--PAGE_BREAK--Вторая область применения метода Монте-Карло охватывает чисто детерминированные, закономерные задачи, например нахождение значений определённых одномерных и многомерных интегралов. Особенно проявляется преимущество этого метода по сравнению с другими численными методами в случае кратных интегралов.
При решении алгебраических уравнений методом Монте-Карло число операций пропорционально числу уравнений, а при их решении детерминированными численными методами это число пропорционально кубу числа уравнений. Такое же приблизительно преимущество сохраняется вообще при выполнении различных вычислений с матрицами и особенно в операции обращения матрицы. Надо заметить, что универсальные вычислительные машины не приспособлены для матричных вычислений и метод Монте-Карло, применённый на этих машинах, лишь несколько улучшает процесс решения, но особенно преимущества вероятностного счёта проявляются при использовании специализированных вероятностных машин. Основной идеей, которая используется при решении детерминированных задач методом Монте-Карло, является замена детерминированной задачи эквивалентной статистической задачей, к которой можно применять этот метод. Естественно, что при такой замене вместо точного решения задачи получается приближённое решение, погрешность которого уменьшается с увеличением числа испытаний.
Эта идея используется в задачах дискретной оптимизации, которые возникают при управлении. Часто эти задачи сводятся к перебору большого числа вариантов, исчисляемого комбинаторными числами вида N=. Так, задача распределения n видов ресурсов между отраслями для n>3 не может быть точно решена на существующих цифровых вычислительных машинах (ЦВМ) и ЦВМ ближайшего будущего из-за большого объёма перебора вариантов. Однако таких задач возникает очень много в кибернетике, например синтез конечных автоматов. Если искусственно ввести вероятностную модель-аналог, то задача существенно упростится, правда, решение будет приближённым, но его можно получить с помощью современных вычислительных машин за приемлемое время счёта.
При обработке больших массивов информации и управлении сверхбольшими системами, которые насчитывают свыше 100 тыс. компонентов (например, видов работ, промышленных изделий и пр.), встаёт задача укрупнения или эталонизации, т.е. сведения сверхбольшого массива к 100–1000 раз меньшему массиву эталонов. Это можно выполнить с помощью вероятностной модели. Считается, что каждый эталон может реализоваться или материализоваться в виде конкретного представителя случайным образом с законом вероятности, определяемым относительной частотой появления этого представителя. Вместо исходной детерминированной системы вводится эквивалентная вероятностная модель, которая легче поддаётся расчёту. Можно построить несколько уровней, строя эталоны эталонов. Во всех этих вероятностных моделях с успехом применяется метод Монте-Карло. Очевидно, что успех и точность статистического моделирования зависит в основном от качества последовательности случайных чисел и выбора оптимального алгоритма моделирования.
Задача получения случайных чисел обычно разбивается на две. Вначале получают последовательность случайных чисел, имеющих равномерное распределение в интервале [0,1]. Затем из неё получают последовательность случайных чисел, имеющих произвольный закон распределения. Один из способов такого преобразования состоит в использовании нелинейных преобразований. Пусть имеется случайная величина X, функция распределения вероятности для которой
.
Если y является функцией x, т.е. y=F(x), то и поэтому . Таким образом, для получения последовательности случайных чисел, имеющих заданную функцию распределения F(x), необходимо каждое число y с выхода датчика случайных чисел, который формирует числа с равномерным законом распределения в интервале [0,1], подать на нелинейное устройство (аналоговое или цифровое), в котором реализуется функция, обратная F(x), т.е.
. (2)
Полученная таким способом случайная величина X будет иметь функцию распределения F(x). Рассмотренная выше процедура может быть использована для графического способа получения случайных чисел, имеющих заданный закон распределения. Для этого на миллиметровой бумаге строится функция F(x) и вводится в рассмотрение другая случайная величина Y, которая связана со случайной величиной X соотношением (2) (рис. 2).
Так как любая функция распределения монотонно неубывающая, то
.
Отсюда следует, что величина Y имеет равномерный закон распределения в интервале [0,1], т. к. её функция распределения равна самой величине
.
Плотность распределения вероятности для Y
.
Для получения значения X берётся число из таблиц случайных чисел, имеющих равномерное распределение, которое откладывается на оси ординат (рис. 2), и на оси абсцисс считывается соответствующее число X. Повторив неоднократно эту процедуру, получим набор случайных чисел, имеющих закон распределения F(x). Таким образом, основная проблема заключается в получении равномерно распределённых в интервале [0,1] случайных чисел. Один из методов, который используется при физическом способе получения случайных чисел для ЭВМ, состоит в формировании дискретной случайной величины, которая может принимать только два значения: 0 или 1 с вероятностями
Далее будем рассматривать бесконечную последовательность z1, z2, z3,… как значения разрядов двоичного числа ξ* вида
Можно доказать, что случайная величина ξ*, заключённая в интервале [0,1], имеет равномерный закон распределения
.
В цифровой вычислительной машине имеется конечное число разрядов k. Поэтому максимальное количество несовпадающих между собой чисел равно 2k. В связи с этим в машине можно реализовать дискретную совокупность случайных чисел, т.е. конечное множество чисел, имеющих равномерный закон распределения. Такое распределение называется квазиравномерным. Возможные значения реализации дискретного псевдослучайного числа в вычислительной машине с k разрядами будут иметь вид:
. (3)
Вероятность каждого значения (3) равна 2-k. Эти значения можно получить следующим образом
.
Случайная величина имеет математическое ожидание
.
Учитывая, что
и выражение для конечной суммы геометрической прогрессии
, (4)
получаем:
. (5)
Аналогично можно определить дисперсию величины :
,
где
,
откуда
,
или, используя формулу (4), получаем:
. (6)
Согласно формуле (5) оценка величины ξ* получается смещённой при конечном k. Это смещение особенно сказывается при малом k. Поэтому вместо вводят оценку
, (7)
где
.
Очевидно, что случайная величина ξ в соответствии с соотношением (3) может принимать значения
, i=0,1,2,…, 2k-1
с вероятностью p=1/2k.
Математическое ожидание и дисперсию величины ξ можно получить из соотношений (5) и (6), если учесть (7). Действительно,
;
.
Отсюда получаем выражение для среднеквадратичного значения в виде
. (8)
Напомним, что для равномерно распределённой в интервале [0,1] величины x имеем
Из формулы (8) следует, что при среднеквадратичное отклонение σ квазиравномерной совокупности стремится к . Ниже приведены значения отношения среднеквадратичных значений двух величин ξ и η в зависимости от числа разрядов, причём величина η имеет равномерное распределение в интервале [0,1] (табл. 1).
Таблица 1
k
2
3
5
10
15
σξ/ση
1,29
1,14
1,030
1,001
1,00
Из табл. 1 видно, что при k>10 различие в дисперсиях несущественно.
На основании вышеизложенного задача получения совокупности квазиравномерных чисел сводится к получению последовательности независимых случайных величин zi (i=1,2,…, k), каждая из которых принимает значение 0 или 1 с вероятностью 1/2. Различают два способа получения совокупности этих величин: физический способ генерирования и алгоритмическое получение так называемых псевдослучайных чисел. В первом случае требуется специальная электронная приставка к цифровой вычислительной машине, во втором случае загружаются блоки машины.
При физическом генерировании чаще всего используются радиоактивные источники или шумящие электронные устройства. В первом случае радиоактивные частицы, излучаемые источником, поступают на счётчик частиц. Если показание счётчика чётное, то zi=1, если нечётное, то zi=0. Определим вероятность того, что zi=1. Число частиц k, которое испускается за время Δt, подчиняются закону Пуассона:
.
Вероятность чётного числа частиц
.
Таким образом, при больших λΔt вероятность P{Zi=1} близка к 1/2.
Второй способ получения случайных чисел zi более удобен и связан с собственными шумами электронных ламп. При усилении этих шумов получается напряжение u(t), которое является случайным процессом. Если брать его значения, достаточно отстоящие друг от друга, так чтобы они были некоррелированы, то величины u(ti) образуют последовательность независимых случайных величин. Обычно выбирают уровень отсечки a и полагают
причём уровень a следует выбрать так, чтобы
.
Также применяется более сложная логика образования чисел zi. В первом варианте используют два соседних значения u(ti) и u(ti+1), и величина Zi строится по такому правилу:
Если пара u(ti) – a и u(ti+1) – a одного знака, то берётся следующая пара. Требуется определить вероятность при заданной логике. Будем считать, что P {u(ti)>a}=W и постоянная для всех ti. Тогда вероятность события равна по формуле событий A1Hv. Здесь Hv – это вероятность того, что v раз появилась пара одинакового знака
u(ti) – a; u(ti+1) – a. (9)
Поэтому вероятность события A1Hv
P{A1Hv}=W (1-W) [W2+(1-W)2]v.
Это – вероятность того, что после v пар вида (9) появилось событие A1. Оно может появиться сразу с вероятностью W (1-W), оно может появиться и после одной пары вида (9) с вероятностью
W (1-W) [W2+(1+W)2]
и т.д. В результате
или
.
Отсюда следует, что если W=const, то логика обеспечивает хорошую последовательность случайных чисел. Второй способ формирования чисел zi состоит в следующем:
Пусть
W=P {u(ti)>a}=1/2+ξ.
Тогда
P{Zi=1}=2W (1-W)=1/2–2ξ2.
Чем меньше ξ, тем ближе вероятность P{Zi=1} к величине 1/2.
Для получения случайных чисел алгоритмическим путём с помощью специальных программ на вычислительной машине разработано большое количество методов. Так как на ЦВМ невозможно получить идеальную последовательность случайных чисел хотя бы потому, что на ней можно набрать конечное множество чисел, такие последовательности называются псевдослучайными. На самом деле повторяемость или периодичность в последовательности псевдослучайных чисел наступает значительно раньше и обусловливается спецификой алгоритма получения случайных чисел. Точные аналитические методы определения периодичности, как правило, отсутствуют, и величина периода последовательности псевдослучайных чисел определяется экспериментально на ЦВМ. Большинство алгоритмов получается эвристически и уточняется в процессе экспериментальной проверки. Рассмотрение начнём с так называемого метода усечений. Пусть задана произвольная случайная величина u, изменяющаяся в интервале [0,1], т.е. . Образуем из неё другую случайную величину
un=u [mod 2-n], (10)
где u [mod 2-n] используется для определения операции получения остатка от деления числа u на 2-n. Можно доказать, что величины un в пределе при имеют равномерное распределение в интервале [0,1].
По существу с помощью формулы (10) осуществляется усечение исходного числа со стороны старших разрядов. При оставлении далёких младших разрядов естественно исключается закономерность в числах и они более приближаются к случайным. Рассмотрим это на примере.
Пример 1. Пусть u = 0,10011101… = 1·1/2 + 0·1/22 + 0·1/23 + 1·1/24 + 1·1/25 + 1·1/26 + 0·1/27 + 1·1/28 + …
Выберем для простоты n=4. Тогда {u mod 2-4} = 0,1101…
Из рассмотренного свойства ясно, что существует большое количество алгоритмов получения псевдослучайных чисел. При этом после операции усечения со стороны младших разрядов применяется стандартная процедура нормализации числа в цифровой вычислительной машине. Так, если усечённое слева число не умещается по длине в машине, то производится усечение числа справа.
При проверке качества псевдослучайных чисел прежде всего интересуются длиной отрезка апериодичности и длиной периода (рис. 3). Под длиной отрезка апериодичности L понимается совокупность последовательно полученных случайных чисел α1, …, αL таких, что αiαj при , , , но αL+1 равно одному из αk ().
Под длиной периода последовательности псевдослучайных чисел понимается T=L-i+1. Начиная с некоторого номера i числа будут периодически повторяться с этим периодом (рис. 3).
Как правило, эти два параметра (длины апериодичности и периода) определяются экспериментально. Качество совпадения закона распределения случайных чисел с равномерным законом проверяется с помощью критериев согласия.
2.2 Точность метода Монте-Карло
Метод Монте-Карло применяется там, где не требуется высокой точности. Например, если определяют вероятность поражения мишени при стрельбе, то разница между p1=0,8 и p2=0,805 несущественна. Обычно считается, что метод Монте-Карло позволяет получить точность примерно 0,01–0,05 максимального значения определяемой величины.
Получим некоторые рабочие формулы. Определим по методу Монте-Карло вероятность пребывания системы в некотором состоянии. Эта вероятность оценивается отношением
,
где M – число пребываний системы в этом состоянии в результате N моделирований. Учитывая выражение для дисперсии величины M/N
и неравенство Чебышёва
, (11)
напишем
. (12)
Величина
есть ни что иное, как ошибка моделирования по методу Монте-Карло. С помощью формулы (11) можно написать следующую формулу для величины (12):
,
или
,
где p0– вероятность невыполнения этой оценки. С помощью частоты M/N может быть получена оценка математического ожидания mx некоторой случайной величины X. Ошибка этой оценки
находится с помощью соотношения
.
Отсюда видно, что ошибка моделирования находится в квадратичной зависимости от числа реализаций, т.е.
. (13)
Пример 2. Допустим, что определяется математическое ожидание ошибки x поражения мишени. Процесс стрельбы и поражения моделируется на ЦВМ по методу Монте-Карло. Требуется точность моделирования δ = 0,1 м с вероятностью p = 1-p0 = 0,9 при заданной дисперсии σx = 1 м. Необходимо определить количество моделирований N. По формуле (13) получаем:
.
При таком количестве реализаций обеспечивается δ=0,1 м с вероятностью p=0,9.
3. Метод ветвей и границ
Все комбинаторные методы решения задач целочисленного программирования основаны на той или иной идее направленного перебора вариантов, в результате которого путём перебора сокращенного числа допустимых решений отыскивается оптимальное решение. Перебор осуществляется с помощью определённого комплекса правил, которые позволяют исключать подмножества вариантов, не содержащие оптимальной точки.
В целом эти методы легче справляются с проблемой округлений, чем методы отсечения, как правило, не используют симплекс-процедуру линейного программирования и имеют более «простую арифметику» и более «сложную логику».
продолжение
--PAGE_BREAK--