Реферат по предмету "Математика, физика, астрономия"


Нахождение оптимальных параметров для полета тела через прямоугольную преграду

Выполнил: ученик 11 Б класса Назаркин Павел Дмитриевич


Муниципальное общеобразовательное учреждение  «Лицей №43»


Саранск, 2004


Постановка задачи.


Произвести необходимые расчеты для нахождения минимальной скорости тела, брошенного через прямоугольное препятствие.


Методы выполнения работы.


Для выполнения данной работы проделаем ряд математических вычислений и преобразований с использованием физических формул.


Зная, что траекторией движения тела, является парабола, а также математическую формулу записи данной линии, будем использовать уравнение параболы общего вида в качестве начальных данных поставленной задачи. В выбранной нами прямоугольной системе координат запишем данное уравнение для двух точек, принадлежащих линии движения – начальной точке А и точке В, в которой тело окажется через некоторый промежуток времени t. Решая систему полученных при этом уравнений, путем математических замен и преобразований выведем формулу зависимости движения тела от одной переменной L, т.е. коэффициенты k и b, участвующие в общем виде уравнения параболы, выразим через L. Затем, используя физический закон движения тела, брошенного под углом к горизонту, выразим переменную L через  и V . В результате получим уравнение движения, в качестве коэффициентов в котором будут выступать переменные  и V. Затем составим систему двух уравнений, полученных подстановкой координат точек А и В в последнее уравнение движения. Решая данную систему, мы найдем неизвестные нам величины  и V, выразив их через имеющиеся известные нам параметры – ширину и высоту прямоугольного препятствия. Для нахождения Vmin воспользуемся производной функции.


Решение.



Уравнением линии движения тела, брошенного через прямоугольное препятствие, в общем виде является уравнение параболы :


y=-kx2+b


Введем прямоугольную систему координат и свяжем ее с прямоугольным препятствием, как показано на рисунке.


В данной системе координат уравнение движения тела в точках А и Б примет вид:


 0=-k(a+L)2+b,


h=-ka2+b.


Выразим k и b через одну неизвестную L:


Вычитаем 1)-ое из 2)-ого:


h=k(a2+2aL+L2-a2),


h=k(2aL+L2) , (*);


h=b-ka2+b b=h+ka2 . (*)


Получилось, что уравнение движения зависит только от L:


y=-kx2+b, где коэффициенты k и b имеют вид (*).


Найдем зависимость L оти V.


Из курса физики известно: что движение тела, брошенного под углом горизонта описывается уравнениями


 x=Vxt L=Vxt L=Vcost


 y=Vyt+gt2/2 h=Vyt-gy t2/2 gt2-2Vyt+2h=0.


gt2-2Vyt+2h=0.


.


Мы рассматриваем время движения от точки А до Б, значит


, где Vy=Vsin.


Итак,  


Умножив обе части уравнения на g, получим:


 (1)


Известно, что  т.е.


 (2)


С другой стороны tg=y’ в точке А, т.е. tg=y’(-a-L);



Подставив значение tg в (2), получим:


V2sin2=g(a+L) tg


V2sincos=g(a+L) Lg=V2sincos-ga (3)


Сравнив (1) и (3) получаем, что:



.


Получили уравнение с двумя неизвестными V и: выразив V через , мы получим ту самую функцию, которую мы должны были найти:


Пусть z=V2, тогда z cos2(z sin2-2gh)=g2a2;


z2 cos2 sin2- z cos22gh-g2a2=0;


Получили квадратное уравнение относительно z



Очевидно,  значит, т.к. z=V2>0, то .


Вместо зависимости V от рассмотрим зависимость z от , и обозначив  получим зависимость z от t.


Получим , где z=V2, .


Выразим  через t, если ;  


Значит,


Т.е.  



Таким образом, чтобы найти Vmin и , нам нужно во-первых, найти fmin и t.


 .


Умножив обе части уравнения на , получим





Прежде чем возвести обе части в квадрат, сделаем предварительный анализ получившегося уравнения: т.к.


то и


т.е.  и






Умножив обе части уравнения на (t-1)2, получим




 Т.к t<2 и t>1 (т.к. ), то можно извлечь корень.


 


 


 



; (4)




Итак, f(t)=2h+2a, значит .


Т.к. z=V2, то  т.е.  (5)


Осталось найти L:


Его найдем используя (3).








Результаты работы.


Проделанным расчетом мы нашли зависимость скорости, движения брошенного через прямоугольное препятствие тела, так чтобы она была минимальной, от длины и высоты прямоугольного препятствия. То есть, зная данные препятствия, - его длину и ширину – а так же формулы, полученные в данной работе, мы можем определить на каком расстоянии от препятствия, под каким углом и с какой минимальной скоростью необходимо бросить тело, чтобы оно перелетело через это препятствие.


Актуальность темы.


Данные расчеты и выведенные формулы используются в различных сферах деятельности человека. В частности, в военной практике, для правильного расчета движения траектории снарядов.


Приложение.


К работе прилагается программа, результатом которой является вывод на экран траектории движения тела, брошенного через прямоугольное препятствие. Входными параметрами программы являются данные прямоугольного препятствия – его длина и высота. Программа написана на языке программирования Delphi.


Для подготовки данной работы были использованы материалы с сайта http://licey43.ru


Дата добавления: 11.10.2007



Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.