Реферат по предмету "БЖД"


Производственный шум и его воздействие на человека 2

--PAGE_BREAK--Резонансные частоты отдельных частей тела следующие, Гц:
— глаза — 22...27;
— горло — б...12;
— грудная клетка — 2...12;
— ноги, руки — 2...8:
— голова — 8...27;
— лицо и челюсти — 4...27;
— поясничная часть позвоночника — 4...14;
— живот — 4...12.
Общая вибрация классифицируется следующим образом:
— транспортная, которая возникает вследствие движения по дорогам;
— транспортно-технологическая, которая возникает при работе машин, которые выполняют технологические операции в стационарном положении или при перемещении по специально подготовленным частям производственных помещений, производственных площадок;
— технологическая, которая влияет на операторов стационарных машин или передается на рабочие места, которые не имеют источников вибрации.
Защита от вибраций
Общие методы борьбы с вибрацией базируются на анализе уравнений, которые описывают колебание машин в производственных условиях и классифицируются следующим образом:
снижение вибраций в источнике возникновения путем снижения или устранения возбуждающих сил;
регулировка резонансных режимов путем рационального выбора приведенной массы или жесткости системы, которая колеблется;
вибродемпферование — снижение вибрации за счет силы трения демпферного устройства, тоесть перевод колебательной энергии в тепловую;
динамическое гашение — введение в колебательную систему дополнительной массы или увеличение жесткости системы;
виброизоляция — введение в колебательную систему дополнительной упругой связи с целью ослабления передачи вибраций смежному элементу, конструкции или рабочему месту;
использование индивидуальных средств защиты.
Снижение вибрации в источнике ее возникновения достигается путем уменьшения силы, которая вызывает колебание. Поэтому еще на стадии проектирования машин и механических устройств следует выбирать кинематические схемы, в которых динамические процессы, вызванные ударами и ускорением, были бы исключены или снижены.
Регулировка режима резонанса. Для ослабления вибраций существенное значение имеет предотвращение резонансных режимов работы с целью исключения резонанса с частотой принуждающей силы. Собственные частоты отдельных конструктивных элементов определяются расчетным методом по известным значениям массы и жесткости или же экспериментально на стендах.
Вибродемпферование. Этот метод снижения вибрации реализуется путем превращения энергии механических колебаний колебательной системы в тепловую энергию. Увеличение расхода энергии в системе осуществляется за счет использования конструктивных материалов с большим внутренним трением: пластмасс, металлорезины, сплавов марганца и меди, никелетитанових сплавов, нанесения на вибрирующие поверхности слоя упруговязких материалов, которые имеют большие, потери на внутреннее трение. Наибольший эффект при использовании вибродемпферных покрытий достигается в области резонансных частот, поскольку при резонансе значение влияния сил трения на уменьшение амплитуды возрастает.
Виброгашение, Для динамического гашения колебаний используются динамические виброгасители: пружинные, маятниковые, эксцентриковые гидравлические. Недостатком динамического гасителя является то, что он действует только при определенной частоте, которая отвечает его резонансному режиму колебаний.
Динамическое виброгашение достигается также установлением агрегата на массивном фундаменте.
Виброизоляция состоит в снижении передачи колебаний от источника возбуждения к объекту, который защищается, путем введения в колебательную систему дополнительной упругой связи. Эта связь предотвращает передачу энергии от колеблющегося агрегата к основе или от колебательной основы к человеку или к конструкциям, которые защищаются.
Средства индивидуальной зашиты от вибрации применяют в случае, когда рассмотренные выше технические средства не позволяют снизить уровень вибрации до нормы. Для защиты рук используются рукавицы, вкладыши, прокладки. Для защиты ног — специальная обувь, подметки, наколенники. Для защиты тела — нагрудники, пояса, специальные костюмы.
4. Шум, ультразвук, инфразвук
Шум как гигиенический фактор — это совокупность звуков различной частоты и интенсивности, которые воспринимаются органами слуха человека и вызывают неприятное субъективное ощущение.
Шум как физический фактор представляет собой волнообразно распространяющееся механическое колебательное движение упругой среды, носящее обычно случайный характер.
Производственным шумом называется шум на рабочих местах, на участках или на территориях предприятий, который возникает во время производственного процесса.
Следствием вредного действия производственного шума могут быть профессиональные заболевания, повышение общей заболеваемости, снижение работоспособности, повышение степени риска травм и несчастных случаев, связанных с нарушением восприятия предупредительных сигналов, нарушение слухового контроля функционирования технологического оборудования, снижение производительности труда.
По характеру нарушения физиологических функций шум разделяется на такой, который мешает (препятствует языковой связи), раздражающий (вызывает нервное напряжение и вследствие этого — снижения работоспособности, общее переутомление), вредный (нарушает физиологические функции на длительный период и вызывает развитие хронических заболеваний, которые непосредственно связаны со слуховым восприятием: ухудшение слуха, гипертония, туберкулез, язва желудка), травмирующий (резко нарушает физиологические функции организма человека).
Характер производственного шума зависит от вида его источников. Механический шум возникает в результате работы различных механизмов с неуравновешенными массами вследствие их вибрации, а также одиночных или периодических ударов в сочленениях деталей сборочных единиц или конструкций в целом. Аэродинамический шум образуется при движении воздуха по трубопроводам, вентиляционным системам или вследствие стационарных или нестационарных процессов в газах. Шум электромагнитного происхождения возникает вследствие колебаний элементов электромеханических устройств (ротора, статора, сердечника, трансформатора и т. д.) под влиянием переменных магнитных полей. Гидродинамический шум возникает вследствие процессов, которые происходят в жидкостях (гидравлические удары, кавитация, турбулентность потока и т.д.).
Шум как физическое явление — это колебание упругой среды. Он характеризуется звуковым давлением как функцией частоты и времени. С физиологической точки зрения шум определяется как ощущение, которое воспринимается органами слуха во время действия на них звуковых волн в диапазоне частот 16—20 000 Гц.
Звук, который распространяется в воздушной среде, называется воздушным звуком, в твердых телах — структурным. Часть воздуха, охваченная колебательным процессом, называется звуковым полем. Свободным называется звуковое поле, в котором звуковые волны распространяются свободно, без препятствий (открытое.пространство, акустические условия в специальной заглушенной камере, облицованной звукопоглощающим материалом).
Диффузным называется звуковое поле, в котором звуковые волны поступают в каждую точку пространства с одинаковой вероятностью со всех сторон (встречается в помещениях, внутренние поверхности которых имеют высокие коэффициенты отражения звука).
В реальных условиях (помещение или территория предприятия) структура звукового поля может быть качественно близкой (или промежуточной) к предельным значениям свободного или диффузного звукового поля.
Воздушный звук распространяется в виде продольных волн, то есть волн, в которых колебания частичек воздуха совпадают с направлением движения звуковой волны. Наиболее распространена форма продольных звуковых колебаний — сферическая волна. Ее излучает равномерно во все стороны источник звука, размеры которого малы по сравнению с длиной волны.
Структурный звук распространяется в виде продольных и поперечных волн. Поперечные волны отличаются от продольных тем, что колебания в них происходят в направлении, перпендикулярном направлению распространения волны.
Болевой порог — это максимальное звуковое давление, которое воспринимается ухом как звук. Давление свыше болевого порога может вызывать повреждение органов слуха. При частоте 1000 Гц в качестве болевого порога принято звуковое давление Р = 20 Н/м2.
Для более полной характеристики источников шума введено понятие звуковой энергии, которая излучается источниками шума в окружающую среду за единицу времени.
Величина потока звуковой энергии, которая проходит в течение 1 с через площадь 1 м2 перпендикулярно к направлению распространения звуковой волны, является мерой интенсивности звука или силы звука.
Силой звука характеризуется громкость. Чем больше поток энергии, который излучается источником звука, тем выше громкость.
Шумовые характеристики источников шума определяются в соответствии с ГОСТ 12.1.003-86. ССБТ „Шум, общие требования безопасности".
Действие шума на организм человека
Область слышимых звуков ограничивается не только определенными частотами (20—20 000 Гц), но и определенными предельными значениями звуковых давлений и их уровней. Уместно напомнить, что логарифмическая шкала уровней звукового давления построена таким образом, что пороговое значение звукового давления рд соответствует порогу слышимости (1 = 0 дБ) только на частоте 1000 Гц, принятой в качестве стандартной частоты сравнения в акустике. Порог слышимости различен для звуков разной частоты. Если в диапазоне частот 800— 4000 Гц величина порога слышимости минимальна, то по мере удаления от этой области вверх и вниз по частотной шкале его величина растет; особенно заметно увеличения порога слышимости на низких частотах. По этой причине высокочастотные звуки более неприятны для человека, чем низкочастотные (при одинаковых уровнях звукового давления).
В зависимости от уровня и характера шума, его продолжительности, а также от индивидуальных особенностей человека шум может оказывать на него различное действие.
Шум, даже когда он невелик (при уровне 50—60 дБА), создает значительную нагрузку на нервную систему человека, оказывая на него психологическое воздействие. Это особенно часто наблюдается у людей, занятых умственной деятельностью. Слабый шум различно влияет на людей. Причиной этого могут быть: возраст, состояние здоровья, вид труда, физическое и душевное состояние человека в момент действия шума и другие факторы. Степень вредности какого-либо шума зависит также от того, насколько он отличается от привычного шума. Неприятное воздействие шума зависит и от индивидуального отношения к нему. Так, шум, производимый самим человеком, не беспокоит его, в то время как небольшой посторонний шум может вызвать сильный раздражающий эффект.
Известно, что ряд таких серьезных заболеваний, как гипертоническая и язвенная болезни, неврозы, в ряде случаев желудочно-кишечные и кожные заболевания, связаны с перенапряжением нервной системы в процессе труда и отдыха. Отсутствие необходимой тишины, особенно в ночное время, приводит к преждевременной усталости, а часто и к заболеваниям. В этой связи необходимо отметить, что шум в 30—40 дБА в ночное время может явиться серьезным беспокоящим фактором. С увеличением уровней до 70 дБА и выше шум может оказывать определенное физиологическое воздействие на человека, приводя к видимым изменениям в его организме.
Под воздействием шума, превышающего 85—90 дБА, в первую очередь снижается слуховая чувствительность на высоких частотах.
Сильный шум вредно отражается на здоровье и работоспособности людей. Человек, работая при шуме, привыкает к нему, но продолжительное действие сильного шума вызывает общее утомление, может привести к ухудшению слуха, а иногда и к глухоте, нарушается процесс пищеварения, происходят изменения объема внутренних органов.
Воздействуя на кору головного мозга, шум оказывает раздражающее действие, ускоряет процесс утомления, ослабляет внимание и замедляет психические реакции. По этим причинам сильный шум в условиях производства может способствовать возникновению травматизма, так как на фоне этого шума не слышно сигналов транспорта, автопогрузчиков и других машин.
Эти вредные последствия шума выражены тем больше, чем сильнее шум и чем продолжительнее его действие.
Таким образом, шум вызывает нежелательную реакцию всего организма человека. Патологические изменения, возникшие под влиянием шума, рассматривают как шумовую болезнь.
Звуковые колебания могут восприниматься не только ухом, но и непосредственно через кости черепа (так называемая костная проводимость). Уровень шума, передаваемого этим путем, на 20—30 дБ меньше уровня, воспринимаемого ухом. Если при невысоких уровнях передача за счет костной проводимости мала, то при высоких уровнях она значительно возрастает и усугубляет вредное действие на человека.
При действии шума очень высоких уровней (более 145 дБ) возможен разрыв барабанной перепонки.
Методы и средства защиты от шума
Средства защиты от шума подразделяют на средства коллективной и индивидуальной защиты.
Борьба с шумом в источнике его возникновения — наиболее действенный способ борьбы с шумом. Создаются малошумные механические передачи, разрабатываются способы снижения шума в подшипниковых узлах, вентиляторах.
Архитектурно-планировочный аспект коллективной защиты от шума связан с необходимостью учета требований шумозащиты в проектах планирования и застройки городов и микрорайонов. Предполагается снижение уровня шума путем использования экранов, территориальных разрывов, шумозащитных конструкций, зонирования и районирования источников и объектов защиты, защитных полос озеленения.
Организационно-технические средства защиты от шума связаны с изучением процессов шумообразования промышленных установок и агрегатов, транспортных машин, технологического и инженерного оборудования, а также с разработкой более совершенных малошумных конструкторских решений, норм предельно допустимых уровней шума станков, агрегатов, транспортных средств и т. д.
Акустические средства защиты от шума подразделяются на средства звукоизоляции, звукопоглощения и глушители шума.
Снижение шума звукоизоляцией. Суть этого метода заключается в том, что шумоизлучающий объект или несколько наиболее шумных объектов располагаются отдельно, изолировано от основного, менее шумного помещения звукоизолированной стеной или перегородкой.
Звукопоглощение достигается за счет перехода колебательной энергии в теплоту вследствие потерь на трение в звукопоглотителе. Звукопоглощающие материалы и конструкции предназначены для поглощения звука как в помещениях с источником, так и в соседних помещениях. Акустическая обработка помещения предусматривает покрытие потолка и верхней части стен звукопоглощающим материалом. Эффект акустической обработки больше в низких помещениях (где высота потолка не превышает 6 м) вытянутой формы. Акустическая обработка позволяет снизить шум на 8 дБА.
Глушители шума применяются в основном для снижения шума различных аэродинамических установок и устройств,
В практике борьбы с шумом используют глушители различных конструкций, выбор которых зависит от конкретных условий каждой установки, спектра шума и требуемой степени снижения шума.
Глушители разделяются на абсорбционные, реактивные и комбинированные. Абсорбционные глушители, содержащие звукопоглощающий материал, поглощают поступившую в них звуковую энергию, а реактивные отражают ее обратно к источнику. В комбинированных глушителях происходит как поглощение, так и отражение звука.
Нормирование шумов
В Украине и в международной организации по стандартизации применяется принцип нормирования шума на основании предельных спектров (предельно допустимых уровней звукового давления) в октавных полосах частот.
Предельные величины шума на рабочих местах регламентируются ГОСТ 12.1.003-86. В нем заложен принцип установления определенных параметров шума, исходя из классификации помещений по их использованию для трудовой деятельности различных видов.
Инфразвук
Инфразвук — это колебание в воздухе, в жидкой или твердой средах с частотой меньше 16 Гц.
Инфразвук человек не слышит, однако ощущает; он оказывает разрушительное действие на организм человека. Высокий уровень инфразвука вызывает нарушение функции вестибулярного аппарата, предопределяя головокружение, головную боль. Снижается внимание, работоспособность. Возникает чувство страха, общее недомогание. Существует мнение, что инфразвук сильно влияет на психику людей.
Все механизмы, которые работают при частотах вращения меньше 20 об/с, излучают инфразвук. При движении автомобиля со скоростью более 100 км/час он является источником инфразвука, который возникает за счет срыва воздушного потока с его поверхности. В машиностроительной отрасли инфразвук возникает при работе вентиляторов, компрессоров, двигателей внутреннего сгорания, дизельных двигателей.
Согласно действующим нормативным документам уровни звукового давления в октавных полосах со среднегеометрическими частотами 2, 4, 8, 16, Гц должен быть не больше 105 дБ, а для полос с частотой 32 Гц — не более 102 дБ. Благодаря большой длине инфразвук распространяется в атмосфере на большие расстояния. Практически невозможно остановить инфразвук при помощи строительных конструкций на пути его распространения. Неэффективны также средства индивидуальной зашиты. Действенным средством защиты является снижение уровня инфразвука в источнике его образования. Среди таких мероприятий можно выделить следующие:
увеличение частот вращения валов до 20 и больше оборотов в секунду;
повышение жесткости колеблющихся конструкций больших размеров;
устранение низкочастотных вибраций;
внесение конструктивных изменений в строение источников, что позволяет перейти из области инфразвуковых колебаний в область звуковых; в этом случае их снижение может быть достигнуто применением звукоизоляции и звукопоглощения.
Ультразвук
Ультразвук широко используется во многих отраслях промышленности. Источниками ультразвука являются генераторы, которые работают в диапазоне частот от 12 до 22 кГц для очистки отливок, в аппаратах для очистки газов. В гальванических цехах ультразвук возникает во время работы травильных и обезжиривающих ванн. Его влияние наблюдается на расстоянии 25—50 м от оборудования. При загрузке и выгрузке деталей имеет место контактное влияние ультразвука.
Ультразвуковые генераторы используются также при плазменной и диффузионной сварке, резке металлов, при напылении металлов.
Ультразвук высокой интенсивности возникает во время удаления загрязнений, при химическом травлении, обдувке струей сжатого воздуха при очистке деталей, при сборке.
Ультразвук вызывает функциональные нарушения нервной системы, головную боль, изменения кровяного давления, состава и свойств крови, предопределяет потерю слуховой чувствительности, повышает утомляемость.
Ультразвук влияет на человека через воздух, а также через жидкую и твердую среды.
Ультразвуковые колебания распространяются во всех упомянутых выше средах с частотой более -16 000 Гц.
Для защиты от ультразвука, который передается через воздух, применяется метод звукоизоляции. Звукоизоляция эффективна в области высоких частот. Между оборудованием и работниками можно устанавливать экраны. Ультразвуковые установки можно располагать в специальных помещениях. Эффективным средством защиты является использование кабин с дистанционным управлением, расположение оборудования в звукоизолированных укрытиях. Для укрытий используют сталь, дюралюминий, оргстекло, текстолит, другие звукопоглощающие материалы.
Звукоизолирующие кожухи на ультразвуковом оборудовании должны иметь блокировочную систему, которая выключает преобразователи при нарушении герметичности кожуха.
Ионизирующие излучения
Источниками ионизирующих излучений в промышленности являются установки рентгеноструктурного анализа, высоковольтные електровакуумные системы, радиационные дефектоскопы, толщиномеры, плотномеры и др.
К ионизирующим относятся корпускулярные излучения, которые состоят из частичек с массой покоя, которая отличается от ноля (альфа-, бета-частички, нейтроны) и электромагнитные излучения (рентгеновское и гамма-излучение), которые при взаимодействии с веществами могут образовывать в них ионы.
Альфа-излучение — это поток ядер гелия, который излучается веществом при радиоактивном распаде ядер с энергией, которая не превышает нескольких мегаэлектровольт (МеВ). Эти частички имеют высокую ионизирующую и низкую проникающую способность.
Бета-частички — это поток электронов и протонов. Проникающая способность (2,5 см в живых тканях и в воздухе — до 18 м) бета-частичек выше, а ионизирующая — ниже, чем у альфа-частичек.
Нейтроны вызывают ионизацию веществ и вторичное излучение, которое состоит из заряженных частичек и гамма-квантов. Проникающая способность зависит от энергии и от состава веществ, которые взаимодействуют.
Гамма-излучение — это электромагнитное (фотонное) излучение с большой проникающей и малой ионизирующей способностью с энергией 0,001 3 МеВ.
Рентгеновское излучение — излучение, возникающее в среде, которая окружает источник бета-излучения, в ускорителях электронов и является совокупностью тормозного и характерного излучений, энергия фотонов которых не превышает 1 МеВ. Характерным называют фотонное излучение с дискретным спектром, который возникает при изменении энергетического состояния атома. Тормозное излучение — это фотонное излучение с непрерывным спектром, которое возникает при изменении кинетической энергии заряженных частичек. Активность А радиоактивного вещества — это количество спонтанных ядерных превращений в этом веществе за малый промежуток времени, разделенное на этот промежуток:
Влияние ионизирующих излучений на организм человека
Степень биологического влияния ионизирующего излучения зависит от поглощения живой тканью энергии и ионизации молекул, которая возникает при этом.
Во время ионизации в организме возникает возбуждение молекул клеток. Это предопределяет разрыв молекулярных связей и образование новых химических связей, несвойственных здоровой ткани. Под влиянием ионизирующего излучения в организме нарушаются функции кровотворних органов, растет хрупкость и проницаемость сосудов, нарушается деятельность желудочно-кишечного тракта, снижается сопротивляемость организма, он истощается. Нормальные клетки перерождаются в злокачественные, возникают лейкоз, лучевая болезнь.
Одноразовое облучение дозой 25—50 бер предопределяет необратимые изменения крови. При 80—120 бер появляются начальные признаки лучевой болезни. Острая лучевая болезнь возникает при дозе облучения 270—300 бер.
Облучение может быть внутренним, при проникновении радиоактивного изотопа внутрь организма, и внешним; общим (облучение всего организма) и местным; хроническим (при действии в течение длительного времени) и острым (одноразовое, кратковременное влияние).
Защита от ионизирующих излучений
Защита от ионизирующих излучений может осуществляться путем использования следующих принципов:
использование источников с минимальным излучением путем перехода на менее активные источники, уменьшение количества изотопа;
сокращение времени работы с источником ионизирующего излучения;
отдаление рабочего места от источника ионизирующего излучения;
экранирование источника ионизирующего излучения. Экраны могут быть передвижные или стационарные, предназначенные для поглощения или ослабления ионизирующего, излучения. Экранами могут служить стенки контейнеров для перевозки радиоактивных изотопов, стенки сейфов для их хранения.
Электромагнитные поля и излучения
Классификация электромагнитных полей и излучений
Биосфера на протяжении всей эволюции находилась под влиянием электромагнитных полей, так называемого фонового излучения, вызванного естественными причинами. В процессе индустриализации человечество прибавило к этому целый ряд факторов, усилив фоновое излучение. В связи с этим ЭМП антропогенного происхождения начали значительно превышать естественный фон и теперь превратились в опасный экологический фактор.
Применение радиотехнических приборов и систем, новых технологических процессов, использование которых приводит к излучению электромагнитной энергии в окружающую среду создает ряд трудностей, связанных с отрицательным воздействием электромагнитных излучений на организм человека. Под влиянием ЭМП происходит перегрев организма, наблюдается отрицательное влияние на центральную нервную систему, эндокринную, обмена веществ, сердечно-сосудистую, на зрение. Повышается утомляемость, артериальное давление, нарушается устойчивость влияния.
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Those Damned Fundamentalists Essay Research Paper Those
Реферат Признаки и классификация преступлений
Реферат Расчет генератора с внешним возбуждением на транзисторе
Реферат Пути выхода из конфликтной ситуации
Реферат Обеспечение сохранности документной информации. Документооборот предприятия
Реферат Основи ринкової лібералізації
Реферат Римское законодательство и современное право Российской Федерации
Реферат Использование измерений и решение задач на местности при изучении некоторых тем школьного курса геометрии
Реферат Получено потомство
Реферат 2. Бестселлеры массажа: липолитический массаж, силуэт-массаж, лимфодренаж, омолаживающий массаж лица
Реферат Стратегический маркетинг, его понятие
Реферат О чем писать в рекламной статье?
Реферат Perestroika Essay Research Paper Emergence of the
Реферат Личность – субъект политики
Реферат Кактусы пустынные