Реферат по предмету "Геология"


Разработка Астраханского газоконденсатного месторождения

Содержание
Введение
1. Геологическое строение Астраханского газоконденсатного месторождения
1.1 Назначение скважин, проектная глубина и проектный горизонт
1.2 Характеристика разбуриваемой площади
1.3 Лито-стратиграфический разрез скважин
1.4 Газонефтеносность
1.5 Гидрогеологическая характеристика
1.6 Характерные особенности проводки ранее пробуренных на данном участке скважин
1.7 Температурная характеристика разреза
1.8 Пластовые и устьевые давления
1.9 Возможные осложнения
1.10 Обоснование интервалов отбора керна
2. Обоснование конструкции скважин на АГКМ
3. Осложнения в процессе бурения скважин
4. Расчет обсадных колонн
5. Охрана недр и окружающей среды
6. Охрана труда
Заключение
Список литературы
Введение
Уже два десятилетия на юге России, под Астраханью, разрабатывается богатейшее в мире газоконденсатное месторождение. Оно уникально не только по размерам площади и величине запасов, но и по характеру сырья, в котором газ содержит до 26% сероводорода, а конденсат состоит из бензиновых, дизтопливных и незначительного количества мазутных фракций. К открытию этой гигантской кладовой углеводородов Россия шла долгие годы.
Еще в начале нашей эры ресурсы Нижнего Поволжья позволили предводителям обитавших тут народностей создать мощное государство, сумевшее в V веке покорить половину Европы и достичь владений древнеримской империи. В VIII и IX веках киевские и черниговские князья располагали точными географическими картами устья Волги. Вещий Олег, Святослав и другие славянские вожди совершали сюда со своими дружинами походы за местными богатствами.
Организованную добычу минерального сырья — селитры, соли и пр. — впервые наладил здесь Петр I.
Позднее русские академики Паллас, Гмелин, Барбот де Марни, а далее Бэр и другие отечественные ученые пристально исследовали природные возможности края.
В начале XX столетия из открытой выработки на территории нашего города был получен сухой горючий газ, который использовался для нагревания воды.
Первую разведочную скважину в районе Астрахани геологи пробурили в 1946 году. Но лишь через десятилетие удалось обнаружить в области признаки нефти — на Разночиновской, Тинакской, Кири-килинской иеще нескольких площадях. Затем, спустя годы, была найдена Бешкульская промышленная нефтяная залежь.
В 1976-м году поисковая скважина № 8, пробуренная на Астраханском своде в заволжской степи, дала приток газа с дебитом более одного миллиона кубометров в сутки уже к 1987-му поднялся в полупустыне крупнейший в Европе газовый перерабатывающий комплекс.
Астраханское месторождение эксплуатируется при строгом контроле за состоянием пластовой системы, что позволяет с достаточной достоверностью прогнозировать ход отбора запасов и изменения энергетической характеристики залежи. Внимательнейшим образом учитываются степень выработки пласта, величины компонентоотдачи, качество извлекаемого сырья, «поведение» залежи, в частности, колебания ее термобарических параметров. На основании складывающейся картины геологической службе и производственным подразделениям газопромыслового управления предлагаются конкретные меры по оптимизации режимов добычи. Регулярно изучаются динамика и состав флюида. На установке PVT были впервые определены предельное влагосодержание пластовых смесей и темп истощения продуктивных коллекторов.
Предмет особой защиты — борьба с коррозией промыслового и заводского оборудования, подвергающегося на АГКМ повышенной сероводородной и углекислотной агрессии. Здесь важно всегда давать объективную оценку положения и безошибочно выявлять причины случившихся и назревающих срывов. Так, определено, что факты отказа в некоторых звеньях технологических линий обуславливаются температурой абсорбента, скоростью потоков вещества, темпом эрозии металла, наличием в сосудах продуктов деградации аминов.
1. Геологическое строение Астраханского газоконденсатного
месторождения
1.1 Назначение скважин, проектная глубина и проектный горизонт
Основным назначением проектируемых скважин является эксплуатация Астраханского газоконденсатного месторождения.
Залегание продуктивной части башкирского яруса среднекаменноугольного отдела ожидается в интервале глубин 3890-4100 м.
Проектная глубина – 4100 м.
Проектный горизонт – средний карбон.
1.2 Характеристика разбуриваемой площади
Площадь проектируемых работ расположена в левобережной части Астраханского свода, являющегося одним из крупнейших положительных тектонических элементов Прикаспийской впадины.
Впервые Астраханский свод был установлен к северо-западу г. Астрахани в результате гравиметрических исследований, производимых Нижне-Волжским геофизическим трестом в 1951 -1954 гг.
В 1961 г. сейсморазведкой КМПВ было подтверждено наличие Астраханского свода и получены сведения о глубине залегания подсолевых отложений. С 1997 года Астраханской ГЭ начались сейсмические работы МОВ с непрерывным однократным профилированием, а затем МОВ ОГТ по детализации свода, в результате чего на различной поверхности карбонатных отложений башкирского яруса среднего карбона был закартирован ряд локальных поднятий различных размеров и амплитуд.
Бурение на подсолевой палеозой также было начато в 1967 году (Степановская скв. №1). Начиная с 1970 года постепенно вводятся в бурение локальных поднятий с проектной глубиной 4500-5000 м. В результате этих работ получены сведения о проектной глубине залегания подсолевых отложений, их вещественном составе, стратиграфической принадлежности коллекторский свойствах.
Первые промышленные фонтаны газа и конденсата были получены сначала в скв. №1 Аксарайской (1974 г.), аварийный фонтан, а затем в скв. №5 Ширяевской (1976 г.) и №1 Воложковской (1977 г.).
По изогипсе – 7000 м. размер Астраханского свода составляет 250х140 км и амплитуда – 3000 м. В плане он имеет форму сегмента, обращенного выпуклой частью в сторону Прикаспийской впадины. На юге он граничит по системе глубинных разломов с мегавалом Карпинского, относящегося к Предкавказской эпигерцинской платформе.
Сводная часть описываемой структуры, занимающей более 60% ее общей площади, заметно упрощена, т.е. Астраханский свод является структурой «столового» типа. Крутизна склонов незначительная, — 2-90.
С запада Астраханский свод граничит с Сарпинским мегапрогибом. В северной направлении подсолевые отложения резко погружаются во внутреннюю часть Прикаспийской впадины. Восточный склон не оконтурен, он располагается за пределами Астраханской области в Казахстане. В пределах большой части свода сейсмический горизонт П2, приуроченный к размытой поверхности карбонатных пород башкирского яруса среднего карбона, залегают в пределах глубин 3900-4200 м.
По мнению многих исследователей, Астраханский свод разделен Волжским глубинным развалом на два блока: левобережный и правобережный. Однако в последнее время у некоторых геологов возникли сомнения в существовании Волжского разлома. На левобережном блоке наиболее интенсивно проявилась соляная тектоника, в то время как ее проявления на левобережном блоке наиболее характерно для северного и западного участков.
На основе формационного анализа, морфологических особенностей структурных элементов, истории геологического развития, наличия региональных перерывов и угловых несогласий в осадочном чехле установлены два структурных этажа: нижний – подсолевой, сложенный толщей терригенных – карбонатных парод палеозойского возраста и верхний, кунгурского до четвертичного возраста включительно.
Сложный характер тектонического развития Астраханского свода обусловил формирование в каждом структурном этаже различного типа локальных структур и приуроченных к ним ловушек нефти и газа.
В надсолевом комплексе закартирован ряд локальных поднятий и солянокупольных структур по отложениям верхний перми, триаса, юры, мела, палеогена. Как правило, эти структуры незначительны по размерам и амплитудам.
1.3 Лито-стратиграфический разрез скважин
Каменноугольная система, Средний отдел (4100-3890 м.)
Среднекаменноугольные отложения представлены преимущественно органогенным, оолитовым известняками, формирование которых происходило в прибрежных условиях. Характеризуются они первичной и вторичной пористостью. Открытая пористость составляет 5-16%, при среднем значении 10,1%, проницаемость изменяется от 98х10-6 до 0,04 дарси, а трещинная от 18х10-7 до 196х10-5 дарси в нижней части разреза залегает пласт глин мощностью 5-7 м. Вскрытие среднекаменноугольных (продуктивных) отложений намечается на глубине 3890 м.
Пермская система, Нижний отдел (3890-2000 м)
Отложения присутствуют в составе сакмаро-артинского и кунгурского ярусов.
Сакмаро-артинские отложения представлены в верхней части известняками и долмитами с прослоями аргиллотов, в нижней, преимущественно аргиллитами. Доломиты сильно глинистые, битуминозные, с многочисленными включениями органических остатков.
В аргиллитах отмечается конкреции и кристаллы пирита. Нерасчленность толщи на ярусы связаны с неполнотой геологических сведений.
Породы крепкие, плотность их ориентировочно составляет 2,6 г/см3. В целом толща не является коллектором и служит достаточно надежной покрышкой для нижележащего продуктивного пласта. Вскрываются сакмаро-артинские отложения на глубине 3810 м. и имеют мощность 80 м.
Породы кунгурского яруса представлены сульфатно-галогеновыми образованиями.
В верхней части разреза – чередование пачек солей, ангидритов. В средней части, занимающей две трети разреза, залегают соли с единтичными маломощными просолями ангидритов. В нижней части разреза в солях отмечаются пачки ангидритов, песчаников.
Для частей разреза с просолями и линзами терригенных парод характерных зоны АВПД и распопроявления дебитом от 4-6 м3/сут. до рапы различна и колеблется от 0,145 до 0,230 кгс/м2 на 1 м. Ожидаемая глубина вскрытия кровли пород кунгурского яруса – 2000 м. Мощность пород яруса -1810 м.--PAGE_BREAK--
Интервалы залегания солей: 2075-2225 м., 2275-2435 м., 2475-2630 м., 2705-3025 м., 3045-3275 м., 3385-3535 м., 3600-3810 м.
Мезозойская группа, Триасовая система, Нижний отдел (2000-1740 м.)
Нижнетриасовые отложения сложены песчаниками, алевролитами, с преобладанием последних. Окраска пород различная, преимущественно красноцветная.
По коллекторским свойствам отложения неравнозначны. Пористость их колебается от 5 до 20%.проницаемость – от единиц до нескольких сотен мд.
Кровлю триасовых отложений ожидает встретить на глубине 1740 м. Предполагаемая мощность 260 м.
Юрская система, Средний отдел (1740-1440 м.)
Породы байоского яруса сложены в нижней части разреза чередованием песчаников и глин с преобладанием песчаников. Мощность этой части разреза составляет 65 м. Верхняя часть разреза представлена толщей глин с 1-2 прослоями маломощных песчаников в середине толщи. Мощность ее достигает 235 м.
Песченики обладает хорошими коллекторскими свойствами: пористность их составляет 20-25 %, проницаемость 150 – 300 мд. Вскрытие кровли юрских отложений предполагает на глубине 1440 м, мощность 300 м.
Меловая система, Нижний отдел (1440-1100 м)
В отложениях нижнего отдела выделяются породы аптского и альбского ярусов. Аптские породы представления в нижней части песчаниками, в верхней части – глинистыми. В отложениях альбского возраста наблюдается чередование песчаников, алевродитов и глин. Породы обладают средней крепостью: пористость их достигает 31%, проницаемость 1,1 Д.
Породы нижнего мела предполагается встретить на глубине 1100 м. мощность 340 м.
Верхний отдел (1100-810 м)
Сложен породами сеноманского, сантонского, кампанского и маастрихтского ярусов. Сеноманский ярус сложен глинисто-алевролитовыми образованиями с единичными прослоями мергелай и карбоновых глин.
Коллекторские, фильтрационные свойства этих отложений не изучались.
Верзнемеловые отложения предположительно будут вскрыты на глубине 810 м и будут иметь мощность 290 м.
Кайнозойская группа, Палеогеновая система (810-560 м)
Нерасчленные отложения палеогенового возраста представлены преимущественно глинистыми образованиями. Вскрытие их предполагается на глубине 560 м., мощность 250 м.
Неогеновая система (560-100 м)
Отложения акчагыльского и апшеронского ярусов верхнего отдела неогена представлены глинами с прослоями песка. Вскрытие их предпологается на глубине 100 м, мощность 460 м.
Четвертичные отложения (100-0 м)
Четвертичные отложения залегают с поверхности, представлены глинами, суглинками, супесями, песками и имеют мощность 100 м.
1.4 Газонефтеносность
Основной продуктивной тощей на Астраханском газоконденсатном месторождении являются среднекаменноугольные карбонатные отложения башкирского яруса. Промышленная их газоносность установлена в скв. №1 Аксарайской, скв.5, 8, 25, 26, 32 Астраханских. Максимальные дебиты газа до 1023,8 тыс. м3/сут через 28 мм диафрагму были получены из интервала 3936-3915 м скв №8 Астраханской. ГВК отбивается на абсолютных отметках минус 4073 м. состав газа: углеводород — 60,4%, сероводород -20,7%, углекислый газ — 17,9%. Начальный конденсатный фактор составляет 240-560 см3/м3.
Начальное пластовое давление в интервале 4100-3990 м скв №5 Астраханская равнялось 61,74 МПа, пластовая температура в скв. №3 Заволжская на глубине 4200 м составляла 1100С.
Протоколом ГКЗ по запасам при Совете Министров СССР №9023 от 28 июня1982 г. утверждены балансовые запасы газа и компонентов Астраханского ГКМ по категориям С1 и С2 левобережной и по категории С2 в правобережной частях месторождения. Решено считать развернутым до категории С1 часть Астраханского месторождения подготовленной к опытно-промышленной разработке.
В скв. №1 Аксарайской из кровли известняков башкирского яруса в инетрвале 3981-2994 м во время подъема инструмента был получен приток газа с дебитом ориентировано 500 тыс. м3/сут.
Газ имел следующий состав: метан – 58,18%, этан — 7,38%, пропан — 1,10%, бутан – 0, 64%, азот – 4, 05%, углекислый газ – 13, 18%, сероводород — 15,47%.
В скв. №5 Ширяевской, расположенной в 5 км восточнее скв №1 Аксарайской, при опробовании известняков башкирского яруса в интервале 4100-4070 м., получен промышленный приток газа с конденсатором. Дебит газа на 13, 7мм штуцере составил 339 тыс. /сут., а абсолютно свободный дебит равен 838 тыс. /сут. Состав газа: метан -58, 86%, этан -1, 88%, пропан-0, 60%, азот-0, 91%, углекислый газ-11, 00%, сероводород-26, 6%. Относительный удельный вес-0, 8552.
В интервале 4050-3995м дебит газа на 14, 8мм штуцере составил 375, 2 тыс. /сут. Состав газа: метан -61, 88%, этан-0, 62%, пропан-0, 34%, азот-1, 57%, углекислый газ-13, 2%, сероводород-22, 00%. Относительный вес-0, 8426(по данным севКав/Нии газа).
В правобережной части Астраханского свода в скв № I Воложковской пл., расположенной в 35 км к западу от СКВ.I. Аксарайской, из известняков башкирского яруса (интервал 4060-4085 м) получен приток газа с конденсатом, дебит которого через 10 мм. штуцер составил 175 тыс. м3/сут.
В проектируемых скважинах согласно «Проекту опытно-промышленной эксплуатации Астраханского месторождения», разработанному институтом «ВНИИгаздобыча» (1977 г.), в котором представлен расчет эксплуатационных параметров и состава газа на усредненную скважину, начальный средний дебит газовой смеси из двух испытанных интервалов (скв. 5) составляет 470 тыс. м3/сут.
Характеристика газовой залежи дана в следующей таблице.
Таблица 1. Характеристика газовой залежи
Возраст продукт. отложений
Глубина кровли в своде, м
Пористость, %
Проницаемость м2
R пл. Начальное МПа
Т пл. 0С
Удельный вес
Состав газа
Газоконденсатный фактор см/м














УВ
Н2
СО2


Средний карбо (С2)
3890
10,1
0,01х10-15 до 42х10-15
63,1
109,2
1,081
47,8
22,5
21,5
240-560
Ожидаемые минимальные характеристики потока газа приняты следующими:
— скорость на забое – 3,7 м/с
— скорость на устье – 23,0 м/с
— давление на устье – 48,9 МПа
— пластовое давление – 63,1 МПа
— устьевая температура – 50-600С
— пластовая температура – 109,20С
1.5 Гидрогеологическая характеристика
В геологическом разрезе выделяются следующие водоносные комплексы:
1. Докунгурский
2. Кунгурский
3. Триасовый
4. Среднеюрский
5. Верхне-юрский-аптский
6. Нижнеальбский
7. Среднеальбско-верхнемеловой
8. Палеогеново-неогеновый и четвертичный
9. Некоторые комплексы: ввиду идентичности гидрогеологической объединяются по два и более. В этом случае бывает несовпадение возрастных границ.
Докунгурский водоносный комплекс характеризуется незначительными дебитами вод. Удельный вес вод каменноугольных карбонатных отложений колеблется от 1,015 до 1,06 г/см3, преобладает 1,04 г/см3. Минерализация составляет 2391-3237 МГ-экв/л. Воды относятся к дирокарбонатно-натриевому типу. Характерной особенностью вод является наличие большого количества (до 60%) растворенного сероводорода.
Из сакмаро-артинских отложений нижней перми на Астраханском своде водопроявлений не отмечалось.
Воды кунгурского комплекса приурочены к терригенным прослоям, залегающим в толще солей. Эти воды представляют собой хлоркальциевые рассолы (рапу) удельным весом 1,26 г/см3. Дебиты этих рассолов (рапы) колеблются от 5 до 200 м3/сут. Высокодебитные притоки рапы крайне затрудняют проводку скважины.
Триасовый комплекс. Дебит вод из отложений этого комплекса обычно низки. В целом воды этого комплекса представляют собой рассолы хлор-кальциевого типа. Удельный вес их составляет 1,19-1,22 г/см3, общая минерализация 5800-10800 мг-экв/л. Газонасыщенность варьирует в широких пределах от 50-100 до 800-1000 см3/л.
Среднеюрский комплекс. Дебиты вод из отложений этого комплекса колеблются от единиц до 300 м3/сут. Удельный вес их изменяется от 1, 08 до 1, 11 г/см3, общая минерализация составляет 5200-7500 мг-экв/л. По химическому составу воды относятся к рассолам хлоркальциевого типа.    продолжение
--PAGE_BREAK--
Верхнеюрско-аптский комлекс. Дебиты вод комплекса незначительные, не превышают 18 м3/сут. Минерализация вод невысокая 1800-2264 мг-экв/л. По химическому составу они относятся к хлоркальциевым.
Нижнеальпский комплекс. Этот комплекс имеет повсеместное распространение. Дебиты вод на Астраханском своде из нижнего альба составляет 28,8-123 м3/сут. Удельный вес колеблется в незначительных пределах: от 1,05 до 1,08 г/см3. Общая минерализация изменяется от 2300 до 5600 мг-экв/л. Воды минерализация изменяется от 2300 до 5600 мг-экв/л. воды представляют собой рассолы хлоркальциевого состава.
Среднеальбско-верхнемеловой комплекс. Этот комплекс приурочен к отложениям среднего и верхнего альба и карботаным отлоежниям верхнего мела. Дебиты достигают 8,5 м3/сут. Удельный вес 1,05 – 1,09 г/см3. Общая минерализация достигает 4629 мг-экв/л. Воды относятся к хлорциевому типу.
Палеогеново-неогеновый комплекс приурочен к песчаным резервуарам. По составу воды комплекса хлорнатриевые. Общая минерализация их достигает 7-40 г/л. Воды напорные, при самоизливе и при откачке эрлифтом получены дебиты до 30 л./сек. Воды комплекса широко используются для хозяйственных целей, снабжения населенных пунктов и приготовления буровых растворов.
Четвертичный водоносный комплекс содержит водоносные горизонты, приуроченные к солям песков алевролитов. Общая минерализация достигает 1-30 г/л. Используются воды для хозяйственно-питьевых целей в крайне ограниченном количестве.
1.6 Характерные особенности проводки ранее пробуренных на
данном участке скважин
При проводке скважин в отложениях неогена, палеогена, мела, залегающих в широком диапазоне и имеющих в своем составе проницаемые пески, песчаники и известняки, наблюдались поглощения и увеличении удельного веса свыше 1,34 г/см3. В отложениях, отложенных в основном неустойчивыми агримитоподобными глинами, происходят осложнения ствола, связанные с осыпями и обвалами, усиленные кавернообразования, сужения ствола скважины выпучивания пород и последующие обвалы их. В связи с этим отмечены недопуски технических колонн до проектной глубины.
Особую сложность в бурении представляет солевая толща, которая снабжена галитом с включениями пропластков бишофита, карналлита.и сильвинита и чередованием пропластков слабосцементированных песчаников, алевролитов, склонных к интенсивному вспучиванию и обвалам, перемятых ангидритов с включением крупнокристаллических солей, алевролитов, быстро разрушавшихся в технической минерализованной воде и фильтрате бурового раствора, превращаясь в илистую массу.
Коагуляция бурового раствора при вскрытии линзообразных залежей пластовых вод (рапы) с А В П Д проходит с падением удельного веса» вязкости и повышения водоотдачи. Происходит расслоение глинистого раствора с выделением свободной воды и выпадением твердой фазы в осадок.
Из-за пересыщения пластовой воды (рапы) сонями при водопроявлениях выносятся мелкие кристаллики соли, образуя в стволе скважины соляные пробки.
Локальный характер водопроявлений (рапайроявяений) и результаты химического анализа пластовых вод говорят о линзообразном распрос-транении их залежей в межсолевых отложениях.
Данные по paпопроявленим явлениям с А В П Д говорят о том, что привязать залежи рапы к каким-либо определенным глубинам и отложениям кунгурского яруса не представляется возможным, что по-видимому связано с различным проявлением соляного тектогенеза.
Обращает на себя внимание ограниченным дебит пластовой воды (4-6 м3/сут) и сравнительно быстрое падение дебита при «Разрядке» скважин, работающих с большими дебетами.
Аномальность пластовых давлений линзообразных залежей рапы различна и составляет от 0,145 до 0,233 кгс/см на I м.
Большие трудности встречаются при проводке скважин, когда они попадают в линзообразную залежь с А В П Л, близким к горному с дебитом,: превышающим 12 — 15 м/сут.
Проводка скважин в отложениях карбона (башкирский ярус) осложняется газопроявлениями с АВПД и повышенным содержанием сероводорода в газах, пластовой воде и породах. Отмечены прихваты бурильного инструмента за счет давлений в системе пласт-скважина и коагуляционного воздействия сероводорода на глинистый раствор.
1.7 Температурная характеристика разреза
Геотермическая характеристика Астраханского месторождения получена в результате изучения геотермального градиента по скв.I. Пионерской, где он равен: 500-1000 м. – 3, 340С, 1000-1500 м. – 2,50С, 3000 – 3500 м. – 2,040С. Среднее его значение равно 2,90С/100м. В подсолевых отложениях градиент равен 0,750С/100 м.
Это подтверждает замеры температур, пластовые температуры по стратиграфическим комплексам будут равны:
— неогеновые + четвертичные отложение – до 23,30С.
— палеогеновые от 23,30С до 33,20С
— меловые от 33,20С до 49,80С
— юрские от 49,80С до 58,50С
— триасовые от 58,50С до 68,10С
— верхнепермские от 68,10С до 70,30С
— кунгурские от 70,30С до 107,30С
— сакмаро-артинские от 107,30С до 107,80С
— каменноугольные (продуктивные) от 107,80С до 1100С
1.8 Пластовые и устьевые давления
Пластовые и устьевые давления, которые ожидаются при бурении скважины, приведены в таблице 2.
Таблица 2. Пластовые и устьевые давления при бурении скважины


Пластовые давления кгс/см2
Коэффициент аномальности


в кровле интервала
в подошве интервала


0-400
44
1,1
400-800
44
80
1
800-2000
80
240
1,2
2000-3850
240
639,1
1,66
3850-4100
639,1
643,7
1,57
1.9 Возможные осложнения
Исходя их опыта проводки скважин на Астраханском газоконденсатном месторождении и в своде в целом, возможны осложнения следующего характера:
0 – 1100 – при увеличении плотности промывочной жидкости более 1,34 г/см3 могут наблюдаться поглощения в интервале 260-560 м. Возможности газопроявления в интервале 140-350 м Рпл (1,1 -1,2) Ргд.
1100-2000 м. – возможны обвалы стенок скважины, кавернообразования, сужение стенок скважины при несоблюдении параметров бурого раствора и рецептуры обработки. Возможны нефте-газо-водопроявления в меловых и юриских отложениях с Рпл=1,2 Ргдс.
2000-3810 м. – возможны сужения ствола скважины в интервале залежей солей и рапопроявления с АВПД и текучесть солей в интервале 2800-3800м.
3810-4100 м. – возможны газопроявления с наличием Н2S, а также прихваты бурильного инструмента.
1.10 Обоснование интервалов отбора керна
Продуктивные карбонатные отложения Астраханского газоконденсатного месторождения по площади и разрезу характеризуются неодинаковыми физическими, емкостными и литологическими свойствами. Поэтому в первоочередных эксплуатационных продуктивных горизонтов (проект опытно-эксплуатационной разработки Астраханского месторождения).
В проектируемых скважинах эти горизонты предусматриваются вскрыть в интервалах 3905-3925 м, 4025-4035 м, 4095-4100. По этим интервалам и начинается отбор керна.
Суммарная проходка с отбором керна составляет 35 м. вынос керна должен составлять не менее 60%. В процессе работ по мере корректировки разреза интервала отбора керна и его количество будут уточняться.
2. Обоснование конструкции скважин на АГКМ
Конструкция скважины выбрана на основании анализа опыта проводки скважины на Ширяевской, Аксарайской, Светлошаринской и ряде других площадей Нижне-Волжского ТГУ, объединения «Нижневолжскнефть», ПО «Астрахантьгазпром», а также с учетом опыта крепления скважин в объединения «Ставропольгазпром», «Кубаньморнефтергазпром» и зарубежного опыта крепления скважин в условий высокой сероводородной и углекислотной агрессии, а также протокола технического совещания по рассмотрению конструкции скважин на Астраханском ГКМ от 8 июля 1982 г., утвержденного 13 июля 1982 г. заместителем министра газовой промышленности И. Агапчевым (27).
Шахтовое направление 720 мм. спускается на глубину 5 м с целью перекрытия неустойчивых песчаных насосов и предупреждения размыва устья в начале бурения. Шахтовое направление бетонируется в шахте, имеющей размеры 2,8х3,0х1,8 м.
Направление 630 мм спускается на сварке на глубину 50 м с целью крепления неустойчивых четвертичных отложений, предупреждения проседания фундаментов буровой установки и недопущения грифонообрахования в процессе бурения под кондуктор. Направление цементируется до устья.
Кондуктор 426 мм спускается на глубину с целью перекрытия верхней неустойчивой части разреза, изоляции и предупреждения загрязнения эксплуатируемые водных горизонтов, а также водоносных пластов, имеющих выход на поверхность, в бассейн реки Волги, для перекрытия склонных к поглощениям неогеновых отложений и для установки противовыбросового оборудования при бурении под первую промежуточную колонну. Кондуктор цементируется до устья.    продолжение
--PAGE_BREAK--
1 промежуточная колонна 324 мм. спускается на глубину 2000 м. глубина спуска колоны должна обеспечивать перекрытие и изоляцию надсолевых отложений, характеризующихся поглощениями бурового раствора в отложениях верхнего мела и байосских песчаниках юры, а также перекрытие и изоляцию склонных к обвалам отложений мела, юры, триаса. После спуска колонны устье оборудуется противовыбросовым оборудованием для обеспечения безопасного прохождения зон АВПД при бурении под вторую промежуточную колонну. Колона спускается двумя секциями: 2000 – 1100 м, 1100-0 и цементируется на всю длину до устья.
2 промежуточная колонна 244,5 мм спускается на глубину 3850 м. Башмак колонны должен быть установлен в подошве сакмаро-артинского яруса по данным промежуточного каротажа. Глубина спуска колоны должна обеспечивать перекрытие второй совместимой по условиям бурения зоны, включающей в себя сакмаро-артинские отложения и хемогенных породы, кунгурского яруса.
Необходимость спуска второй промежуточной колонны до кровли башкирского яруса карбона обусловлена следующим:
— созданием благоприятных условий вскрытия продуктивных горизонтов с минимальными нарушениями естественной проницаемости пород;
— перекрытием интервалов гемогенных «текучих» пород и зон возможных рапопроявлений;
— исключением возможности возникновения аварийных ситуаций в стволе скважины при разбуривании продуктивных отложений с аномально высокими пластовыми давлениями осложнений в высокоагрессивной газожидкостной среде;
— увеличения сопротивления смятию эксплуатационной колонны в зоне рапопроявлений и залеганий пластичных пород в результате создания составлной крепи.
Колонна спускается одной секцией и цементируется на всю длину до устья.
Эксплуатационная колона спускается на глубину 4100 м с целью перекрытия сакмаро-артинских и каменноугольных отложений для опробования объектов продуктивной части разреза, определения оптимальных параметров работы скважины и в дальнейшем – для эксплуатации газоконденсатной залежи башкирского яруса. В соответствии с проектом опытно-промышленной эксплуатации месторождения (6) оптимальный диаметр эксплуатационной колонны является диаметр обсадных труб 177,8 мм.
Спуск колонны проектируется одной секцией с подъемом цемента до устья. Цементирование колонны осуществить в две стадии с установкой двухступенчатой муфты на глубине 3750 м.
Примечание: Глубины спуска промежуточных и эксплуатационных колонн уточняется после проведения геофизических исследований.
3. Осложнения в процессе бурения скважин
Таблица 3. Поглощение бурового раствора
/>
Таблица 4. Нефтегазоводопроявления
/>
Таблица 5. Обсыпи и обвалы стенок скважины
/>
Таблица 6. Текучие породы
/>
Таблица 7. Прихватоопасные зоны
/>
Таблица 8. Прочие возможные осложнения
/>
4. Расчет обсадных колонн
К обсадным трубам, используемых для строительства эксплуатационных скважин на Астраханском газоконденсатном месторождении, вследствие особо сложных геологических условий бурения в эксплуатации, предъявляются повышенные требования.
Определяющим фактором при выборе типа обсадных труб для 2 промежуточной колонны следует считать высокую коррозионную способность газообразных продуктов эксплуатационных объектов.
Для промежуточной колонны Ø244,5 мм, согласно «Протокола технического совещания по рассмотрению конструкции скважин на Астраханском ГКМ» от 8 июля 1982 года, утвержденном заместителем Министра газовой промышленности т. М.И. Агапчевым 19 июля 1982 года, используются импортные трубы марки SM-95ТS или NT-95HS и трубы марки SM-90SS-И, как наиболее устойчивые к сероводородной агрессии.
Так как эксплуатационная колонна будет подвергаться аномально высокому давлению газа с большим содержанием сероводорода, она компонуется импортными трубами марки SM-90SS.
Для 2 промежуточной колонны могут быть приняты трубы с резьбой Батресс и тефлоновыми уплотнительными кольцами в нижней части, в верхней части – обсадные трубы с высоко герметичными резьбовыми соединениями VMA. Для эксплуатационной колонны необходимо применять обсадные трубы с резьбовым Батресс и тефлоновыми кольцами. Такие трубы выпускаются под шифром ”super”.
С целью предупреждения истирания технических обсадных колонн и потеря из прочностных характеристик на бурильные трубы устанавливаются кольца Бетиса. После спуска обсадных колонн производится центрирование вышки.
Трубы по ГОСТ 632-64 подбираются согласно номенклатуре обсадных труб, выпускаемых отечественной промышленностью. Расчет обсадных колонн ведем согласно «Инструкции по расчету обсадных колонн для нефтяных и газовых скважин» технологического регламента к расчету обсадных колонн для эксплуатационных скважин на АГКМ (11).
Направление 630 м.
Глубина спуска 50м
ГОСТ10706-63
Принимаем трубы с толщиной стенки 9 мм.
Вес 1 п.м. трубы 0,138 т
Общий вес направления Q=0,138х50=6,9 т.
кондуктов Ø 426 мм
Глубина спуска400м
ГОСТ632-64
Кондуктор рассчитываемы на сминающее давление и страгивающие нагрузки. На внутреннее давление колонну не рассчитываем, так как при бурении нижнего интервала отсутствует высоконапорные горизонты.
а) определяем избыточное наружное давление
(1)
/>
Этому давлению соответствует трубы группы прочности «Д» овальность 0,015 с толщиной стенки σ=12 мм., для которых P кр.см. = 54 кгс/см2. Запас прочности на смятие будет равен:
/>
Для 2 секции берем трубы группы прочности Д с толщиной стенки 10 мм., для которых Ркр.см. = 34 кгс/см2. С учетом запаса прочности эти трубы могут быть спущены на глубину 375 м. тогда длина 1 секции l1=400-375 м=25 м.
Вес Q1=126,3x25=3157 кг. Длину 2 секции определим из расчета на страгивание: L2=275 м. Q=106,5х275 = 29287 кгс.
Коэффициент запаса прочности на растяжение:
, что достаточно
В целях предупреждения протирания колонны у устья устанавливаются 100 м труб с толщиной стенки σ=12 мм.
Проверим на страгивание:
, что достаточно.
Таблица 9. Кондуктор 426 мм
№ секции
Интервал, м
Длина секции, м
Группа прочности
Толщина стенки, мм.
Коэффициент на
Вес секции










Смятие
Страгиван


1
400-375
25
Д
12
1, 45
-
3157
2
375-100
275
Д
10
-
7, 7
29287
3
100-0
100
Д
12
-
7, 09
12630














45074
Расчет промежуточной колонны
Ø324 мм – 2000 м
1 секция – 2000-1100 м
Для первой секции определим по формуле 2.
Рниz =0,1(γц-γо)(1-к)(x0-l0) (2)    продолжение
--PAGE_BREAK--
Pни2000 = 0,1(1, 81-1, 27)(1-0, 35)х2000=70, 2 кгс/см2
Pни1700 = 0,1(1, 81-1, 27)(1-0, 35)х1700=59, 7 кгс/см2
Pни1100 = 0,1(1, 81-1, 27)(1-0, 35)х1100=17, 8 кгс/см2
2 секция – 1100 – 0 м.
Для второй секции определим по формуле 3 с учетом разгрузки в зацементированных зонах:
Рниl =0,1(γц-γо)xz (3)
Рни1100=0,1(1,81-1,27)(1-0,35)x1100=38,6 кгс/см2
Рни800=0,1(1,81-1,27)(1-0,35)x800=28,0 кгс/см2
Рни800=0,1(1,52-1,27)(1-0,35)x1100=13,0 кгс/см2
Рни0=0
Внутренние избыточные давления
Для первой секции (2000-1300 м.) определяем по формуле 4 с учетом пластового давления:
Рви=Рон+0, 1*γж*z-Рплz (4)
Рплz=1, 2х200=240 ккгс/см2 – на глубине 2000 м.
Рплz=1,2х110=132 кгс/см2 – на глубине 1100 м.
Рви2000=60+0, 1х1, 27х2000-240=74 кгс/см2
Рви1100=60+0, 1х1, 27х1100-240=67, 7 кгс/см2
Для второй секции (1100-0 м) определяем по формуле 5:
Рвцl={1.1Рн-0,1[γц-γж]-(γц-γр)l1}(1-k) (5)
Py1100=Pплц/ls, где S=0,1х10-3(l-z)=0,1х10-3х1, 121х1100=0, 133
Ру = 132/l 0,133=132/1, 142=116 кгс/см2
Рви1100=1, 1х116-0.1(1, 81-1, 27)х1100х0, 65=44.3 кгс/см3
Ру800=96/l 0,0969=96/1,1=87,2 кгс/см2
S =0,1х10-3х1,212х800=0,0969
Рви 800=[1.1х87.2-0.1(1.81-1.27)х800]0.65=34.3 кгс/см2
Рви 800=[1.1х87.2-0.1(1.52-1.27)х800]0.65=49.4 кгс/см2
При проявлении скважины давление на устье составит:
Рви=639-0.1х1.27х3850=150 кгс/см2
Расчет 324 мм колонны
1 секция (2000-1100 м)
=70,2 кгс/см2. Этому давлению соответствуют трубы группы прочности Д с σ=12 мм, для которых Ркр.см = 105 кгс/см2 овальность 0, 015.
Для 2 секции принимаем трубы с σ=10 м м группы прочности Д, Ркр.см =68 кгс/см2. По эпюре этому давлению соответствует глубина L1 = 1930 м.
Следовательно, длина 1-й секции:
L1 = 2000-1930=70м.
Все 1 секции:
Q1=95,3х70=6671 кг.
Проверим запас прочности на внутреннее давление, по эпюре давление на этой глубине Pви = 74кгс/см2.
n2 = 246/74 =3.32, что достаточно
n1 = 105/70, 2 =1, 49>(п1)
Запас прочности по внутреннему избыточному давлению для труб с σ = 10 м на глубине 1100 м. составит:
n2 = 205/67, 7 =3.03, что достаточно
n2 = 68/17, 8 =3.82, что достаточно
следовательно, длину второй секции можно принять:
l2 = 1930-1100=830 м.
Q2=80, 3х830=666649 кг.
II секция (1100-0 м.)
Поскольку наружное давление выше глубины 1300 м. незначительно, то следующие секции подбираем из расчета на внутреннее давление.
Длину 1 секции принимаем
L=50 м., с σ=10 мм.
Вес секции: Q1 = 80, 3*50=4015 кг.
n2=205/44, 3=4, 62>(n2)
для 2 секции принимаем трубы с σ=12 мм.
п2 = 246/150=1, 64 >(п2)
тогда длина 2 секции труб
l2 = 1100-50=1050 м.
все 2 секции труб
Q2= 95, 3*1050=100065 кг.
Таблица 10. Конструкция 324 мм колонны

Интервал, м
Длина секции, м
Группа прочности
Толщина стенки, мм
Запасы прочности
Вес секции










На смятие
На внутреннее давление


1 секция 2000-1100 м.
1
2000-1930
70
Д
12
1, 49
3, 32
6671
2
1930-1100
830
Д
10
3, 82
3, 03
66649
2 секция 1100-0 м.
1
1100-1050
50
Д
10
-
4, 62
4015
2
1050-0
1050
Д
12
-
1, 64
100065


1777400
Расчет 2 промежуточной колонны 244,5 м.
Исходные данные:
Глубина, м.: L=3850, h=0
Удельный вес, гс/см3: γж=1,0, γк=1, 74
γц=1, 9 в интервале 200-3850 м.
γц=1, 87 в интервале 0-2000 м.
Относительная плотность газа по возрасту γ=1,212.
Пластовое давление на глубине 3850 м. Рпл = 639 кгс/см2
Запасы прочности для обсадных труб по стандарту АНИ:
п1=1,125, п2=1,1, п3=1,75
Ввиду ограниченного предела прочности антикоррозионных труб SМ-90SSU в виду текучих солей расчет труб производится согласно (6) по выражению, учитывающему возможность поддержания внутреннего давления (Py) в промежуточной колонне на соответствующем уровне, путем регулируемого штуцера.    продолжение
--PAGE_BREAK--
Рн= 0,1γ0z≤Ркр/п1*п2+Ру, где Рн=(γп*z/10)λ (6)
Интервал расчета по горному давлению
[(2800-25)-(3800+25)]M, т.е. 2775-3825 м.
Ру=0,1 (2,23-1,0)3825-350,3/1,125*1,1=283 кгс/см2
Внутренние давления
Определяем по формуле (6) методики (IO)
Рвz = 639/ls=639/2.3*0.467= 639/1.595=401 кгс/см2
S = 0, 1*10-3γ(н-z)=0,1*10-3*1, 212*3850=0, 467
Избыточное наружное давление
Определяем при минимальных внутренних во время проявления при открытом устье по формуле 7.
Z=0 Рни0= 0,1 (γц-γ0)(1-к) (7)
Z=3850 м. Рни3850=0,1(1, 9-1,0)(1-0,3)3850=243 кгс/см2
В интервале (2775-3825) м. избыточные наружные давления определяем с учетом горного давления
Рн.и. 3825=0, 1(2, 23-1, 0)3825-283=188 кгс/см2
Рн.и. 2775=0, 1(2, 23-1, 0)2775-283=59 кгс/см2
Рн.и. 3825=0, 1(1, 9-1, 0)(1-0, 3)3825=240 кгс/см2
Рн.и. 2000=0, 1(1, 9-1, 0)(1-0, 3)2000=126 кгс/см2
Рн.и. 2000=0, 1(1, 87-1, 0)(1-0, 3)2000=122 кгс/см2
Избыточные внутренние давления
Определяем по формуле 8.
Рвиz= {1.1Pу-0,1[γц-γж]L-γц-γр}(1-k) (8)
Рви3850=1, 1*401-0, 1(1, 9-1, 0)*3850(1-0, 3)=66 кгс/см2
Рви2000= (1, 1*401-0, 1(0, 1(1, 87-1, 0)2000)(1-0, 3)=186 кгс/см2
Рви0=1, 1*Ру=1, 1*401 кгс/см2
Расчет 244 мм колонны
Расчет ведем по наружным избыточным и внутренним давлениям
Рниl=243 кгс/см2
Рниl=243*1.125=273 кгс/см2
Этому давлению соответствует трубы марки стали SM-95SS и о толщиной стенки σ=11,05 мм (Ркр=290 кгс/см2, Рт=528 кгс/см2q=64,73кгс). Для следующей секции принимаем трубы марки SM-90SSИ с σ=10, 03 мм (Ркр=229 кгс/см2, Рт=454 кгс/см2, q=59, 52 кгс), для которых
кгс/см2, что соответствует глубине 1900 м.
В связи с производственной необходимостью принимаем нижние 250 м., составленные из труб марки стали SM-95SSU с σ=11, 99 мм, q=69.94
L1=11.95=17485 кгс
L2=11.05=90622 кгс
На глубине 2200 м делается переход на трубы марки стали SM-90SS согласно регламенту.
Дальнейший расчет ведем из расчета на внутреннее давление, так как наружное давление незначительно. И делаем проверочный расчет на страгивание:
=412 кгс/см2, что
Соответствует глубине L=260 м. Тогда длина
L3=10,03=2200-260=1940 м=1940/>59, 52=115469 кгс
Следующую секцию принимаем из труб марки стали SM-90SSN с σ=11, 05 (=500 кг/см2 q=64, 73 кгс)
=154 кгс/см2, что удовлетворяет устьевым условиям.
Верхние 150 м принимаем с σ=11, 99 мм ввиду наличия в газе сероводорода и согласно п.2.7.4 /10/, тогда
L4=11,05=110 м=110/>64, 73=7120 кгс
L5=11,99=150 м=150/>64, 94=10491 кгс
Таблица 11. Конструкция 244,5 мм колонны
№ п/п
Интервал, м
Длина, м
Группа прочности
Толщина стенки, мм
Запасы прочности
Вес секции кгс










На смятие
На внутр.
давление
На
страгивание


1
3850-3600
250
SM-95TS
11, 99
1, 125


-
17485
2
3600-2200
1400
SM-95TS
11, 05
1, 125


-
90622
3
2200-260
1940
SM-90SS
10, 03
-
1, 1
2, 7
115469
4
260-150
110
SM-90SS
11, 05
-
1, 1
2, 65
7120
5
150-0
150
SM-90SS
11, 99
-
1, 1
2, 62
10491
Эксплуатационная колонна 177, 8 мм
Исходные данные:
Глубина, м, L=4100, h=0
Удельный вес, г/см3, γж=1, 0
γц = 1, 77 в интервале 3750-4100м
γц = 1, 87 – в интервале 0-3750 м.
γк=1, 74
пластовое давление, кгс/см2: Рпл = 644 (в период ввода скважины в эксплуатацию).
Коэффициент разгрузки цементного кольца – 0, 25
Запасы прочности для обсадных труб по стандарту АНИ:
п1 = 1, 36 п2=1, 33 п3=1, 75
Внутреннее давление
В период ввода скважины в эксплуатацию внутреннего давления определяется по формуле 9.
а) Рвz=Рплl/ls (9)
где S=0,1*10-3 *1.212*410=0.496
ls =1.6421
Pвz=644/.6421=392 кгс/см2
б) по окончании эксплуатации
Pвz=Pплz=120 кгс/см2
Избыточные наружные давления    продолжение
--PAGE_BREAK--
Определим по формуле 10.
Рни=(0, 1(γц*h-(γц-γр)h)-Pmin)(1-k) (10)
При z=0Pниz=0
При h=4100 Рниz=(0.1*1.77*4100-120)(1-0.25)=454 кгс/см2
При h=3750 Рниz=(0.1*1.77*3750-120)(1-0.25)=408 кгс/см2
При h=3750 Рниz=(0.1*1.87*3750-120)(1-0.25)=436 кгс/см2
Избыточное внутреннее давление
Давление на устье z=0 Ру=1, 1 Рв= 1, 1, 392=432 кгс/см2
Давление на глубине L определим по формуле 11:
Рви = (Роп-0, 1(γц-γж)L-(γц-γр)h)(1-к) (11)
Рви4100=(432-0, 1(1, 77-1, 00)4100)(1-0, 25)=87, 2 кгс/см2
Рви3750=(432-0, 1(1, 77-1, 00)3750)(1-0, 25)=107, 4 кгс/см2
Рви3750=(432-0, 1(1, 77-1, 00)3750)(1-0, 25)=79, 3 кгс/см2
Расчет 177,8 мм колонны
Расчет ведем по избыточным наружным и внутренним давлением.
Рни= 454*1, 36=617 кгс/см2
Этому давлению соответствуют трубы марки стали SM90-SSU
σ=11, 51 мм (Ркр=659 кгс/см2); Рт=718 кгс/см2
q=47, 62кг.
Для второй секции принимаем трубы с толщиной стенки σ=10, 36 мм
(Ркр=532 кгс/см2, Рт=646 кгс/см2; q=43, 15 кг.), для которых
, что соответствует глубине L1 =3380м.
Тогда длина 1 секции:
L1 = 4100-3380 = 720 м.
Q1=47, 62х720=34286, 4 кг.
Для третьей секции принимаем трубы с толщиной стенки σ=9, 19 м.
(Ркр=404кгс/см2, Рт=574 кгс/см2, q = 38.69 кг).
, что способствует глубине
h2=2560 м.
L2= 3380-2560=820 м.
Q2=43, 15*820=35383 кг.
Длину 3-й секции определим из расчета на страгивание и проверим на внутреннее давление
/>
что удовлетворяет
Q3 = 38, 69*2000=77380 кг.
Для 2-й секции принимаем трубы с σ=10, 36мм.
/>
Q4=43, 15*430=1854, 5 кг.
Запас прочности:
Для 5-й секции принимаем трубы с σ=11, 51 мм
720 м, что достаточно
Принимаем,
L5=130 м=47,62/>130=6190, 6 кг
Таблица 12. Конструкция 177,8 мм колонны
№ п/п
Интервал, м
Длина, м
Группа прочности
Толщина стенки, мм
Вес секций, кгс
1
4100-3380
720
SM-90SSLL
11,51
34286, 4
2
3380-2560
820
-
10, 36
35383
3
2560-560
2000
-
9, 19
77380
4
560-130
430
-
10, 36
18554, 5
5
130-0
130
-
11, 51
6190, 6
Так как в настоящее время в наличии имеются обсадные трубы φ 177, 8 мм с толщинами стенок только σ=11, 51 мм и 12, 65 мм, принимаем всю колонну, составленную из труб с σ=11, 51 мм
L=4100 м=4100/>47, 62=195242 кгс
Делаем проверочный расчет на страгивание и на внутреннее давление на смятие.
==1, 79>1, 75
==1, 66>1, 33
==1,45>1,36
Таблица 13. Окончательная конструкция 177,8 мм колонн
Интервал
Длина, м
Группа прочности
Толщина стенки, мм
Запасы прочности
Вес секции
















4100-0
4100
SM-90SSU
11,51
1,36
1,66
1,79
195242
5. Охрана недр и окружающей среды
Оформление и отвод земельных участков в пользование геологоразведочными организациями производится в соответствии с Основами земельного законодательства Российской Федерации.
Плотность застройки участков, занимаемых при сооружении геологоразведочных скважин, за исключением горных районов, должна быть не менее 30%.
Запрещается приступать к пользованию земельными участками до установления соответствующими землеустроительными органами границ предоставленного участка в натуре (на местности) и выдачи документа, удостоверяющего право пользования землей.
Предприятия и организации, которым отводятся участки для проведения геологоразведочных работ, возмещают убытки землепользователям и потери сельскохозяйственного производства, связанные с их изъятием, и несут расходы по оформлению земельных отводов.
Размеры возмещения убытков и потерь определяются и учитываются при составлении проектно-сметной документации на буровые работы.
Предприятия и организации, проводящие на земельных участках геологоразведочные работы, связанные с нарушением или загрязнением почвенного покрова, обязаны до начала работы снимать и хранить в отдельных отвалах плодородный слой почвы в целях использования его для восстановления земель.
Лица, виновные в несвоевременном возврате временно занимаемых земельных участков или в невыполнении обязательств по приведению их в состояние, пригодное для использования по. назначению, несут уголовную.или административную ответственность в порядке, установленном законодательством субъектов Российской Федерации.
По истечении срока, на который был предоставлен участок, при использовании его не по целевому назначению, или не освоении предоставленных земельных участков в течение двух лет подряд, право пользования отведенным участком утрачивает силу.
Соблюдение установленного порядка и эффективности ведения работ по геологическому изучению недр обеспечивается органами государственного контроля.    продолжение
--PAGE_BREAK--
Законодательство предъявляет определенные требования к предприятиям, организациям и учреждениям, осуществляющим геологическое изучение недр. Геологические работы необходимо проводить методами и способами, исключающими неоправданные потери полезных ископаемых и снижение их качества, а извлекаемые из недр горные породы и полезные ископаемые размещать так, чтобы исключить их влияние на окружающую среду.
Подготовительные мероприятия должны включать в себя:
а) установление мест складирования растительного и почвенного слоев или грунтов, подлежащих выемке;
б) удаление плодородного слоя почвы в местах загрязнения нефтепродуктами и другими жидкостями, химическими реагентами, глиной, цементом и другими веществами, ухудшающими состояние почвы, и его складирование.
Мероприятия по восстановлению земельных участков;
1. По окончании бурения скважины должна быть проведена рекультивация — комплекс мероприятий, направленных на восстановление земельных отводов, нарушенных производственной деятельностью, для дальнейшего землепользования.
2. Должна проводиться горнотехническая и биологическая рекультивация.
3. Горнотехническая рекультивация включает в себя подготовку освобождающейся от буровых работ территории для дальнейшего землепользования:
а) сырая нефть вывозится для дальнейшего использования или сжигается;
б) остатки дизельного топлива и моторного масла сжигаются;
в) отработанный глинистый раствор вывозится для дальнейшего использования на других скважинах и регенерируется;
г) оборудование и железобетонные покрытия демонтируются и вывозятся;
д) перекрытия амбаров для сброса шлама и нефти засыпаются слоем грунта не менее 0,6 м;
е) земельные отводы, нарушенные производственной деятельностью, покрываются почвенным слоем и дерном;
ж) откосы в горных местностях укрепляются битумными эмульсиями, силикатными слоями, плетнями и засыпаются привозным фунтом слоем не менее 0,10 мм
4. Биологическая рекультивация предполагает мероприятия по восстановлению плодородия нарушенных земель, их озеленение и возвращение в сельскохозяйственное лесное пользование.
5. Проектирование и проведение работ по рекультивации осуществляется в соответствии с инструкциями или техническими условиями, согласованными с местными сельскохозяйственными, лесохозяйственными или водохозяйственными органами.
Задача охраны недр месторождений УВ состоит в предотвращении потерь УВ и пластовой энергии. Эта задача решается совокупностью организационных и геолого-технических мероприятий на всех этапах разведки и разработки месторождений УВ.
Всесторонняя охрана недр — одно из главных условий рациональной разведки и разработки любого месторождения УВ и представляет собой обязанность коллектива каждого предприятия, ведущего горные работы.
Статья 1.2 Закона РФ — собственность на недра. Говорит «недра в границах территории РФ, включая подземное пространство и содержащиеся в недрах полезные ископаемые, энергетические и иные ресурсы, являются государственной собственностью».
Основными лицами, обязанными принимать и соблюдать все необходимые и достаточные меры по охране недр месторождений УВ являются руководящие и инженерно-технические работники геологоразведочных и газодобывающих предприятий. Контроль за охраной окружающей среды и недр осуществляет Федеральная служба по экологическому, технологическому и атомному надзору РФ, а по Астраханской области — управление по технологическому и экологическому надзору — Ростехнадзор по Астраханской области. Работы по поискам, разведке, добыче УВ, должны вестись в соответствии с «Инструкциями ...» по выполнению этих работ. Нарушителей этих «Инструкцией» — наказывают вплоть до снятия с занимаемой должности.
Охрана окружающей среды природы при бурении скважин и эксплуатации месторождений УВ.
В процессе бурения скважин наблюдается загрязнение вод рек, морей, океанов, внутренних водоемов (особенно при морском бурении). Также загрязняется почва и окружающая среда при транспорте нефти по трубопроводам (негерметичным). Очень часто аварии с нефтеналивными судами.
После бурения скважины обязательна рекультивация почвы — приведение места буровой площадки в первоначальное состояние.
В процессе горных работ необходимо соблюдать требования охран лесов, ландшафта, охрана животного мира (отстрел животных необходимо производить в строго определенное время, необходимо усилить борьбу с браконьерами).
В результате деятельности человека имеет место нарушение природных равновесий — так называемые техногенные процессы. Например, при разработке месторождений УВ пластовое давление падает, наблюдается просадка почвы, влекущая за собой оползни, землетрясения. Например, в Калифорнии за счет этого просадка почвы достигает 10-20 м.
Основной документ на бурение скважины — это геолого-технический наряд (ГТН). Бурение скважин осуществляется в соответствии с его требованиями.
При бурении скважин на месторождениях УВ должны быть приняты меры, обеспечивающие:
1) Предотвращение открытого фонтанирования, грифонообразование, поглощений промывочной жидкости, обвалов стенок скважин и межпластовых перетоков.
2) Надежную изоляцию в пробуренных скважинах всех проницаемых и углеводородосодержащих пластов.
3) Необходимую герметичность всех спущенных в скважину труб и высококачественное цементирование колонн.
Все пласты с признаками УВ по данным бурения скважин должны быть тщательно изучены для определения возможного получения из них промышленных притоков нефти или газа.
При вскрытии продуктивных пластов применяются промывочные растворы, создающие гидростатическое давление, превышающее на 15-20% ожидаемое пластовое давление. Во избежание выброса необходимо утяжелять буровой раствор и химически его обрабатывать за 500 м до кровли продуктивного пласта. Обычно выбросы наблюдаются в первых скважинах.
Бурящиеся скважины оборудуются превентором — для закрытия устья скважины в случае аварийного выброса бурового раствора. Превенторы опресовываются на максимальное ожидаемое пластовое давление (Рпп). Необходимо использовать рациональные конструкции скважин: количество колонн, высота подъема цемента за колоннами глубина скважины, марка стали, диаметр колонны, затрубное давление и т.д.
Цемент за эксплуатационной колонной нефтяной скважины поднимают на 50м выше самого верхнего продуктивного горизонта, а в газовой скважине — до устья эксплуатационной колонны. Перед спуском обсадных колонн их опресовывают на 1,5 ожидаемое давление, определяемое по ранее пробуренным скважинам. После цементажа производится определение наличия цементного камня (ОЦК) за колонной и степень его схватывания с колонной и породой различными методами: электротермометром, акустическим каротажом (АК, называемый акустический цементомер) и методами с помощью изотопов. Испытание колонны на герметичность опрессовкой или снижением уровня.
Технические условия определяют герметичность колонны: на сколько за определенный период должно снизиться давление или понизится уровень жидкости в скважине.
При капитальном ремонте скважины все работы должны выполняться на утяжеленном буровом растворе во избежании выбросов.
Также ведется в процессе бурения скважины тщательный контроль за искривлением ствола скважины.
Разработка месторождений УВ в целом и самостоятельной залежи или пласта в отдельности должна осуществляться по утвержденным проектам. Основное требование при разработке месторождений УВ — это сохранение естественной пластовой энергии.
Наиболее важный критерий при разработке залежей УВ — коэффициент нефте- и газоотдачи.
При разработке газонефтяной залежи с газовой «шапкой» необходимо чтобы газовая «шапка» не разрабатывалась до извлечения промышленных запасов нефти.
В процессе разработки крупных залежей нефти используется блоковая система заводнения — залежь делится на блоки. При снижении пластового давления Рт законтурные воды внедряются в залежь, вытесняют нефть к забоям эксплуатационных скважин при этом достигается высокий коэффициент нефтеотдачи (tj).
С целью повышения коэффициента нефтеотдачи (ц) необходимо более обосновано выбирать рабочий агент (вода, газ) для нагнетания в пласт. В России около 80% нефти добывается на месторождениях с заводнением.
На месторождениях с коллектором невысокой проницаемости для вытеснения нефти применяется газ высокого давления (ГВД) или сжиженный газ. Газ высокого давления растворяет некоторое количество нефти, при этом создается нефтяная оторочка, постепенно она увеличивается в объеме, вязкость ее снижается и она проталкивается к забоям скважины.
Газ высокого давления (ГВД) применяется также при разработке залежей тяжелых вязких нефтей. Здесь метод заводнения не дает результатов, так как газ высокого давления растворяет тяжелые вязкие нефти и подвижность нефтей увеличивается.
Для обеспечения высокого коэффициента нефтеотдачи (ц) необходимо, чтобы скважины эксплуатировались на оптимальных технологических режимах:
-с минимальным газовым фактором г
— с минимальным процентом обводнения
— с минимальным процентом выноса песка.
Для повышения коэффициента конденсатоотдачи при разработке газоконденсатных месторождений используется методы поддержания пластового давления (ППД). При этом необходимо, чтобы пластовое давление Рт не упало ниже давления начала конденсации.
Лица, нарушающие охрану недр при разведке и разработке месторождений УВ, несут ответственность в законном порядке.
6. Охрана труда
Основные правила техники безопасности
1. Буровые работы должны выполняться в соответствии с утвержденными в установленном порядке проектами и в соответствии с «Правилами безопасности при геологоразведочных работах».
2. Пуск в эксплуатацию буровых установок (вновь построенных, разборных после переезда на новую точку, передвижных после ремонта) должен производиться после приемки их комиссией, назначаемой руководителями геологического предприятия, с составлением акта вышеуказанных правил. В состав комиссии при приемке буровой установки для бурения скважины глубиной более 1500 м должен входить представитель местного органа Госгортехнадзора.
3. Все рабочие, вновь принимаемые на буровые работы или переводимые с другой работы, должны пройти медицинский осмотр с учетом профиля и условий их работы. Принимать на работу лиц, состояние здоровья которых не соответствует условиям работы, запрещается.
4. Управление буровыми станками, а также обслуживание двигателей буровых установок, передвижных электростанций, насосов и другого оборудования должно производиться лицами, имеющими на это право, подтвержденное соответствующим документом (удостоверением).    продолжение
--PAGE_BREAK--
Передавать управление и обслуживание механизмов и оборудования лицам, не имеющимся то прав, а также оставлять работающие механизмы (буковые станки, электростанции и др.), требующие присутствия людей, без присмотра запрещается.
5. Все рабочие, как вновь принимаемые, так и переводимые на другую работу, допускаются к выполнению работ только после прохождения обучения и сдачи экзаменов по технике безопасности применительно к профилю их работы; а направляемые на подземные работы, кроме того, должны быть обучены пользованию самоспасателями.
При внедрении новых технологических процессов и методов труда, при применении новых видов оборудования, инструментов и механизмов; а также при освоении новых правил и инструкций по технике безопасности рабочие должны пройти дополнительный инструктаж. Повторный инструктаж всех рабочих по технике безопасности должен проводиться не реже одного раза в полугодие.
Проведение обучения и повторного инструктажа должно быть зарегистрировано в «Книге регистрации обучения и инструктирования рабочих по технике безопасности».
Этот документ должен храниться у инженера по технике безопасности или у руководителя работ (начальника отряда, участка и т.д.).
6. Рабочие и инженерно-технические работники в соответствии с утвержденными нормами должны быть обеспечены и обязаны пользоваться индивидуальными средствами защиты: предохранительными поясами, касками, защитными очками, рукавицами, диэлектрическими ботами, перчатками, спецодеждой, спецобувью и другим имуществом — соответственно профессии и условиям работ.
Буровые работы
1. Работы по бурению скважины могут быть начаты только на законченной монтажом буровой установке при наличии геолого-технического наряда и после оформления акта о приемке ее в эксплуатацию.
При бурении скважин глубиной до 300 м самоходными (передвижными буровыми установками) акт о приемке ее в эксплуатацию составляется перед началом полевых работ, после каждого капитального ремонта и расконсервации. В процессе эксплуатации самоходная буровая установка должна осматриваться машинистом установки при приеме и сдаче смены, а буровым мастером — не реже одного раза в декаду с записью в «Журнале проверки состояния техники безопасности».
2. До пуска буровой установки должна быть тщательно проверена работа всех механизмов, состояние заземления электрооборудования, крепления ограждений, исправность механизма управления, совпадение оси вышки с центром скважины и т. д. Выявленные недостатки подлежат устранению до ввода буровой установки в эксплуатацию.
3. Буровое оборудование (станки, двигатели, насосы и т. д.) должно устанавливаться в соответствии с требованиями их эксплуатации и проектными схемами монтажа.
4. Буровая установка должна быть обеспечена средствами малой механизации (элеваторы, механизмы для свинчивания и развенчивания труб и пр.), а также приспособлениями и устройствами по технике безопасности (ограждения шпинделя, ограждения муфты и др.).
5. Оборудование, инструменты, полы, перила, лестницы буровых установок должны содержаться в исправности и чистоте.
6. При неисправности электрооборудования (чрезмерный нагрев, замыкание, искрение, дым и т. д.) необходимо отключить общий рубильник и вызвать специалиста электротехнического персонала.
7. В процессе ремонтных работ на полатях и кронблочной площадке рабочий инструмент должен привязываться. По окончании работы весь инструмент должен быть перенесен в отведенное для него место.
8. Буровой агрегат должен проверяться в начале смены машинистом буровой установки и периодически, но не реже одного раза в декаду, буровым мастером.
Результаты проверки должны заноситься в буровой журнал, а обнаруженные неисправности должны устраняться до начала работ.
9. Во время работы буровых запрещается:
а) переключать скорости лебедки и вращателя, а также переключать вращение с лебедки на вращатель и обратно до их полной остановки;
б) заклинивать рукоятки управления машин и механизмов;
в) пользоваться патронами шпинделя с выступающими головками зажимных болтов.
10. Во время спуско-подъемных операций запрещается:
а) работать на лебедки с неисправными тормозами;
б) стоять в непосредственной близости от спускаемых (поднимаемых) труб и элеватора;
в) спускать трубы с недовернутыми резьбовыми соединениями;
г) производить быстрый спуск на всех уступах и переходах в скважине;
д) держать, на весу талевую систему под нагрузкой или без нее при помощи груза, наложенного на рукоятку тормоза или путем ее заклинивания;
e) проверять или чистить резьбовые соединения голыми руками.
11. Запрещается охлаждать трущиеся поверхности тормозных шкивов водой, глинистым раствором.
12. Все операции по свинчиванию и развинчиванию сальника, бурильных труб и другие работы на высоте более 1,5 метров должны производиться со специальных полатей и площадок или переносных лестниц, огражденных перилами.
13. При кратковременных остановках бурения необходимо приподнять бурильные трубы на высоту, исключающую возможность их прихвата.
14. Подтягивание бурильных труб диаметром 63,5 м и выше от устья скважины к подсвечнику и обратно, а также к полатям верхового рабочего на расстояние не большее 0,7 м, должно осуществляться с помощью специальных приспособлений (крючка, захвата и др.).
15. Находящиеся на полатях крючки для подтягивания и установки свечей за палец должны быть привязаны.
16. Соединять и отвинчивать вертлюг-сальник от рабочей трубы следует только штанговыми ключами.
17. После окончания разведочных буровых работ на скважине необходимо:
а) засыпать все ямы и шурфы, оставшиеся после демонтажа буровой; герметизировать устье скважины
в) выровнять площадку.
Запрещается
а) во время подъема бурильных труб очищать их непосредственно руками от глинистого раствора, очистка должна производиться механическим способом;
б) оставлять свечи не заведенными за палец полатей;
в) составлять свечи бурового инструмента такой длины, что при выполнении спуско-подъемных операций верховой рабочий вынужден становиться на перила полатей или работать с лестниц;
г) перемещать в шпинделе бурильные трубы, а также свинчивать и развинчивать их во время его вращения;
д) поднимать бурильные, колонковые и обсадные трубы с приемного моста и спускать их при скорости движения элеватора, превышающей 1,5 м/с.
Заключение
Астраханское ГКМ имеет значительный ресурсный потенциал. В настоящее время из залежи отобрано 131.28 млрд. м3 газа сепарации и 45,9 млн. тонн нестабильного конденсата, что составляет соответственно 5,1 % и 7,8 % от утвержденных запасов.
Увеличение добычи и переработки газа на АГКМ целесообразно при вовлечении в разработку восточной части лицензионного участка Астраханского ГКМ, запасы которой составляют порядка 1 трлн. м3 газа.
Генеральной схемой развития ООО «Астраханьгазпром» на период до 2020 года предусмотрены несколько вариантов развития:
Вариант. 1. Поддержание добычи и переработки отсепарированного газа на проектном уровне — 12 млрд. нм3/год.
Вариант 2. Увеличение добычи и переработки отсепарированного газа до 13,5 млрд. нм /год за счет освоения удаленных структур Астраханского месторождения.
Вариант 3. То же, что и вариант 2, но с увеличением добычи отсепарированного газа до 15 млрд. нм3 /год.
Варианты 2 и 3 имеют подварианты, по которым производится переработка кислых газов с получением товарной серы, или закачкой кислых газов в продуктивный пласт.
Мини-П13 производительностью 3,0 млрд. м /год газа сепарации состоит из четырех линий по 0,75 млрд. м3/год, включающих установки сепарации пластовой смеси, очистки газа от кислых компонентов раствором МДЭА и блока подготовки кислых газов к закачке в подземные резервуары, состоящего из узлов компримирозания и осушки. На каждые две линии сероочистки предусмотрена одна установка осушки и отбензинивания газа. Для независимости комплекса от внешних поставщиков электроэнергии предусмотрено сооружение электростанции для собственных нужд (ГТУ ТЭЦ) мощностью 250 МВт.
Предполагается технологию подготовки кислого газа к закачке, а также закачку жидких кислых газов в подземные резервуары, отработать на модуле опытно-промышленной установки.
Пластовый газ поступает на одну линию сепарации номинальной производительностью 0,75 млрд. м год газа сепарации, где разделяется на газ, нестабильный конденсат и воду. Нестабильный конденсат направляется на стабилизацию и дальнейшую переработку на мощности действующего АГГТЗ.
Газ сепарации поступает на установку очистки газа от кислых компонентов. Полученный грубоочищенный газ направляется на доочистку на установки очистки газа среднего давления У41 АГПЗ, а полученные кислые газы направляются на блок подготовки их к закачке в пласт, состоящий из узлов компримирования и осушки. На выходе блока давление сжижения кислого газа (для нашего состава) составит 9,0 МПа при 50°С.
Список литературы
1. Басарыгин Ю.М., Булатов А.И., Проселков IO.M. Технология бурения нефтяных и газовых скважин. Учеб. для вузов. — М.: ООО «Недра-Бизнесцентр», 2001. — 679 с.
2. Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Осложнения и аварии при бурениинефтяных и газовых скважин: Учеб. для вузов. — М.: ООО «Недра-Бизнесцептр», 2000. —679 с.
3. Булатов А.И., Аветисов А.Г. Справочник инженера по бурению: — В 4-х т. — М: Недра, 1996.
4. Булатов А.И., Качмарь Ю.Д., Макаренко П.П., Яремийчук Р.С. Освоение скважин. Справочное пособие. — М.: Недра, 1999.
5. Булатов А.И., Макаренко П.П., Проселков Ю.М. Буровые промывочные и тампонажныерастворы: Учеб. пособие для вузов. — М.: ОЛО «Издательство «Недра», 1999. —424 с.
6. Буровое оборудование: Справочник: В 2-х т. — М.: Недра, 2000. — Т. 1. — 269 с.
7. Надецкий Ю.В. Бурение нефтяных и газовых скважин. — 4-е изд., перераб. и доп. — М.: Недра, 1978. — 471 с.
8. Пасарыгии Ю.М., Пулатов А.II., Проселков Ю.М. Закапчивание скважин. Учеб. пособиедля вузов. — М: ООО «Недра-Бизпесцешр», 2000. — 670 с.
9. Полдепко Д.Ф., Болдепко Ф.Д., Гноевых А.II. Винтовые забойные двигатели. — М.: Недра, 1999.
10. Предо Г.А. Проектирование режима бурения. — М.: Недра, 1988.
11. Середа Н.Г., Соловьев Е.М. Бурение нефтяных и газовых скважин. Учеб. для вузов. — М: Недра, 1971. — 456 с.
12. Спивак А.П., Попов А.Л. Разрушение горных пород при бурении скважин. — М.: Недра, 1986.
13. Справочник по механическим и абразивным свойствам горных пород/М.Г. Абрамсон, Б.В. Байдюк, B.C. Зарецкий и др. — М.: Недра, 1981.
14. Трубы нефтяного сортамента: Справочник/Под общей редакцией Л.Е. Сарояна. — 3-еизд., иерераб. и доп. — М.: Недра, 1987. — 488 с.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат A Dolls House Essay Research Paper A
Реферат Mxpx
Реферат Whales Essay Research Paper The United States
Реферат Решение задач линейного программирования симплекс-методом
Реферат Технология производства, переработки и хранения продукции животноводства на примере СХПК Пу
Реферат Джунгарское ханство
Реферат Функционально-стоймостной анализ технологического процесса производства детали ГТД
Реферат Детско-подростковые клубы как часть системы дополнительного образования
Реферат Государственные закупки в казахстане
Реферат Тенденции современного религиоведения
Реферат Современные формы и методы правового воспитания молодёжи проблемы и цели
Реферат Сыры
Реферат Социально-экономические последствия безработицы и методы ее преодоления
Реферат 1. Управление социально-экономическим развитием региона: вопросы теории и практики > Перспективные направления развития региональной экономики и управления
Реферат Локальная вычислительная сеть бухгалтерского отдела