Реферат по предмету "Экология"


Состав атмосферы и его формирование в процессе эволюции биосферы

--PAGE_BREAK--
4.2 Кислород

     Запасы кислорода в атмосфере составляют порядка 1,5* моль. Единственным источником поступления кислорода в окружающую среду являются процессы фотосинтеза. Зеленые растения биосферы ежегодно выделяют в атмосферу около 4,67* г кислорода. Из этого количества 11,3% производят наземные растения и 88,7% водные растения. Таким образом, растения и особенно растения океана играют исключительную роль в накоплении кислорода в атмосфере Земли. В процессах гипергенеза на поверхность земной коры происходит непрерывное связывание свободного кислорода атмосферы при окислении закисного железа ( с образованием окисного ), соединений двухвалентного марганца, сульфидов, органических остатков[3].

     За всю историю существования нашей планеты в результате бактериального и растительного фотосинтеза выделилось 1,8-2,3*  г . Эта величина получена на основе данных о количестве органического углерода, захороненного в осадках. Для окисления горных пород, находящихся на Земле, потребовалось бы почти на порядок большее количество кислорода. Следовательно, фотосинтезирующие организмы могли лишь частично сформировать  кислородную атмосферу Земли[3].

     На основе  изучения изотопного состава  воздуха показано, что кислород атмосферы состоит на 2/3 из кислорода геологического происхождения и на  1/3 из кислорода, генерированного  фотосинтезирующими организмами. Первичный кислород образовался в результате дегазации базальтовой магмы ( поступление  из земных недр продолжается и в настоящее время). Коллектором этого газа служат воды океана. Биогенный кислород появился позже. В итоге современная атмосфера формируется за счет как абиогенного, так и биогенного кислорода.

Деятельность человека в основном направлена на уменьшение количества кислорода в атмосфере. В связывании свободного кислорода воздуха заключается сущность сжигания любого органического топлива. Ежегодно человеком в процессе сжигания из атмосферы извлекается около 9* г кислорода, что составляет почти 2% его количества, вырабатываемого за этот период растениями биосферы. Отрицательное влияние деятельности человека на развитие лесов также вносит ощутимый «вклад» в уменьшение поступления кислорода в атмосферу вследствие фотосинтеза. Хотя эта отрицательная роль человека в некоторой степени компенсируется  орошением и сельскохозяйственным озеленением засушливых земель, однако масштабы этих процессов до настоящего времени несоизмеримы[2].
          5. Второстепенные  компоненты атмосферы

5.1 Аргон

      Это наиболее распространенный инертный газ атмосферы, который почти полностью имеет радиогенное происхождение и образуется в результате распада радиоактивного изотопа калия-40 по схеме

      +е→.

    Период полураспада , который составляет 0,0119% природного калия, равен 1,3 млрд. лет. Таким образом, поступление аргона в воздушную оболочку Земли из литосферы происходит постоянно. Изотопный состав следующий:  96,6%;  0,063%;  0,337%[2].
5.2 Углекислый газ

     В атмосфере содержится 58* моль углерода в составе углекислого газа. В отличие от кислорода, основная масса которого заключена в атмосфере, лишь около 2% свободного  находится в газообразном состоянии в воздухе. Оставшиеся 98% углекислого газа ( 2943* моль углерода) растворены в гидросфере и, таким образом, заключены в Мировом океане[3].

     Зеленые растения в процессе фотосинтеза накапливают углерод из воздуха, превращая углекислый  газ в сложные углеводороды, имеющие общую формулу –СООН-. Биологический цикл углерода в окружающей среде может быть изображен следующей схемой:

→-СООН-→

газ      тв. вещ-во   газ

      Органическое вещество, являющееся аккумулятором солнечной энергии, в определенных условиях после гибели растений и живых организмов может быть преобразовано в ископаемые, обогащенные углеродом, твердые и жидкие органические продукты, концентрирующие энергию, аккумулированную живым веществом. Эти продукты – каменный уголь и нефть – являются в настоящее время главной энергетической базой человеческого общества и уже в течение ряда столетий повсеместно используются в качестве горючих полезных ископаемых. Образование последних происходило в результате захоронения органических остатков в осадочных породах, что преграждало доступ к ним свободного кислорода. В противном случае в процессе разложения весь углерод органического веществ был окислен до .Особенно благоприятные условия для захоронения отмерших растительных остатков в девонском и  каменноугольном периодах палеозойской эры. Захоронение органических остатков  в течение геологического времени сохранило в атмосфере значительное количество кислорода. На важную роль геохимическую роль захоронения углерода для формирования кислородной атмосферы земного шара указывал В. И. Вернадский. Однако в последнее столетие человек с поразительной быстротой использует горючие ископаемые, которые накапливались в земной коре в течение сотен миллионов лет. Ежегодно в атмосферу выводится порядка 0,42* моль углерода. Столь значительные поступления техногенного углекислого газа в течение последнего столетия существенно увеличили его содержание в атмосфере. Эффект  воздействия растущей концентрации  в атмосфере на окружающую среду в течение длительного времени обсуждается специалистами. Главную заботу при этом вызывает способность углекислого газа к абсорбции длинноволнового излучения, что может привести к так называемому парниковому эффекту, следствием которого должно быть постепенное потепление климата. При существующих масштабах накопления  расчетный уровень потепления составляет 2ºС[3].

      При переходе человечества на использование иных видов энергии ( ядерной, солнечной, геотермальной и т. д. приток в атмосферу резко сократится. При сохранении существующих темпов роста потребления ископаемого топлива запасов каменного угля на Земле хватит на 150 лет, а нефти и газа соответственно на 50 и 49 лет. Таким образом, после 2020 г следует ожидать резкого уменьшения поступления техногенного   в атмосферу. В последующие несколько тысяч лет в результате  регулирующего воздействия океана содержание углекислого газа в атмосфере будет понижено до уровня, соответствующего природному равновесию[1].
6.Микрокомпоненты атмосферы

6.1 Редкие инертные газы ( неон, криптон, гелий, ксенон, радон)

      Инертные газы в условиях атмосферы Земли и в биосфере не вступают в какие-либо химические реакции, полностью оправдывая свое название. Наиболее распространенный из них – аргон – по массе составляет более 1% атмосферы, а наименее распространенный – радон – всего 6*%[5].

    Происхождение основной массы неона  в атмосфере остается не вполне ясным.  является самым распространенным, стабильным изотопом атмосферного неона ( 90,92% ). По всей вероятности, он освобождается и поступает в атмосферу в процессе разрушения магматических горных пород, а так же из вулканических источников. Два других стабильных изотопа  (0,257%) и  (8,82%), судя по имеющимся данным, имеют радиогенное происхождение. Считается, что основная масса неона в связи с легкостью этого газа ( неон легче в 1,5 раза воздуха) была потеряна атмосферой на ранних стадиях геологической эволюции Земли[6].

      Криптон ксенон – весьма редкие инертные газы, находящиеся в атмосфере в состоянии крайнего рассеяния. Они поступают в атмосферу с вулканическими эманациями и газами термальных источников[3].

     Гелий – наиболее легкий из инертных газов, являющийся конечным продуктом распада урана и тория. Каждый грамм  урана, рассеянного в горных породах, в течение года выделяет 1,16* мл гелия, каждый грамм тория соответственно 2,43* мл. В отличие от прочих инертных газов гелий, несмотря на крайне низкое его содержание в атмосфере, в ряде случаев накапливается в литосфере в значительных количествах, играя заметную роль в составе рудничных газов, а также в природных газах, богатых азотом. Обогащены гелием и  газы некоторых термальных источников. Количество гелия, поступившего в атмосферу в процессе геологической эволюции литосферы, должно быть значительно больше его количества, присутствующего в настоящее время в тропосфере и стратосфере. В этой связи был сделан  вывод о непрерывном уходе (диссипации) гелия из атмосферы Земли в космическое пространство. В космосе и атмосфере Солнца гелий в отличие от атмосферы Земли является вслед за водородом наиболее распространенным элементом[2].

     Радон – радиоактивный инертный газ – вследствие своей недолговечности не является постоянным компонентом атмосферы и поэтому рассматривается в группе ксенокомпонентов атмосферы[2].
 6.2 Водород

       Содержание свободного водорода в атмосфере ничтожно. Его источником являются вулканические процессы, многие магматические и осадочные горные породы, а так же биогенные процессы, идущие при участии водородообразующих бактерий[2].

       В атмосфере водород неустойчив и легко соединяется с кислородом. Таким образом, его относительно постоянное на данный геологический период содержание в атмосфере может рассматриваться как динамическое равновесие, определяемое физико-химическими и гравитационными факторами. Большинство исследователей признает возможность ухода (диссипации) атомов водорода за пределы атмосферы в космическое пространство.

Из числа изотопов водорода в атмосфере присутствуют тритий   — Т, количество которого измеряется значением 4* ат. %. Тритий образуется естественным путем в верхних слоях атмосферы в результате бомбардировки атомов азота нейтронами космических лучей по  схеме +n→+T. Образование трития имеет место также при ядерных взрывах в атмосфере. Однако в связи с запрещением испытаний атомного оружия в атмосфере количество техногенного трития, имеющего сравнительно короткий период полураспада ( 12,262 лет ), в атмосфере значительно уменьшилось[2].
7.Ксенокомпоненты атмосферы, включая антропогенные загрязнители.

7.1 Метан и другие газообразные углероды

      Незначительное количество метана  постоянно отмечается в земной атмосфере. Он образуется в процессе разложения органического вещества при условии недостатка  кислорода  почвах, особенно в болотах ( болотный газ ) и захороненных осадках. Процесс преобразования захороненного органического вещества в каменные угли и жидкие углеводороды сопровождается отделением значительного количества метана. Так, метан составляет около 90% массы газа в его месторождениях. Поступление метана из осадочных толщ, газовых, нефтяных и угольных месторождений, а также из разлагающихся в восстановительных условиях органических остатков является естественным источником этого наиболее простого углеводорода в атмосфере. Некоторая часть метана в биосфере окисляется особыми видами бактерий до углекислого газа и воды по схеме:

 + 2→ + 2.

Содержание более тяжелых, чем метан углеводородов в тропосфере ничтожно и практически не поддается определению. Тяжелыми углеводородами обогащены газы нефтяных месторождений ( 17% ), в то время как в месторождениях газа среднее содержание тяжелых углеводородов в среднем составляет около 3%[6].
7.2 Окись углерода

     В отличие от углекислого газа, являющегося вместе с кислородом основой жизни на Земле. Окись углерода СО не характерна для природных процессов в окружающей среде. Обладая токсическими свойствами, окись углерода отрицательно действует на живые организмы. Концентрации СО, превышающие 10 мг на 1 м³ воздуха, опасны для здоровья человека[2].

     Появление окиси углерода в тропосфере является полностью следствием деятельности человека, если исключить образование некоторого количества ее во время лесных пожаров. В этой связи содержание окиси углерода в воздухе может служить объективным показателем степени его загрязненности[2].

    Исходя из годового потребления жидкого топлива различными странами, поступление техногенной окиси углерода в тропосферу может быть оценено в 230 млн. т/год[2].

     Содержание окиси углерода в воздухе уже в настоящее время в ряде крупных городов (Нью-Йорк, Лос-Анджелес, Токио и др.) представляет угрозу для здоровья людей, особенно в жаркие и безветренные периоды года[2].
7.3 Сероводород

     Поступление незначительных количеств природного сероводорода  в атмосферу в основном обусловлено процессами  бактериального разложения органического вещества в условиях резкого недостатка кислорода. Некоторое количество  выбрасывается в атмосферу вместе с другими газами в результате вулканических процессов, а также поступает на поверхность с термальными источниками[1].

     Бактерии-десульфузаторы, участвующие в процессах разложения органического вещества, проходящих без доступа воздуха, восстанавливают присутствующий в органических остатках сульфат-ион . При этом отработанный у сульфат-иона кислород используется для дальнейшего окисления органического вещества. Бактерии этой группы могут использовать в пищу не только разлагающиеся остатки растений и животных, но также и  ископаемые углеводороды – различные битумы, нефть и т. д.  По подсчетам, количество сероводорода, ежегодно выделяемого в результате деятельности  бактерий-десульфуризаторов, измеряется ( в расчете на серу ) в 4,2* моль. Из них лишь 1,0* моль поступает с континентов, а остальная часть ( 3,2* моль) поставляется океанами[1].

    В тропосфере сероводород неустойчив и в результате реакции с кислородом воздуха преобразуется в S. Хотя эта реакция в изолированных условиях протекает достаточно медленно, однако присутствие в тропосфере аэрозолей и мельчайших капелек воды резко ускоряет ее прохождение[1].

     Повышение концентрации   в воздухе представляет опасность для здоровья и даже жизни живых существ, в том числе и человека. В этой связи промышленные источники, выделяющие в составе отходов   , должны строго контролироваться. К их числу относится ряд химических производств, в том числе процессы переработки каменных углей, осуществляемые без доступ воздуха, и т. д[1].
7.4 Сернистый газ

      Содержание природного   в атмосфере ничтожно, его источниками являются вулканические процессы и окисление в воздухе сероводорода, поступающего в результате жизнедеятельности бактерий-десульфузаторов. Незначительные количества   выделяются в воздух также в результате окисления с поверхности рудных месторождений, содержащих сульфиды. В почвенном воздухе над месторождениями сульфидных руд содержание сернистого газа составляет 25-50 частей на миллиард при фоновой концентрации от -15 до 10 частей на миллиард. Таким образом, источники природного    ограничены в масштабах. Однако поступление в тропосферу значительных количеств техногенного сернистого газа уже в настоящее время представляет одну из наиболее серьезных проблем загрязнения окружающей среды[2].

      Присутствие   в атмосфере оказывает не только прямое отрицательное воздействие на жизнедеятельность животных и растений. Взаимодействуя с кислородом воздуха,    преобразуется в крайне реакционноспособный , который с водой атмосферы дает серную кислоту. Разрушительные свойства последней общеизвестны. Реакция окисления сернистого газа до

     О +М → + ;

   2 +  + окислители → ;

   +  → .

Где М – любая молекула газа. Первая реакция требует одновременно столкновения молекулы , атомарного газа и любой другой газообразной молекулы, которая служит для отвода образуемой в процессе столкновения и реакции энергии. Иначе этот процесс же пойдет в  обратном направлении и   вновь будет преобразован в  с отщеплением атома кислорода. Особенно благоприятные условия для прохождения этой реакции существуют в пределах озонового слоя атмосферы, где атомарный кислород непрерывно генерируется  в процессе распада молекул на О и . В результате в стратосфере на высоте порядка 18 км существует слой с повышенной концентрацией  , поскольку   легко соединяется с присутствующей в атмосфере  водой. Вторая реакция для быстрого осуществления требует присутствия окислителей. Последние всегда накапливаются в воздухе, загрязненном в результате производственной деятельности человека. Таким  образом, окисление  до  с последующим образованием серной кислоты особенно интенсивно происходит в атмосфере городов и в районах промышленных предприятий[2].

       Высокая растворимость , образующейся в результате окисления сернистого газа, в воде определяет быстрое удаление серной кислоты из атмосферы с дождями. В результате проблема загрязнения атмосферы сернистым газом слилась с проблемой «кислых дождей». Возможные экологические последствия  столь резкого окисления дождевых вод пока еще не вполне ясны. Беспокойство экологов, в частности, вызывает влияние кислых дождевых вод на растительность, связанное с интенсивным выщелачиванием почв. Было зафиксировано также резко отрицательное воздействие увеличения кислотности речной и озерной воды на рыбную фауну. Исследования по программе «Здоровье населения и система наблюдений за окружающей средой», выполнявшиеся в рамках ООН, показали, что вредное воздействие на здоровье населения в большой мере оказывают присутствующие в воздухе сульфаты, чем сернистый газ, не окисленный еще до состояния [2].    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Внутрифирменные стандарты деятельности - необходимость и преимущества внедрения
Реферат Современна ли сатира Маяковского?
Реферат Юридична особа як субєкт цивільного права Поняття створення та припинення юридичної особи
Реферат Особенности инвестиционного анализа
Реферат Безналичные расчеты через кассы
Реферат Кризисные явления в системе вузовского образования в России и задачи их преодоления
Реферат Законы электролиза Фарадея
Реферат Отчет об учебной практике в ООО УК Татнефть -АльметьевскРемСервис
Реферат Образ материнства в русской иконописи
Реферат Соединения Сера–Кислород
Реферат Диффузный токсический зоб
Реферат Alcoholism Essay Research Paper AlcoholismAlcohol is liquid
Реферат Робота з підручником на уроках читання
Реферат Предпринимательский риск в деятельности фирмы и методы его снижения
Реферат Особенности развития дикции у детей старшего дошкольного возраста