатор на основе микросхемы EMU8000 и FM-синтезатор на основе OPL3.
Рис.13.

Окно выбора MIDI-устройств ввода/вывода.
КнопкуMove Selected Devises to Top (передвинуть выбранные устройства в начало списка) производители программы задумали для того, чтобы выбранные в списке устройства следовали одно за другим.

Следующий шаг — настройка портов ввода/вывода цифрового звука. Выполнить эту настройку рекомендуется даже в том случае, если программа на первый взгляд работает нормально (цифровой звук воспроизводится), но при выполнении каких-либо действий (манипуляций с окнами, меню и т. п.) происходят сбои в воспроизведении звука (временные изменения темпа или вообще прекращение воспроизведения).

На всякий случай с помощью командыSettings > Audio Hardware откройте окноAudio Hardware (рис.14).

Рис.14.

Окно выбора устройства ввода/вывода цифрового звука
В этом окне находится список звуковых карт, поддерживаемых программой. Возможно, список покажется вам коротким, но это только на первый взгляд. Под устройством WindowsSound Cards следует понимать любую звуковую карту, драйверы которой установлены в системе Windows. Ваша звуковая карта, скорее всего, попадает в такую категорию. Остальные устройства в рассматриваемом списке — это HDD-рекордеры, профессиональные многоканальные звуковые карты, оборудованные мощными эффект-процессорами для обработки звука и наложения эффектов в режиме реального времени. Конечно, обычная звуковая карта не способна на такие чудеса.

У вас не будет возможности обработки звука в режиме реального времени, однако звук можно записать и обработать заранее, например, с помощью того же Cool Edit, и импортировать уже его в Cakewalk. Единственное неудобство, возникающее при таком подходе, это невозможность отмены операций по обработке звука во время сведения музыкальной композиции (ведь мы обрабатывали звук в одной программе, а используем его в другой).

Суть технологии сведения проста: запись и начальная обработка звука выполняется во внешнем звуковом редакторе (если это необходимо, то используются то возможности этого редактора, аналог которых отсутствует в Cakewalk), а окончательная обработка (в том числе и наложение эффектов) производится средствами Cakewalk. Обработка звука в Cakewalk Pro Audio 6.0 реализована по тому же принципу, что и в любом редакторе звуков: звук «рассчитывается» заранее, а уже потом, когда вы нажимаете кнопку Play, он воспроизводится. Но Cakewalk существенно отличается от обычного редактора звуков таким свойством, как многоканальность. По сути дела, одновременно могут воспроизводиться сразу несколько звуковых файлов. Для этого не требуется никакой особенной звуковой карты, звук микшируется «математическим» способом: процессор просто берет и суммирует значения звуковых отсчетов, соответствующих одному и тому же моменту времени, всех звучащих одновременно WAVE-файлов. А результат сложения воспроизводится через ЦАП.


Воспользовавшись командойSettings > Audio Options вызовите окно диалогаWindows Multimedia Configuration, изображенное на рис.15.


Рис.15.

Окно
конфигурирования цифрового канала ввода/вывода.


В спискеAudio Sampling Rate задается частота сэмплирования для всех звуковых сообщений, которые будут записаны в процессе создания музыкальной композиции. Этот параметр доступен для изменения до тех пор, пока сэмпл не содержит ни одного звукового сообщения. Конечно же, выберем частоту сэмплирования 44,1 кГц.

Mono Record/Playback — опция, интересующая только обладателей звуковой карты Roland RAP-10. Она позволяет использовать режим Full-Duplex, жертвуя при этом стереофонией.

Playback Timing Masterи Record Timing Master — списки, содержащие перечни источников синхронизации при записи и воспроизведении, в качестве которых обычно выступают драйверы соответствующих устройств (в нашем примере — это драйверы цифрового канала звуковой карты).

Enable Low-Latency Mixing — микширование с маленькой задержкой. Как мы уже говорили, микширование цифрового звука осуществляется математическим путем. С помощью микшера (окноPanel) вы можете изменять в режиме реального времени (и записывать эти изменения) такие параметры микширования цифрового звука, как панорама и громкость, Это требует довольно больших вычислительных ресурсов процессора. При этом возникает задержка реакции на изменение положения регуляторов микшера. Эта задержка имеет ту же самую природу, что и задержка генерации звука виртуальным синтезатором после нажатия на MIDI-клавишу. Но ее можно уменьшить, заплатив за это еще большими вычислительными затратами. При микшировании MIDI-информации, разумеется, никакой задержки нет, так как процессору нет необходимости заниматься объемными вычислениями.

Wave Profiler — определение производителя карты и настройка канала DMA.
4.2.3. Запись и экспорт звуковых сообщений
Сам процесс записи звука в Cakewalk ничем не отличается от процесса записи последовательности MIDI-команд с MIDI-клавиатуры. Единственным затруднением для непосвященного человека является необходимость изменения источника записываемой информации. Ведь по умолчанию в качестве источника установлен интерфейс MIDI.


Для начала загляните в окно диалогаRecording Mode (режим записи), изображенное на рис.16. Это окно вызывается командойReal Time > Record Mode или путем нажатия кнопки Record Mode, расположенной в главном окне программы.
Рис.16.

Окно
выбора режима записи.
В окнеRecording Mode вы можете установить один их трех режимов записи:

> Sound on Sound (Blend) устанавливает режим, при котором записываемый музыкальный материал не будет удалять старый, а новая информация сохранится вместе с той, что была записана ранее.

> При выбореOverwrite (Replace) новая информация будет записываться поверх старой. Это означает, что записанный ранее материал будет стерт.

> Auto Punch (Replace) — очень полезный режим, аналогичныйOverwrite (Replace) за исключением того, что запись будет происходить только на определенном интервале времени, начало и конец которого задаются в поляхPunch In Time: и Punch Out Time:. Таким способом можно застраховаться от случайной потери информации. Выберите необходимый режим записи и закройте это окно.

Любое звуковое сообщение всегда можно экспортировать в WAVE-файл и обработать в любом звуковом редакторе, обладающем возможностями, которых нет у музыкального редактора Cakewalk.

4.2.4. Импорт WAVE-файлов
Звуковое сообщение Cakewalk можно превратить любой монофонический WAVE-файл. Стереофонические файлы преобразуются в два звуковых сообщения, расположенных на смежных треках со значениями панорамы О (для левого канала) и 127 (для правого). Импортировать звуковые файлы можно, как минимум, двумя способами. Начнем с описания самого удобного (на наш взгляд).

Прежде чем осуществлять импорт WAVE-файла, нужно задать две координаты позиции его размещения в песне: выбрать трек, не содержащий MIDI-coобщений (с помощью маркера секции треков в окнеTrack) и выбрать временную позицию с помощью маркера секции клипов. Временную позицию также можно задать с помощью счетчика текущей позиции, расположенного в левой верхней части главного окна. Щелкните по нему мышью и в появившемся окне численно задайте временную позицию в формате такт: доля: тик. Теперь командойInsert > Wave File откройте стандартное окно и с его помощью выберите заранее подготовленный звуковой файл.

Если случайно получилось так, что звук импортировался на трек, уже содержащий MIDI-сообщения, то можно отменить импорт с помощью команды Edit > Undo и повторить все сначала, но уже правильно.
4.2.5. Обработка звука и звуковые ффекты
Предположим, что вы осуществили шумоподавление средствами внешнего звукового редактора и вернули сэмпл песни на исходное место в песне Cakewalk. Конечно, вполне возможно, что на этом вы решите завершить работу над песней. Но еще не все возможности Cakewalk исчерпаны.

Обработать звук и наложить эффекты вы, в принципе, могли бы с помощью внешнего редактора. Но когда речь идет о синхронизации отдельных слов или фраз песни с музыкальным материалом, то без инструментов обработки звука Cakewalk вам просто не обойтись.

Пока песня состоит из двух звуковых сообщений для левого и правого каналов. Выделите их и вызовите окноAudio (командойView > New > Audio или командой всплывающего меню секции клипов Audio). Вид окнаAudio показан на Рис.17.


В дальнейшем мы будем пользоваться инструментами, расположенными в этом окне, и всплывающим меню, вызываемым путем нажатия правой кнопки мыши.


Рис.17.

Окно для работы со звуком.
Инструменты окнаAudio расположены в его левой верхней части. Перечислим их слева направо:

>  Selection — выбор и перемещение звуковых сообщений;

> Scissors— ножницы, с помощью которых можно разрезать(Split) звуковые сообщения, словно магнитную ленту;

> Draw Volume — линия, с помощью которой можно плавно изменять громкость звука;

> Scrub — динамик для прослушивания сэмпла в любом его месте, указанном мышью;

> безымянный инструмент «с сеточкой» позволяет привязывать звуковые сообщения только к определенным моментам времени, кратным заданному шагу.

С помощью переключателей можно выбрать единицы измерения времени, в которых будет отградуирована горизонтальная ось: доля: такт: тик, часы: минуты: секунды: кадры или непосредственно в номерах звуковых отсчетов.

Иногда удобнее временно отключить треки с MIDI-сообщениями, чтобы был слышен только звук.

Убедитесь, что исходные звуковые сообщения были выделены и выберите команду Remove Silence всплывающего меню. Окно диалога этого инструмента показано на Рис.18.

Remove Silence означает удаление тишины. Эта команда предназначена для выявления участков цифрового звука, на которых громкость (амплитуда звука) ниже заданного порога. Звуковая информация на этих участках заменяется абсолютной тишиной, функция полезна для удаления участков звука, которые не содержат полезной информации, разбиения продолжительных сообщений, содержащих тишину, на отдельные более короткие фрагменты, полностью заполненные звуком.

Не забывайте, что даже если полезного звука нет, а есть только тихое шипение (что само по себе плохо) — расходуется память, килобайты памяти, необходимой для регистрации этого шипения, набегают и набегают, складываются в мегабайты; пара десятков минут— и звуковую информацию уже удобнее измерять в гигабайтах.

Так вот, именно абсолютная тишина Cakewalk — полезнейшее средство экономии памяти компьютера. Программа не тратит дискового пространства (которого всегда не хватает) для запоминания абсолютной тишины.

Устанавливая абсолютную тишину, Cakewalk осуществляет тем самым исключение шума исходного аудиоматериала в паузах, а критерии этого исключения вы задаете сами.

Данная команда также может быть полезна для коррекции ритма в партиях ударных инструментов, звучание которых записано в виде WAVE-файла.


ФункцияRemove Silence реализует следующий алгоритм. Представьте себе ключ (выключатель), который может находиться в одном из двух состояний: в замкнутом

Рис.18.

Удаление тишины.

(сигнал проходит) и в разомкнутом (сигнал не проходит). Программа выполняет анализ звука: как только уровень сигнала (его амплитуда) превысит порог открывания звукового канала(Open Level), ключ замыкается, звуковая информация проходит. Если уровень сигнала опустится ниже второго порога — порога закрывания звукового канала(Close Level), ключ опять перейдет в разомкнутое состояние, наступит тишина. Алгоритм, содержащий два порога, позволяет, с одной стороны, надежно отсечь ненужные шумы, а с другой — не приводит к искажению звучания музыкальных инструментов в фазе затухания звука.

Рис.19.

 
Результат удаления тишины.
Результат применения Remove Silence показан на Рис.19. Вместо двух звуковых сообщений получилось целое множество. Объединим короткие сообщения в четыре более длинных так, чтобы получилось сообщение, похожее на изображенное на рис.20. Для осуществления задуманного выделите объединяемые сообщения и во всплывающем меню выберите командуCombine.

Теперь перед вами материал, с которым можно работать. Если какая-то из фраз песни спета немного раньше или позже, чем положено, то самое время устранить эту очень маленькую погрешность. Выделите сообщения, относящиеся к фразе, спетой не вовремя, и с помощью мыши переместите их на новое место (правее — значит позже, левее — раньше). Прослушайте результат.

Сам по себе человеческий голос звучит несколько суховато. Такое ощущение складывается из-за того, что мы привыкли к различным эффектам, без которых невозможна современная музыка… Да и классическая тоже. Просто раньше такие эффекты, как, например, реверберация можно было создать только естественным



Рис.20.

Удалены сообщения, содержащие всплески шума.
путем: помещения для исполнения музыки планировались особым образом и каждому из них был присущ свой специфический эффект — своя акустика. У вас нет возможности построить свое здание, но зато есть компьютер.

 Раз уж мы упомянули реверберацию, то именно на примере этого эффекта и проиллюстрируем возможности Cakewalk по обработке звука. Попробуем наложить этот эффект на вторую фразу в нашей песне. Выделите соответствующие звуковые сообщения и вызовите всплывающее меню. В нем выберите команду Active Movie > CFX Reverb. В спискеPreset вы обнаружите множество предустановок для моделирования реверберации в различных помещениях. Мы выбрали концертный зал.

Мы не будем рассматривать все эффекты, вызываемые командойActive Movie всплывающего меню. Просто перечислим их:

> 2-band EQ — эквалайзер;

> Chorus — хорус;

> Delay/Echo — задержка/эхо;

> Flanger—флэнжер;

> Reverb — реверберация;

> Time/Pitch Stretch — растяжение по времени и высоте тона.

Прежде чем применять любой из этих эффектов к звуковым сообщениям, с помощью кнопки Audition можно прослушать будущий результат. Если он вас не устроит, можно попробовать изменить параметры эффекта или дать отмену, нажав кнопку Cancel.

До сих пор мы рассматривали эффекты, получаемые путем расчетов в процессе редактирования, однако у вас есть возможность использовать эффекты реального времени, даже если в вашем ПК установлена самая обыкновенная звуковая карта. Для создания эффектов в реальном времени Cakewalk использует программный продукт Microsoft ActiveMovie, с помощью которого вы можете накладывать эффекты на звуковые треки и изменять параметры этих эффектов непосредственно в процессе воспроизведения. С помощью команды View> Effects вызовите окно, показанное нарис.21.

Рис.21.

Эффекты реального времени.
В левом поле этого окна расположена структура треков, содержащих звуковые сообщения и структура эффектов, наложенных на эти треки. В правом поле окна Effects расположены доступные эффекты. Чтобы наложить на звуковой трек эффект, с помощью мыши выберите его в правой части окна и перетащите в левую на любой трек. Именно по такой технологии мы наложили на один трек задержку, а на другой — реверберацию. Чтобы изменить параметры эффектов, наложенных на звуковые треки, щелкните по ним два раза мышью, а затем в появившемся окне измените интересующие вас параметры. Параметры эффектов можно изменять непосредственно в процессе воспроизведения. На каждый из звуковых треков можно накладывать несколько эффектов одновременно.

Хотя громкость и панораму звуковых сообщений нельзя причислить к эффектам, однако эти параметры тоже можно изменять в реальном времени. Делается это точно также, как и при изменении аналогичных параметров для MIDI-сообщений с помощью микшера.

Итак можно сказать что CakeWalkeProAudio 6.0 является наиболее удобным и простым редактором MIDI музыкальных произведений, который может быть использован с большим успехом в домашних условиях профессиональным музыкантом, а так же обычным пользователем.
4.3.
MixVibes Pro 5.02
4.3.1. Описание
MixVibes — мощный виртуальный микшер. MixVibes устанавливает новые стандарты в специализированном программном обеспечении музыкантов, DJ`ев, звукооператоров. Данный программный продукт предназначен для использования на радиостанциях, для полупрофессионального сведения музыкальных композиций в режиме реального времени, а также для проведения различного рода развлекательных мероприятий с помощью компьютера. Имеет интерфейс с высоким уровнем дружественности и в то же самое время, обеспечивает особенности, ожидаемые профессиональным звукооператором. С MixVibes, сводить музыку на вашем компьютере никогда не было настолько просто.

MIxVibes
имеет:до 16 одновременных виртуальных плееров компакт дисков, эквалайзер, виртуальные эффекты, петли (повторы), поддерживает Skin`ы и многое другое…        MixVibes поддерживает наиболее популярные звуковые форматы, включая mp3, wav и wma. MixVibes  приносит лучшие результаты при смешивании mp3 на вашем компьютере.

MixVibes разработан по новой Streamingтехнологии что позволило практически полностью исключить временные задержки (меньше чем 10ms),  подсчёт BPMв реальном времени, авто синхронизация одним щелчком мыши, переключение выхода деки на указанный номер канала, волновой дисплей, поддержка до 8 звуковых плат, все интерфейсные окна можно перемещать. Имеет 12 внутренних эффектов плюс DirectX, Winamp и DSP – эффекты, поддержка визуализаций. Включает в себя базу данных мультимедиа, удобную для управления большими объёмами информации.
4.3.2. Требования к системе.
1)     Процессор: PENTIUM III 500Mhz или эквивалент.

2)     RAM: 256 МБ.

3)     Звуковая карта:Одна DirectXсовместимая звуковая карта.

4)     Видео карта: Одна видео карта, которая поддерживает разрешение 800*600 с глубиной цвета  16 бит.

5)     Операционная система: Windows 98, Windows 2000, Windows XP.

Рекомендации:


1)     Для некоторых Skin`ов, Вы будете нуждаться в минимальном разрешении 1024*768 с глубиной цвета 32 бита.

2)     Рекомендуется хороший процессор (1Ghz или лучше).

3)     MixVibesработает на любой операционной системе, упомянутой выше, но Windows 2000 и XPвообще более надежнее.

4)     Вы должны иметь последнюю версию DirectX.    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.