Реферат по предмету "Астрономия"


Перебирання варіантів в програмуванні

ПЕРЕБИРАННЯ ВАРІАНТІВ
В ПРОГРАМУВАННІ



1.Задача про розміщення ферзів
Розглянемо шахівницю, що має розміри не 88, а nn, де n>0. Як відомо, шаховий ферзь атакує всі клітини та фігури на одній з ним вертикалі, горизонталі та діагоналі. Будь-яке розташування кількох ферзів на шахівниці будемо називати їх розміщенням. Розміщення називається допустимим, якщо ферзі не атакують одне одного. Розміщення nферзів на шахівниці nnназивається повним. Допустимі повні розміщення існують не при кожному значенні n. Наприклад, при n=2 або 3 їх немає. За n=4 їх лише 2 (рис.19.1), причому вони дзеркально відбивають одне одного.
Задача.Написати програму побудови всіх повних допустимих розміщень nферзів, де 4n20.
Для початку з'ясуємо деякі властивості допустимих розміщень. Очевидно, що в них кожний ферзь займає окрему вертикаль і горизонталь. Занумеруємо вертикалі й горизонталі номерами 1, …, nта позначимо через H1, H2, , Hi> послідовність номерів горизонталей, зайнятих ферзями, що стоять у вертикалях 1, 2, , i, де 0in. Випадок i=0 відповідає порожньому розміщенню .
Існує nспособів розмістити ферзя в першій вертикалі, тобто перейти від порожнього розміщення до непорожнього. Цей перехід позначимо стрілкою (рис. 19.2(а)). За кожного з розміщень ферзя в першій вертикалі є nваріантів розміщення ферзя в другій вертикалі, але з них слід відкинути недопустимі. Відмітимо їх знаком '*' (рис.19.2(б)).
Узагалі, нехай зафіксовано розміщення ферзів у перших i-1вертикалях:
S(i-1)=H1,,Hi-1>.
Для побудови всіх допустимих розміщень із початком S(i-1) треба перебрати всі допустимі розміщення S(i)з ферзем у i-й вертикалі та для кожного побудувати всі допустимі розміщення з початком S(i).
Отже, маємо рекурсивний алгоритм побудови всіх допустимих розміщень, за яким пошук усіх допустимих заповнень ферзями останніх n-i+1вертикалей зводиться до пошуку заповнень n-iвертикалей.
Уточнимо цей алгоритм рекурсивною процедурою deps. Нехай розмір шахівниці не більше nm=20. Номери вертикалей та діагоналей містяться в діапазоні nums=1..nm, а розміщення зображається станом масиву Hтипу
arh = array[ nums ] ofnums.
Процедура deps задає побудову розміщення, починаючи з i-ї вертикалі за фіксованих H[1], , H[i-1]. Підпрограми test та writs задають відповідно перевірку допустимості розміщення H[1], …, H[i-1], H[i]> та друкування повного розміщення. Вони викликаються у процедурі deps:
proceduredeps ( var H: arh; n, i: nums);
varj, k: nums;
begin
fork := 1 ton do
begin
H[i] := k;
iftest ( H, i) then
ifi = n then writs ( H, n) {друкування повного розміщення }
else deps ( H, n, i+1 ) {рекурсивний виклик}
end
end
Функція test задає перевірку допустимості розміщення H[1], , H[i-1], H[i]> за умови, що H[1], , H[i-1]> є допустимим:
functiontest ( varH: arh; i: nums ): boolean;
varj: nums; flag: boolean;
begin
j := 1; flag := true;
{перевірка, чи займається нова горизонталь і діагональ}
while( j andflag do
begin
flag := ( H[i] H[j] ) and( abs ( H[i]-H[j] ) i-j ); j := j+1
end;
test := flag
end
Розробка процедури writs друкування повного розміщення залишається вправою.
Програма розв'язання задачі має такий вигляд:
programQueens ( input, output );
constnm = 20;
type nums = 1..nm;--PAGE_BREAK--
arh = array[ nums ] of nums;
varH: arh; n: nums;
procedurewrits end;
functiontest end;
proceduredeps end;
begin
writeln ('задайте розмір дошки: 4..20>'); readln ( n );
deps ( H, n, 1)
end.
Задачі
1.*Тура атакує фігури на одній із нею вертикалі та горизонталі. Написати програму пошуку всіх розміщень n тур на шахівниці розміром nn, у яких жодна тура не атакує іншу. Зазначимо, що ця задача цілком збігається з задачею побудови всіх перестановок чисел 1, 2, , n.
2. Упорядкуємо повні розміщення ферзів, уважаючи:
a1, a2, , an> b1, b2, , bn>,
якщо існує таке in, що a1=b1, , ai-1=bi-1 та aibi. Написати програму побудови розміщення ферзів, найменшого за таким упорядкуванням.
3.* Написати програму підрахунку загальної кількості вузлів та внутрішніх вузлів дерева розміщень ферзів, тобто числа виконань викликів підпрограм відповідно test і deps. Указати зв'язок між цими числами.
4. Оцінити складність задачі
а) побудови всіх допустимих розміщень тур;
б) побудови найменшого допустимого розміщення ферзів;
в) побудови всіх допустимих розміщень ферзів.
2. Дерево пошуку та його обхід
Розміщення ферзів на шахівниці, що будуються в процесі виконання програми Queens, можна подати вузлами кореневого орієнтованого дерева(рис.19.3).
У цьому дереві кожний вузол H[1], , H[i]>, де 0in, має синів
H[1], , H[i], 1>, H[1], , H[i], 2>, , H[1], , H[i], n>.
Відповідно цей вузол називається їхнім батьком. Сини вузла, сини його синів тощо називаються його нащадками, а він – їхнім попередником. Порожнє розміщення є коренем дерева, повні чи недопустимі розміщення – його листками, а допустимі неповні – проміжними вузлами. Кожний вузол дерева має певну глибину, або рівеньу дереві. Глибиною кореня є 0, його синів – 1 тощо. Повним розміщенням відповідають листки дерева, які в даному разі мають глибину n. Зазначимо, що в даному разі глибина вузлів дерева збігається з довжиною їх як розміщень.
Це дерево відбиває пошук повних допустимих розміщень, тому називається деревом пошуку. Пересування по вузлах дерева у визначеному порядку називається обходом дерева. Отже, пошук розміщень у дереві є результатом його обходу.
Задамо алгоритм, реалізований процедурою deps із програми Queens, в узагальненому вигляді. Нехай Aпозначає вузол дерева, ОБХІД( A ) – обхід дерева з коренем А, а синами вузла A є A(1), A(2), , A(n). Тоді процедура deps із програми Queens має таку схему:
fork := 1 ton do
begin
перехід до вузла A(k);
ifA(k) є допустимим then
ifA(k) є листком thenобробка листка A(k)
else ОБХІД( A(k) )
end
Як бачимо, процедура deps задає обхід дерева пошуку з вузлів-розміщень ферзів. Цей обхід називається обходом дерева у глибину. Ця назва зумовлена тим, що обхід дерева з довільним коренем закінчується лише після того, як закінчено обхід усіх його нащадків. Тобто від вузла ми переходимо до його нащадків, заглиблюючися в дерево.
Обхід дерева в глибину відтворюється за допомогою магазина (стека), до якого додаються та з якого вилучаються вузли дерева.
З кожним вузлом дерева пов'яжемо інформацію, яка додається при переході до цього вузла. В задачі про розміщення ферзів кореневий вузол відповідає порожньому розміщенню, тому з ним ніяка інформація не пов'язана. При переході від вузла, що подає розміщення H[1], , H[i]>, до вузла, відповідного розміщенню H[1], , H[i], k>, збільшується номер останньої вертикалі i, в k-у клітину якої ставиться ферзь. Отже, з вузлом зв'язується пара чисел (i, k), що є номерами вертикалі й горизонталі. Саме такі пари додаються до магазина вузлів.
У задачі про ферзі роль магазина відіграє масив H. Збільшення номера вертикалі i, тобто перехід до наступного компонента масиву, разом із присвоюванням H[i]:=kвідтворюють додавання до магазина нового елемента – пари (i, k). Цикл із заголовком
fork := 1 ton do    продолжение
--PAGE_BREAK--
у процедурі deps задає перебирання вузлів-«братів»
H[1],, H[i-1], 1>, H[1],, H[i-1], 2>, , H[1],, H[i-1], n>,
що рівносильно послідовному вилученню з магазина попереднього брата з додаванням наступного.
Опишемо обхід дерева пошуку розміщень без застосування рекурсії. Розглянемо пересування, пов'язані з вузлами дерева. З допустимого вузла-листка ми одразу рухаємося до його батька, з недопустимого – до його брата. Пересування, пов'язані з кожним його проміжним вузлом, можна подати, як на рис.19.4.
Як бачимо, відвідувати проміжний вузол доводиться лише двічі – на початку та в кінці обходу дерева, коренем якого він є. Для того, щоб відрізнити ці два випадки, потрібні додаткові змінні. У разі розміщень ферзів перехід від вузла до його правого брата задається збільшенням H[i] на 1. Це рівносильне одночасному виштовхуванню вузла з магазина та додаванню його правого брата. Звідси випливає, що коли обробляється вузол глибини i, в магазині є лише по одному вузлу кожної глибини m, mi. Тому достатньо однієї додаткової змінної для кожної можливої глибини. Отже, означимо додатковий масив D того ж самого типу, що й масив H. Значенням D[i] стає 0, коли до вузла глибини iми приходимо згори або зліва, та 1 – коли знизу.
Перехід до вузла знизу – це повернення до батька, і його умовою в задачі про ферзі є H[i]=n.
Повернення до кореня дерева означає кінець його обходу. Тому використаємо умову i=0 як умову закінчення пошуку. Отже, пошук повних допустимих розміщень ферзів має таке описання, яке по суті є тілом процедури пошуку:
i:=1; H[i]:=1; D[i]:=0;
while(i0) do
begin
ifi=n then{обробка вузла-листка}
iftest(H, i) then{друкування повного допустимого розміщення}
{ та повернення до батька незалежно від наявності братів}
beginwrits(H, n); i:=i-1; {i>0!} D[i]:=1 end
else
ifH[i]thenH[i]:=H[i]+1 {перехід до правого брата}
else {повернення до батька – }
{піддерево, в якому він є коренем, вже обійшли}
begini:=i-1; {i>0!} D[i]:=1 end
else{обробка проміжного вузла}
if(D[i]=0) andtest(H, i) then{рух у глибину}
begini:=i+1; H[i]:=1; D[i]:=0 end
else{рух праворуч або нагору}
ifH[i]then{рух праворуч}
beginH[i]:=H[i]+1; D[i]:=0 end
else{рух нагору}
begini:=i-1; ifi>0 thenD[i]:=1end
end
Оформлення програми з необхідними означеннями, ініціалізаціями та нерекурсивною процедурою пошуку залишаємо як вправу.
Узагальнимо наведений алгоритм, вважаючи, що, на відміну від задачі про розміщення ферзів, кореневий вузол дерева також містить деяку відповідну інформацію:
заштовхнути кореневий вузол у магазин;
whileмагазин не порожнійdo
begin
нехай A – вузол на верхівці магазина;
ifA є листкомthen
begin
обробити листок A;
виштовхнути A з магазина;
ifA не є правим сином свого батькаthen
заштовхнути в магазин правого брата A;
end
else{A – проміжний вузол}
ifAє допустимим і дерево з коренем A ще не обробленоthen
заштовхнути в магазин лівого сина A
else{дерево з коренем A вже оброблено або A не є допустимим}
begin
виштовхнути A з магазина;
ifA не є правим сином свого батька і не є коренем then
заштовхнути правого брата A в магазин;
end
end.
Наведений опис задає так званий вичерпний пошуку дереві пошуку варіантів, оскільки рано чи пізно ми дістаємося кожного допустимого вузла дерева. Зазначимо, що цей опис є схемою багатьох алгоритмів розв'язання різноманітних задач, пов'язаних із перебиранням варіантів.
3. Метод розгалужень і меж
Обхід усіх вузлів дерева пошуку варіантів може виявитися надто довгим. Наприклад, якщо в дереві всі вузли є допустимими, кожний проміжний вузол має mсинів, а глибина дерева n, то всього в дереві 1+m+m2+ … +mn=(mn+1-1)/(m-1) вузлів. Уже за m=10 та n=10 це більш, ніж 1010. Якщо припустити, що комп'ютер здатний обробити 105вузлів за секунду, то обхід такого дерева триватиме 105секунд, або приблизно добу.    продолжение
--PAGE_BREAK--
Існує багато практичних задач, де вимагається відшукати чи побудувати не всі можливі варіанти, а лише один із них, найкращий у деякому розумінні, визначеному в задачі. Отже, тут з'являється таке поняття, як цінністьваріантів. Загальним принципом розв'язання таких задач є скорочення обходу дерева варіантів. У ньому відкидаються деякі гілки, про які можна стверджувати, що вони не містять варіантів більш цінних, ніж уже знайдені. Розглянемо приклад.
Задача про три процесори. Нехай є три процесори, здатні виконувати завдання з однаковою швидкістю. Є набір завдань, про кожне з яких відомий час його виконання. Порядок виконання завдань неважливий. Якщо процесор почав виконувати завдання, то виконує його до кінця протягом зазначеного часу. Переключення процесора на виконання нового завдання відбувається миттєво. Треба так розподілити завдання між процесорами, шоб момент закінчення останнього завдання був мінімальним. Назвемо цю величину вартістюрозподілу. Отже, займемося обчисленням мінімальної вартості серед можливих розподілів. Сам розподіл, що забезпечує таку вартість, для початку нас не цікавитиме.
Приклад. Нехай є 6 завдань, час виконання яких відповідно 7, 8, 9, 10, 11, 12. Якщо в зазначеному порядку розподілити перші три завдання між процесорами, а потім давати їх у тому ж порядку процесорам, що звільняються, то перший процесор закінчить роботу в момент 7+10=17, другий – у момент 8+11=19, а третій – 9+12=21. Маємо вартість 21. Проте їх можна розподілити інакше – 7+12, 8+11, 9+10, одержавши вартість 19.
Перше, що ми зробимо в розв'язанні задачі – упорядкуємо завдання за незростанням часу їх виконання. Отже, нехай P1, …, Pn– завдання, часи виконання T1, …, Tnяких задовольняють нерівності T1… Tn. Розподіл можна подати послідовністю пар вигляду (i; k), де i– номер завдання, k– номер процесора, на якому воно виконується. Наприклад, за часів 12, 11, 10, 9, 8, 7 найкращий розподіл подається як
.
Подібно до розміщень ферзів, можна говорити про повний розподіл – довжини n, та неповний – меншої довжини. Так само утворимо дерево пошуку розподілів. Його коренем є порожній розподіл, синами кореня – три розподіли , , тощо, тобто синами кожного розподілу вигляду
v=k1), …, (i; ki)>
за inє три розподіли
v1=k1), …, (i; ki), (i+1; 1)>,
v2=k1), …, (i; ki), (i+1; 2)>,
v3=k1), …, (i; ki), (i+1; 3)>.
Повні розподіли є листками вигляду k1), …, (n; kn)>.
Тепер займемося упорядкуванням обходу дерева таким чином, щоб варіанти з меншою вартістю оброблялися якомога раніше, а варіанти з більшою вартістю – якомога пізніше. За розподілом v=k1), …, (i; ki)>, де in, неважко обчислити трійку часів роботи процесорів (S1, S2, S3) з його виконання. Очевидно, його вартістю є найбільше з S1, S2, S3. Такий розподіл за inта час Ti+1дають три варіанти трійок, відповідних його розподілам-синам v1, v2, v3:
(S1+Ti+1, S2, S3), (S1, S2+Ti+1, S3), (S1, S2, S3+Ti+1).
За i+1=nневажко вибрати найменшу з цих трьох вартостей. Проте за i+1nнас будуть цікавити не стільки вартості цих неповних розподілів, скільки нижні оцінки вартості тих повних розподілів, які з них можна одержати. Цією оцінкою є вартість, менше якої не може бути вартість повних розподілів.
Розглянемо найпростіший спосіб такого оцінювання. Очевидно, що за неповного розподілу vперших iзавдань із трійкою часів (S1, S2, S3) всі розподіли, що є його нащадками, мають вартість не меншу, ніж
E(v)=max{S1, S2, S3, min{S1, S2, S3}+Ti+1}.    продолжение
--PAGE_BREAK--
Отже, оцінка E(v) є нижньою межеюдля вартості нащадків розподілу v.
Організуємо обхід дерева розподілів таким чином, що:
для кожного з вузлів обчислюється зазначена оцінка вартості,
вузли розглядаються у порядку зростання їх оцінок,
вузли з оцінкою, більшою від вартості вже одержаного повного розподілу, взагалі не розглядаються.
Ці міркування складають суть методу розгалужень і меж. Упорядкування вузлів робить обхід цілеспрямованим, а відкидання явно неперспективних піддерев скорочує його.
Уточнимо організацію даних для обробки вузлів у зазначеному порядку. Оскільки нас цікавлять не самі розподіли, а лише їх вартість, у вузлах дерева будемо зберігати тільки трійку часів та номер завдання, розподіленого останнім. Маючи список часів T[1], …, T[n] обробки завдань, неважко за цими даними обчислити оцінку вартості для неповних розподілів та саму вартість для повних. Для наочності цю величину також зберігатимемо у вузлі. Отже, вузол дерева подається трійкою часів S[1], S[2], S[3], номером завдання iта оцінкою вартості E, яка за inобчислюється як
max{S[1], S[2], S[3], min{S[1], S[2], S[3]}+T[i+1]}.
Очевидно, що за i=n-1 ця величина є вартістю повного розподілу, який подається «кращим із синів» цього вузла дерева.
Проміжні вузли записуються не в магазин, а в чергу, елементи якої упорядковано за зростанням оцінок вартості. Таким чином, для подання черги зручно скористатися лінійним списком (п.16.3.3). Вузли, відповідні повним розподілам, в чергу не записуються, оскільки оцінка вартості є власне їх вартістю.
Очевидно, що спочатку з трьох розподілів , , в чергу достатньо записати лише один, для визначеності . Очевидно також, що коли обробляється вузол із однаковими часами S[1], S[2], S[3], то з трьох його синів до черги достатньо додати лише одного. Якщо ж два з трьох часів у вузлі рівні, то до черги не додається один із двох синів, що відрізняються лише порядком часів.
Опишемо обробку вузлів дерева таким алгоритмом.
Занести до черги розподіл (T[1], 0, 0; 1; T[1]);
Cmin:=;
while(черга не порожня) and(її перший елемент має оцінкуE
do
begin
Вилучити з черги її перший елемент Node=(S[1], S[2], S[3]; i; E);
ifi=n-1then{синами вузла є листки}
Обчислити вартість синів вузлаNodeта за необхідності
запам'ятати нову поточну мінімальну вартість Cmin
else
Обчислити оцінку вартості синів вузла Nodeта
додати до черги лише тих із них, чия оцінка не більше Cmin
end
Уточнення цього алгоритму залишаємо вправою.
Розглянемо приклад обчислення мінімальної вартості розподілу за наведеним алгоритмом. Нехай задано час виконання п'яти завдань 9, 8, 7, 5, 4. Очевидно, що найкращий розподіл (9, 8+4, 7+5) має вартість 12. Значення Cminта зміст черги, що виникають за наведеним алгоритмом, подамо таблицею:
Cmin
Черга









12


Як бачимо, перший елемент черги має оцінку вартості, гіршу за Cmin, тому подальше дослідження дерева варіантів не відбувається. За виконання алгоритму до черги додається 9 проміжних вузлів, а вилучається 4. Між тим, неважко підрахувати, що з урахуванням симетричних варіантів дерево містить 19 проміжних вузлів. Фактично, ми одержали потрібний розподіл взагалі без перебирання варіантів.
У загальному випадку метод розгалужень і меж не позбавляє перебирання. У цьому неважко переконатися, імітувавши наведений алгоритм на прикладі часів виконання завдань (12, 8, 7, 5, 4, 2).
Задача про розподіл завдань представляє чималу групу задач, які розв'язуються методом розгалужень і меж. Подивимося на цю задачу більш узагальнено. Розподіл (повний чи частковий) v(i)=k1), …, (i; ki)> подамо як послідовність a1,a2, …, ai>, де ajпозначає пару (j; kj). Очевидно, що v(i) одержується з v(i-1) додаванням компонента ai. Вартість розподілу при цьому не зменшується, тобто
C(v(i-1))C(v(i)). (19.1)
Існує чимало задач, в яких розв'язок-послідовність a1,a2, …, an> будується шляхом «нарощування» часткових розв'язків a1,a2, …, ai-1> новими компонентами ai. Умова (19.1) дозволяє відкидати ті часткові розв'язки та всіх їх нащадків, якщо їх вартість не може бути меншою вартості Cminуже побудованого повного розв'язку. Таким чином, Cminвиступає верхньою межеюдля вартості розв'язків, які є сенс будувати. Але, як правило, обчислити вартість повного розв'язку можна лише після його побудови. Для запобігання побудови всіх повних розв'язків треба мати можливість оцінюватизнизуїх вартість за вартістю побудованих часткових. Чим точнішою буде така оцінка, тим ефективнішим буде скорочення перебору.    продолжение
--PAGE_BREAK--
Отже, алгоритм розв'язання багатьох задач за методом розгалужень і меж має таку загальну структуру:
Для кожного можливого a1занести до черги частковий розв'язок
1>;
Обчислити нижню оцінку Eвартості його нащадків, що є
повними розв'язками;
Cmin:=;
while(черга не порожня) and(її перший елемент має оцінкуE
do
begin
Вилучити з черги її перший елемент Node;
ifсинами вузла Node є листкиthen
Обчислити вартість синівNodeта за необхідності
запам'ятати нову поточну мінімальну вартість Cmin
else
Обчислити оцінку вартості синів вузла Nodeта
додати до черги лише тих із них, чия оцінка не більше Cmin
end.
4. Евристичні алгоритми
Повернемося до задачі про розподіл завдань по трьох процесорах і спробуємо розв'язати її у зовсім інший спосіб.
Нехай ми маємо неповний розподіл (S1, S2, S3) усіх завдань, крім останнього. У цьому випадку найкраще розподілити останнє завдання, додавши його час до найменшого з S1, S2, S3, тобто передати його до найменш завантаженого процесора.
Тепер правилом "передати чергове завдання до найменш завантаженого процесора" будемо керуватися при розподілі кожного з завдань. Застосування цього правила виражається алгоритмом, за яким завдання розподіляються без будь-якого перебирання варіантів:
розподілити перші три завдання по одному на процесор;
fori:=4 ton do
begin
обчислитиk – номер найменшого зS[1], S[2], S[3];
додатиT[i] доS[k]
end
За цим алгоритмом завдання (12, 8, 7, 5, 4) розподіляються як (12, 8+4, 7+5). Очевидно, що краще не може бути.
Проте розподіл завдань за цим алгоритмом не завжди є найкращим. Наприклад, завдання (12, 8, 7, 5, 4, 2) розподіляються за ним як (12+2, 8+4, 7+5) з вартістю 14, хоча є кращий розподіл (12, 8+5, 7+4+2) з вартістю 13.
Правило "передати чергове завдання до найменш завантаженого процесора", яким ми керувалися при розподілі завдань, є прикладом евристики. Взагалі, значенням цього слова є «мистецтво відшукання істини», а в інформатиці евристика– це правило, метод або прийом, призначений для підвищення ефективності пошуку розв'язку задачі [Сл].
Алгоритм, побудований на основі застосування евристики, називається евристичним. Як правило, евристичні алгоритми дозволяють швидко побудувати розв'язок задачі, але не завжди гарантують, що він дійсно буде найкращим.
Приклад19.1.Розглянемо ще одну задачу та дві евристики для неї. Нехай, як і раніше, задано упорядкований за незростанням список часів виконання завдань T1, T2, …, Tn, але кількість процесорів не фіксовано. Замість цього задано час T, і треба визначити найменшу кількість процесорів, яка забезпечує виконання всіх завдань у межах T. Зрозуміло, що TT1.
Спочатку переформулюємо цю задачу в інших термінах. Час виконання завдання можна розглядати як об'єм предмету, а час T– як об'єм ящиків, по яких розподіляються предмети (форма ящиків та предметів неважлива). Отже, треба обчислити найменшу кількість ящиків, необхідних для розподілу всіх предметів. Тепер сформулюємо дві евристики.
Е1. "Перший прийнятний". Перший предмет кладемо в перший ящик. Другий також, якщо він там уміщається. Якщо не уміщається, то кладемо його в другий ящик. Взагалі, черговий предмет кладемо в ящик із найменшим номером, в якому він уміщається.
Е2. "Найкращий прийнятний". Черговий предмет кладеться в той ящик, у якому залишається найменший ще допустимий незайнятий об'єм. Якщо таких ящиків кілька, то з них вибираємо ящик із найменшим номером.
Запис відповідних евристичних алгоритмів залишаємо вправою.
5. Застосування принципу оптимальності
Знайомство з принципом оптимальності почнемо з розв'язання задачі.
Приклад 2.Нехай паперовий прямокутник складено з клітин – m по вертикалі та nпо горизонталі. У кожній клітині записано натуральне число. Уявімо, що з прямокутника зробили вертикальний циліндр, з'єднавши першу та останню вертикалі. Ми можемо рухатися по клітинах циліндра та підраховувати суму чисел у них. Рух починається з будь-якої клітини першого кільця. Далі, якщо ми перебуваємо в якійсь клітині, то можемо перейти на наступне кільце в одну з тих трьох клітин, що мають спільні точки з поточною. Рух закінчується на останньому, m-му кільці клітин. Треба обчислити найбільшу суму, яку можна набрати на одному з можливих шляхів довжини m.
Якщо m=1, то достатньо вибрати клітину з найбільшим числом. Нехай m>1. Занумеруємо клітини кожного кільця числами від 0 до n-1. Позначимо через Ckiчисло, записане в клітині з номером iу кільці k, а через Ski– найбільшу суму, яку можна набрати на шляху, що веде в цю клітину. Очевидно, що S1i=C1i. Для початку обчислимо для кожної клітини другого кільця найбільшу суму S2iна шляху довжини 2. За умовою задачі очевидно, що    продолжение
--PAGE_BREAK--
S2i=C2i+max{S1, i-1, S1i, S1, i+1} за i=1, …, n-2,
S20=C20+max{S1, n-1, S10, S11}, S2,n-1=C2, n-1+max{S1, n-2, S1, n-1, S10}.
За цими сумами можна аналогічно підрахувати суми для клітин третього кільця. Так само при переході до четвертого кільця достатньо знати лише найбільші суми для клітин третього кільця тощо. Діставши суми для клітин останнього кільця, вибираємо найбільшу з них, і задачу розв'язано.
Уточнення алгоритму залишаємо вправою. Скажемо лише, що суми Ski, k=2, …, m, i=0, …, n-1, обчислюються за єдиною формулою
Ski=Cki+max{Sk-1, (i-1+n) modn, Sk-1, i, Sk-1, (i+1) modn}.
Оцінимо складність наведеного алгоритму. Очевидно, що при переході на наступне кільце обчислюються nсум за сталу кількість дій кожна. Таких переходів відбувається m-1, тому загальна кількість дій оцінюється як O(nm).
У наведених обчисленнях сум ми керувалися правилом: при переході на наступне кільце неважливо, якими були шляхи до клітин попереднього кільця.Аби вони давали найбільші суми, можливі для їх кінцевих клітин. Ішими словами, вибір шляхів від клітин попереднього кільця в клітини наступного не залежить від того, як саме ми вибирали клітини раніше.
Наведене правило є окремим конкретним випадком принципу оптимальності, одного з головних у теорії динамічного програмування. Її автор, Р.Беллман, сформулював цей принцип так:
«Оптимальна поведінка має таку властивість, що, якими б не були початковий стан і рішення в початковий момент, наступні рішення повинні складати оптимальну поведінку відносно стану, який одержується в результаті першого рішення.»
Обсяг книжки не дозволяє викладати тут теорію динамічного програмування. Вона велика й серйозна. Наведемо натомість ще один приклад застосування принципу оптимальності.
Приклад 3.Розглянемо обчислення добутку nматриць
A = A1 A2 … An,
де кожна Ai– матриця з si-1рядками та siстовпцями. Як відомо, операція множення матриць є асоціативною, і результат не залежить від порядку її застосування. Але від нього залежить кількість множень їх елементів.
За традиційним алгоритмом множення матриць розмірами abта bcвідбувається abcмножень їх елементів. Наприклад, множення матриць A1A2A3розмірами 1001, 1100, 1001 відповідно у порядку (A1A2)A3вимагає 1001100+1001001=20000 множень, тоді як у порядку A1(A2A3) – лише 11001+10011=200, тобто в 100 разів менше.
Отже, за послідовністю розмірів матриць s, s1, s2, …, snтреба обчислити найменшу кількість множень їх елементів, необхідних для обчислення добутку матриць A = A1 A2 … An.    продолжение
--PAGE_BREAK--
Очевидно, що при обчисленні добутку останнім виконується одне з множень, тобто A=(A1…Ai)(Ai+1…An), де 1in-1. Якщо добутки A1…Aiта Ai+1…Anобчислено, то виконання останнього множення вимагає ssisnмножень. Позначимо mikмінімальну кількість множень, необхідних для обчислення AiAi+1…Akза ik, mii=0. Тоді шукана кількість
m1n=/>{m1i+mi+1,n+ssisn}
Отже, задача відшукання m1n, тобто задача розміру n, зводиться до 2(n-2) задач меншого розміру. Але головним тут є той факт, що числа m1iта mi+1,n
не залежать одне від одного, тобто найменша кількість множень при обчисленні добутку A1…Aiне залежить від того, як обчислюється добуток Ai+1…An, і навпаки. Завдяки саме цій незалежності можна застосувати принцип оптимальності.
Спочатку обчислимо всі mi,i+1за i=1, …, n-1. Очевидно, mi,i+1=si-1sisi+1. Запам'ятавши їх, обчислимо mi,i+2і також запам'ятаємо. Потім обчислимо всі mi,i+3 тощо, збільшуючи різницю dміж другим та першим індексами, поки не дійдемо до m1n. При цьому ми обчислюємо mijза формулою
mij=/>{mik+mk+1,j+si-1sksj}
Наведений алгоритм уточнюється таким чином:
fori:=1 ton-1 dom[i, i+1]:=s[i-1]*s[i]*s[i+1];
ford:=1 ton-1 do
fori:=1 ton-d do
begin
j:=i+d;
У m[i, j] запам'ятати мінімальне зі значень
m[i,k]+m[k+1,j]+s[i-1]*s[k]*s[j] по всіхk=i+1, …, j-1
end
{m[1, n] –шукане значення}
Безпосередньо за алгоритмом неважко переконатися, що оцінкою його складності є O(n3).
Підіб'ємо підсумок. В обох прикладах ми будували послідовності – шляхи на циліндрі або послідовності дужок. Характерним для них є те, що, кажучи неформально, коли зафіксовано якийсь компонент у їх середині, то оптимальний вибір компонентів у початку не впливає на оптимальний вибір у кінці, і навпаки. Саме ця незалежність позбавляє необхідності перебирати всі можливі послідовності і забезпечує складність наведених алгоритмів порядку O(mn) та O(n3) відповідно.
У задачі про три станки такої незалежності рішень на початку їх послідовності та в її кінці немає. Саме це змушує перебирати всі можливі послідовності та зумовлює незастосовність принципу оптимальності. Для цієї задачі немає алгоритмів, які б дозволяли будувати розв'язок із незалежних частин подібно до задачі про добуток матриць.
Існує величезний клас задач, розв'язки яких є послідовностями заданого вигляду, причому їх початок і кінець взаємозалежні. Для таких задач побудовано алгоритми складності не менше O(2n), де n– це величина, що характеризує розмір вхідних даних задачі. Але для них досі не побудовано алгоритмів, складність яких можна було б оцінити поліноміальною функцією від n. Поки що не доведено, що таких алгоритмів узагалі не можна побудувати, але саме до такої думки схиляються майже всі, хто мав справу з цими задачами.
Серед задач, розв'язок яких будується перебиранням варіантів, виділяються так звані NP-складні та NP-повні задачі. Обсяг і характер цієї книжки не дозволяють розпочинати знайомство з ними, тому зацікавлений читач може подивитися в книги [АХУ, РНД, ГД].


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Диагностика основных параметров психического состояния
Реферат Капитальные вложения, государственные гарантии и защита
Реферат А. А. Плотников, к т. н., доцент каф. Архитектуры мгсу
Реферат «Новое поколение» Автор: Веселова Екатерина Вячеславовна, координатор ученического самоуправления, старшая вожатая
Реферат Толстой Записки христианина
Реферат Кадамбари Kadambari
Реферат Как был снят с авиалиний АН-10
Реферат Каддафи, Муаммар
Реферат Сравнительные степени прилагательных и наречий (Comparison) Модальные глаголы (Modal Verbs) Цепочки существительных (Атрибутивная, номинативная группа) (Chains of nouns)
Реферат Проекционная ФЛГ Плазмохимическое осаждение
Реферат Материализация "духа истины"
Реферат Поиск кратчайших сетей
Реферат Стэн, Ян Эрнестович
Реферат Кардисский мирный договор
Реферат Трюк с биномиальными коэффициентами