РЕФЕРАТ на тему:”Пружні хвилі” План 1. Хвильові процеси. Подовжні і поперечні хвилі 2. Рівняння біжучої хвилі. Фазова швидкість. Сферична хвиля 3. Одномірне хвильове рівняння. Швидкість поширення хвиль 4. Енергія пружних хвиль. Потік і густина потоку енергії хвиль 5. Хвильові процеси.
Подовжні і поперечні хвилі 6. Рівняння біжучої хвилі. Фазова швидкість. Сферична хвиля 7. Одномірне хвильове рівняння. Швидкість поширення хвиль 8. Енергія пружних хвиль. Потік і густина потоку енергії хвиль. 1. Хвильові процеси. Подовжні і поперечні хвилі Коливання, які збуджуються в будь-якій точці пружного середовища (твердому,
рідкому або газоподібному), передаються від однієї точки середовища до іншої з кінцевою швидкістю, яка залежить від властивостей цього середовища. Чим дальше розташовані частинки середовища від джерела коливань, тим пізніше вони почнуть коливатися. Інакше кажучи, фази коливань частинок середовища і джерела тим більше відрізняються одна від одної, чим більша ця відстань. При вивченні поширення коливань в середовищі не враховується дискретний (молекулярний)
характер будови самого середовища. В цьому випадку вважають що частинки середовища мають неперервне заповнення навколишнього простору і проявляють пружні властивості. Процес поширення коливань у суцільному пружному середовищі називається хвильовим процесом (або хвилею). При поширенні хвилі частинки середовища не рухаються разом із хвилею, а коливаються біля своїх положень рівноваги.
Разом із хвилею від частинки до частинки середовища передається лише стан коливального руху і його енергія. Тому основною властивістю усіх хвиль незалежно від їхньої природи є перенос енергії без переносу речовини. Серед різноманітних хвиль, які зустрічаються в природі й техніці, можна виділити такі їх типи: хвилі на поверхні рідини, пружні і електромагнітні хвилі.
Пружні механічні хвилі виникають і поширюються лише в пружному середовищі. Пружні хвилі ще діляться на подовжні й поперечні. У подовжніх хвилях частинки середовища коливаються в напрямку поширення хвилі, у поперечних – у площинах, перпендикулярних до напрямку поширення хвилі. Подовжні хвилі можуть поширюватися в середовищах, у яких виникають пружні сили при деформаціях стиску і розтягу.
Це означає, що поздовжні хвилі поширюються у твердих, рідких і газоподібних середовищ. Поперечні хвилі можуть поширюватися в середовищах, у яких виникають пружні сили при деформаціях зсуву, тобто фактично тільки у твердих тілах. У рідинах і газах виникають лише подовжні хвилі, а у твердих тілах — як подовжні, так і поперечні хвилі. Пружна хвиля називається синусоїдальною (або гармонічною), якщо відповідні
їй коливання частинок середовища є гармонічними. На рис. 21 показана синусоїдальна поперечна хвиля, яка поширюється зі швидкістю υ уздовж осі х, тобто показана залежність між зміщенням U(x,t) частинок середовища, у хвильовому процесі, і відстанню х цих частинок від джерела коливань для будь-якого фіксованого моменту часу t. Приведений графік функції U(x,t) не схожий на графік гармонічного коливання.
Графік хвилі (рис.1) показує залежність зміщення всіх частинок середовища від відстані до джерела коливань у даний момент часу, а графік гармонічних коливань — залежність зміщення даної частинки від часу. Відстань між найближчими частинками, які коливаються в одній фазі, називається довжиною хвилі λ (рис. 1). Довжина хвилі дорівнює відстані, на яку поширюється фаза коливань за час в один період, тобто (1) Рис. 1 Якщо розглянути хвильовий процес трохи докладніше, то стане ясно, що в хвильовому
русі коливаються не лише частинки, розташовані уздовж осі х, а й сукупність частинок, розташованих у деякому об’ємі, тобто хвиля, поширюючись від джерела коливань, охоплює все нові і нові області простору. Геометричне місце точок, які коливаються в однаковій фазі, називається хвильовою поверхнею. Хвильових поверхонь можна провести безліч. Хвильова поверхня у будь який момент часу називається хвильовим фронтом.
Для цього моменту часу хвильовий фронт може бути лише один. Хвильові поверхні можуть мати довільну форму. В найпростішому випадку хвильові поверхні є сукупністю площин, або сукупністю концентричних сфер. Відповідно хвиля називається плоскою або сферичною. 2. Рівняння біжучої хвилі. Фазова швидкість. Сферична хвиля
Якщо хвилі, поширюючись в пружному середовищі з кінцевою швидкістю, переносять енергію, то вони називаються біжучими. Перенос енергії в хвильовому русі кількісно характеризується вектором густини потоку енергії. Вектор потоку енергії вперше для механічних пружних хвиль був введений російським фізиком Умовим і називається вектором Умова. Напрямок вектора Умова збігається з напрямком переносу енергії, а його модуль дорівнює енергії, яка переноситься хвилею
через одиничну площадку, розташовану перпендикулярно до напрямку поширення хвилі, за одиницю часу. Для одержання рівняння біжучої хвилі ─ залежності зміщення коливної точки пружного середовища від координати і часу ─ розглянемо плоску синусоїдальну хвилю, допустивши, що вісь х збігається з напрямком поширення хвилі (рис. 21). У даному випадку хвильові поверхні, тобто поверхні однакової фази, перпендикулярні до осі х, а тому всі точки пружного середовища на цих поверхнях коливаються однаково.
Зміщення будь якої точки пружного середовища від положення рівноваги в цьому випадку залежить лише від координати х і часу t, а його величина буде дорівнювати Розглянемо деяку точку В, яка перебуває на відстані х від джерела коливань (рис. 1). Якщо коливання точок пружного середовища, які лежать у площині х = 0, описуються функцією U(0,t) = A cos , то точка В пружного середовища теж буде коливатися за тим же законом, але
її коливання будуть відставати за часом від коливань джерела на τ, тому що для проходження хвилею відстані х потрібен час τ = , де – швидкість поширення хвилі. Тоді рівняння коливань частинок, які лежать у площині х, буде мати вигляд (2) де А – максимальне зміщення виділеної коливної точки В від положення рівноваги; ω – циклічна частота генератора коливань джерела. Рівняння (2) є рівняння біжучої хвилі.
Якщо плоска хвиля поширюється в протилежному напрямку, то В загальному випадку рівняння плоскої синусоїдальної хвилі, яка поширюється без поглинання енергії уздовж позитивного напрямку осі х, має вигляд (3) де А – амплітуда хвилі; ω – циклічна частота хвилі; – початкова фаза коливань, обумовлена вибором початкових значень х і t; [ω (t - x/υ) + φ0] – фаза плоскої хвилі.
В рівнянні (3) синусоїдальний характер хвилі характеризують хвильовим числом, яке дорівнює (4) З врахуванням (4) рівняння (3) матиме вигляд (5) Рівняння хвилі, яка поширюється в сторону менших значень осі х, відрізняється від (5) тільки знаком члена kх. Розглянемо випадок, коли в процесі хвильового руху, фаза коливань не змінюється з часом, тобто (4.6) Диференціюємо вираз (6) за часом, одержимо , звідки
Отже, швидкість υ поширення хвилі в рівнянні (6) є не що інше, як швидкість переміщення фази хвилі, а тому її називають фазовою швидкістю. Сферичні хвилі утворюються в однорідному і ізотропному середовищі від точкових джерел коливань. Якщо повторити хід міркувань для плоскої хвилі, можна показати, що рівняння сферичної синусоїдальної
хвилі – хвилі, хвильові поверхні якої мають вигляд концентричних сфер, записується так (7) де r – відстань від точкового джерела сферичних хвиль до виділеної точки пружного середовища. У випадку сферичної хвилі навіть у середовищі, яке не поглинає енергії, амплітуда коливань не залишається постійною, а зменшується з відстанню за законом Рівняння (7) має місце лише для великих r, які значно перевищуючі розміри джерела коливань (джерело коливань тут можна вважати точковим).
З рівняння (3) можна одержати, що тобто фазова швидкість синусоїдальних хвиль залежить від їхньої частоти. Це явище називають дисперсією хвиль, а середовище, у якому спостерігається дисперсія хвиль, називається дисперсним середовищем. 3. Одномірне хвильове рівняння. Швидкість поширення хвиль Рівняння довільної хвилі є розв'язком рівняння, яке називається хвильовим. Для виведення цього рівняння скористаємось рівняння
плоскої хвилі, яка поширюється в напрямку осі х. Розглянемо ділянку пружного середовища, яке характеризується модулем пружності Е (рис. 2). З рисунка видно, що виділений елемент має переріз S і довжину Δх. Під дією зовнішньої сили F виділена ділянка пружного середовища деформується на величину ΔU. Рис. 2 Оскільки середовище є пружним, то для виділеної ділянки можна застосувати закон
Гука (8) де Е ─ модуль Юнга; ─ відносна деформація; F ─ зовнішня сила; S ─ площа виділеної ділянки пружного середовища в напрямі осі х. В граничному випадку при , рівняння (8) запишеться так (9) Якщо збуджувати поздовжню хвилю в деякому пружному середовищі, яким є наприклад стержень перерізом S з модулем Юнга Е, то на виділену ділянку будуть діяти дві сили (рис.3).
Запишемо для цієї ділянки другий закон Ньютона (10) Сили в рівнянні (10) є пружними силами, а тому відповідно до рівняння (9) запишуться так (11) Якщо підставити ці сили (11) в другий закон Ньютона (10), то після деяких перетворень одержимо (12) де m ─ маса виділеної ділянки пружного середовища. Масу виділеної ділянки пружного середовища можна виразити через об’єм
і густину речовини стержня так m = ρSΔx. (13) Рис.3 З урахуванням значення маси (13) і нескладних перетворень рівняння (12) запишеться так (14) Розглянувши граничний випадок при якому , з рівняння (14) одержуємо рівняння, яке називається хвильовим рівнянням (15) Рівняння (15) є лінійним диференціальним рівнянням другого порядку в частинних змінних. Розв’язком такого рівняння є уже відоме рівняння плоскої хвилі (16)
Знайдемо другі частинні похідні за часом t і координатою х від рівняння (16) (17) Після підстановки похідних (17) в рівняння (15) та необхідних скорочень одержимо (18) Але оскільки , то хвильове рівняння (15) буде мати інший вигляд (19) Таким чином швидкість поширення механічних хвиль у пружному середовищі залежить від пружних властивостей цього середовища і його густини (20)
Оскільки модуль Юнга характеризує стиснення або розтягування пружного середовища, то одержана швидкість (20) є фазовою швидкістю лише поздовжніх хвиль. Фазова швидкість поперечних хвиль, які можуть існувати лише в твердому пружному середовищі, визначають заміною модуля Юнга в (20) на модуль зсуву G (21) Розрахунки показують, що в твердому середовищі модуль Юнга E майже на порядок перевищує модуль зсуву G, тому фазова швидкість поздовжньої хвилі тут більша
за швидкість поперечної хвилі, тобто (22) Важливо відмітити, що для механічних хвиль, які мають велику довжину λ рівняння (15) і (19) будуть нелінійними. Якщо механічна хвиля поширюється в однорідному ізотропному середовищі, то хвильове рівнянням буде мати вигляд: (23) Для механічних хвиль властивий принцип суперпозиції. Це означає, що при накладанні механічних хвиль відсутнє
їх спотворення. 4. Енергія пружних хвиль. Потік і густина потоку енергії хвиль Нехай в деякому пружному середовищі в напрямі осі х поширюється плоска поздовжня хвиля . (24) Виділимо в цьому середовищі елементарний об’єм ΔV, настільки малий, щоб швидкість хвилі і швидкість деформації у всіх його точках були однакові. Повну механічну енергію, локалізовану у виділеному об’ємі розраховують за формулою де - кінетична енергія
виділеного об’єму; - потенціальна енергія пружної деформації цього об’єму. Кінетичну енергію, яку має виділений об’єм пружного середовища знаходимо за формулою , (25) де ρ - густина середовища виділеного об’єму. Першу похідну за часом від (24) підставимо в (25), одержимо (26) де ─ хвильове число. У відповідності з рис. 4 потенціальну енергію пружної деформації виділеного об’єму знаходимо так:
Рис. 4 (27) де k – коефіцієнт пружності середовища, який відповідно до закону Гука (8) дорівнює ; ─ величина деформації виділеного об’єму пружного середовища. З урахуванням цих позначень (27) матиме вигляд . (28) Помножимо й поділимо (28) на Δх2, одержимо (29) В граничному випадку при Δх=0 одержуємо (30)
Підставимо у формулу (30) значення модуля Юнга , і швидкість деформації , одержимо (31) Повну енергію, локалізовану у виділеному об’ємі пружного середо-вища, одержимо при додаванні кінетичної енергії (26) і потенціальної енергії (31) (32) Якщо врахувати, що середнє значення квадрата синуса за час в один період дорівнює , то одержимо середнє значення повної енергії буде дорівнювати (33) де ΔV=SΔx ─ елементарних об’єм пружного середовища.
Середнє значення густини енергії легко одержати, якщо (33) поділити її на величину виділеного об’єму пружного середовища . (34) Нехай через площадку S (рис.4), яка є перпендикулярною до напрямку поширення хвилі, за час Δt переноситься енергія ΔW. Тоді вектор густини енергії буде дорівнювати , (35) де ─ вектор густини потоку енергії; ─ середня густина перенесеної хвилями енергії; ─
вектор швидкості, модуль якої дорівнює фазовій швидкості хвиль з напрямком поширення хвиль і відповідно переносу енергії. 5. Хвильові процеси. Подовжні і поперечні хвилі Коливання, які збуджуються в будь-якій точці пружного середовища (твердому, рідкому або газоподібному), передаються від однієї точки середовища до іншої з кінцевою швидкістю, яка залежить від властивостей цього середовища.
Чим дальше розташовані частинки середовища від джерела коливань, тим пізніше вони почнуть коливатися. Інакше кажучи, фази коливань частинок середовища і джерела тим більше відрізняються одна від одної, чим більша ця відстань. При вивченні поширення коливань в середовищі не враховується дискретний (молекулярний) характер будови самого середовища. В цьому випадку вважають що частинки середовища мають неперервне заповнення навколишнього простору і проявляють пружні властивості.
Процес поширення коливань у суцільному пружному середовищі називається хвильовим процесом (або хвилею). При поширенні хвилі частинки середовища не рухаються разом із хвилею, а коливаються біля своїх положень рівноваги. Разом із хвилею від частинки до частинки середовища передається лише стан коливального руху і його енергія. Тому основною властивістю усіх хвиль незалежно від
їхньої природи є перенос енергії без переносу речовини. Серед різноманітних хвиль, які зустрічаються в природі й техніці, можна виділити такі їх типи: хвилі на поверхні рідини, пружні і електромагнітні хвилі. Пружні механічні хвилі виникають і поширюються лише в пружному середовищі. Пружні хвилі ще діляться на подовжні й поперечні.
У подовжніх хвилях частинки середовища коливаються в напрямку поширення хвилі, у поперечних – у площинах, перпендикулярних до напрямку поширення хвилі. Подовжні хвилі можуть поширюватися в середовищах, у яких виникають пружні сили при деформаціях стиску і розтягу. Це означає, що поздовжні хвилі поширюються у твердих, рідких і газоподібних середовищ. Поперечні хвилі можуть поширюватися в середовищах, у яких виникають пружні
сили при деформаціях зсуву, тобто фактично тільки у твердих тілах. У рідинах і газах виникають лише подовжні хвилі, а у твердих тілах — як подовжні, так і поперечні хвилі. Пружна хвиля називається синусоїдальною (або гармонічною), якщо відповідні їй коливання частинок середовища є гармонічними. На рис. 21 показана синусоїдальна поперечна хвиля, яка поширюється зі швидкістю υ уздовж осі х, тобто
показана залежність між зміщенням U(x,t) частинок середовища, у хвильовому процесі, і відстанню х цих частинок від джерела коливань для будь-якого фіксованого моменту часу t. Приведений графік функції U(x,t) не схожий на графік гармонічного коливання. Графік хвилі (рис.1) показує залежність зміщення всіх частинок середовища від відстані до джерела коливань у даний момент часу, а графік гармонічних коливань — залежність зміщення даної частинки від часу.
Відстань між найближчими частинками, які коливаються в одній фазі, називається довжиною хвилі λ (рис. 1). Довжина хвилі дорівнює відстані, на яку поширюється фаза коливань за час в один період, тобто (1) Рис. 1 Якщо розглянути хвильовий процес трохи докладніше, то стане ясно, що в хвильовому русі коливаються не лише частинки, розташовані уздовж осі х, а й сукупність частинок, розташованих у деякому об’ємі, тобто хвиля, поширюючись від джерела коливань, охоплює все нові
і нові області простору. Геометричне місце точок, які коливаються в однаковій фазі, називається хвильовою поверхнею. Хвильових поверхонь можна провести безліч. Хвильова поверхня у будь який момент часу називається хвильовим фронтом. Для цього моменту часу хвильовий фронт може бути лише один. Хвильові поверхні можуть мати довільну форму. В найпростішому випадку хвильові поверхні
є сукупністю площин, або сукупністю концентричних сфер. Відповідно хвиля називається плоскою або сферичною. 6. Рівняння біжучої хвилі. Фазова швидкість. Сферична хвиля Якщо хвилі, поширюючись в пружному середовищі з кінцевою швидкістю, переносять енергію, то вони називаються біжучими. Перенос енергії в хвильовому русі кількісно характеризується вектором густини потоку енергії.
Вектор потоку енергії вперше для механічних пружних хвиль був введений російським фізиком Умовим і називається вектором Умова. Напрямок вектора Умова збігається з напрямком переносу енергії, а його модуль дорівнює енергії, яка переноситься хвилею через одиничну площадку, розташовану перпендикулярно до напрямку поширення хвилі, за одиницю часу. Для одержання рівняння біжучої хвилі ─ залежності зміщення коливної точки пружного середовища
від координати і часу ─ розглянемо плоску синусоїдальну хвилю, допустивши, що вісь х збігається з напрямком поширення хвилі (рис. 21). У даному випадку хвильові поверхні, тобто поверхні однакової фази, перпендикулярні до осі х, а тому всі точки пружного середовища на цих поверхнях коливаються однаково. Зміщення будь якої точки пружного середовища від положення рівноваги в цьому випадку залежить лише від координати х і часу t, а його величина буде дорівнювати
Розглянемо деяку точку В, яка перебуває на відстані х від джерела коливань (рис. 1). Якщо коливання точок пружного середовища, які лежать у площині х = 0, описуються функцією U(0,t) = A cos , то точка В пружного середовища теж буде коливатися за тим же законом, але її коливання будуть відставати за часом від коливань джерела на τ, тому що для проходження хвилею відстані х потрібен час τ = , де – швидкість поширення хвилі.
Тоді рівняння коливань частинок, які лежать у площині х, буде мати вигляд (2) де А – максимальне зміщення виділеної коливної точки В від положення рівноваги; ω – циклічна частота генератора коливань джерела. Рівняння (2) є рівняння біжучої хвилі. Якщо плоска хвиля поширюється в протилежному напрямку, то В загальному випадку рівняння плоскої синусоїдальної хвилі, яка поширюється без поглинання енергії уздовж
позитивного напрямку осі х, має вигляд (3) де А – амплітуда хвилі; ω – циклічна частота хвилі; – початкова фаза коливань, обумовлена вибором початкових значень х і t; [ω (t - x/υ) + φ0] – фаза плоскої хвилі. В рівнянні (3) синусоїдальний характер хвилі характеризують хвильовим числом, яке дорівнює (4) З врахуванням (4) рівняння (3) матиме вигляд (5) Рівняння хвилі, яка поширюється в сторону менших значень
осі х, відрізняється від (5) тільки знаком члена kх. Розглянемо випадок, коли в процесі хвильового руху, фаза коливань не змінюється з часом, тобто (4.6) Диференціюємо вираз (6) за часом, одержимо , звідки Отже, швидкість υ поширення хвилі в рівнянні (6) є не що інше, як швидкість переміщення фази хвилі, а тому
її називають фазовою швидкістю. Сферичні хвилі утворюються в однорідному і ізотропному середовищі від точкових джерел коливань. Якщо повторити хід міркувань для плоскої хвилі, можна показати, що рівняння сферичної синусоїдальної хвилі – хвилі, хвильові поверхні якої мають вигляд концентричних сфер, записується так (7) де r – відстань від точкового джерела сферичних хвиль до виділеної точки пружного середовища.
У випадку сферичної хвилі навіть у середовищі, яке не поглинає енергії, амплітуда коливань не залишається постійною, а зменшується з відстанню за законом Рівняння (7) має місце лише для великих r, які значно перевищуючі розміри джерела коливань (джерело коливань тут можна вважати точковим). З рівняння (3) можна одержати, що тобто фазова швидкість синусоїдальних хвиль залежить від їхньої частоти. Це явище називають дисперсією хвиль, а середовище, у якому спостерігається дисперсія
хвиль, називається дисперсним середовищем. 7. Одномірне хвильове рівняння. Швидкість поширення хвиль Рівняння довільної хвилі є розв'язком рівняння, яке називається хвильовим. Для виведення цього рівняння скористаємось рівняння плоскої хвилі, яка поширюється в напрямку осі х. Розглянемо ділянку пружного середовища, яке характеризується модулем пружності Е (рис. 2). З рисунка видно, що виділений елемент має переріз
S і довжину Δх. Під дією зовнішньої сили F виділена ділянка пружного середовища деформується на величину ΔU. Рис. 2 Оскільки середовище є пружним, то для виділеної ділянки можна застосувати закон Гука (8) де Е ─ модуль Юнга; ─ відносна деформація; F ─ зовнішня сила; S ─ площа виділеної ділянки пружного середовища в напрямі осі
х. В граничному випадку при , рівняння (8) запишеться так (9) Якщо збуджувати поздовжню хвилю в деякому пружному середовищі, яким є наприклад стержень перерізом S з модулем Юнга Е, то на виділену ділянку будуть діяти дві сили (рис.3). Запишемо для цієї ділянки другий закон Ньютона (10) Сили в рівнянні (10) є пружними силами, а тому відповідно до рівняння (9) запишуться так (11)
Якщо підставити ці сили (11) в другий закон Ньютона (10), то після деяких перетворень одержимо (12) де m ─ маса виділеної ділянки пружного середовища. Масу виділеної ділянки пружного середовища можна виразити через об’єм і густину речовини стержня так m = ρSΔx. (13) Рис.3 З урахуванням значення маси (13) і нескладних перетворень рівняння (12) запишеться так (14)
Розглянувши граничний випадок при якому , з рівняння (14) одержуємо рівняння, яке називається хвильовим рівнянням (15) Рівняння (15) є лінійним диференціальним рівнянням другого порядку в частинних змінних. Розв’язком такого рівняння є уже відоме рівняння плоскої хвилі (16) Знайдемо другі частинні похідні за часом t і координатою х від рівняння (16) (17) Після підстановки похідних (17) в рівняння (15) та необхідних скорочень одержимо (18)
Але оскільки , то хвильове рівняння (15) буде мати інший вигляд (19) Таким чином швидкість поширення механічних хвиль у пружному середовищі залежить від пружних властивостей цього середовища і його густини (20) Оскільки модуль Юнга характеризує стиснення або розтягування пружного середовища, то одержана швидкість (20) є фазовою швидкістю лише поздовжніх хвиль. Фазова швидкість поперечних хвиль, які можуть
існувати лише в твердому пружному середовищі, визначають заміною модуля Юнга в (20) на модуль зсуву G (21) Розрахунки показують, що в твердому середовищі модуль Юнга E майже на порядок перевищує модуль зсуву G, тому фазова швидкість поздовжньої хвилі тут більша за швидкість поперечної хвилі, тобто (22) Важливо відмітити, що для механічних хвиль, які мають велику довжину λ рівняння (15) і (19) будуть нелінійними.
Якщо механічна хвиля поширюється в однорідному ізотропному середовищі, то хвильове рівнянням буде мати вигляд: (23) Для механічних хвиль властивий принцип суперпозиції. Це означає, що при накладанні механічних хвиль відсутнє їх спотворення. 8. Енергія пружних хвиль. Потік і густина потоку енергії хвиль Нехай в деякому пружному середовищі в напрямі осі х поширюється плоска поздовжня хвиля . (24)
Виділимо в цьому середовищі елементарний об’єм ΔV, настільки малий, щоб швидкість хвилі і швидкість деформації у всіх його точках були однакові. Повну механічну енергію, локалізовану у виділеному об’ємі розраховують за формулою де - кінетична енергія виділеного об’єму; - потенціальна енергія пружної деформації цього об’єму. Кінетичну енергію, яку має виділений об’єм пружного середовища знаходимо за формулою , (25) де &
#961; - густина середовища виділеного об’єму. Першу похідну за часом від (24) підставимо в (25), одержимо (26) де ─ хвильове число. У відповідності з рис. 4 потенціальну енергію пружної деформації виділеного об’єму знаходимо так: Рис. 4 (27) де k – коефіцієнт пружності середовища, який відповідно до закону Гука (8) дорівнює ; ─ величина деформації виділеного об’єму пружного середовища.
З урахуванням цих позначень (27) матиме вигляд . (28) Помножимо й поділимо (28) на Δх2, одержимо (29) В граничному випадку при Δх=0 одержуємо (30) Підставимо у формулу (30) значення модуля Юнга , і швидкість деформації , одержимо (31) Повну енергію, локалізовану у виділеному об’ємі пружного середо-вища, одержимо при додаванні кінетичної
енергії (26) і потенціальної енергії (31) (32) Якщо врахувати, що середнє значення квадрата синуса за час в один період дорівнює , то одержимо середнє значення повної енергії буде дорівнювати (33) де ΔV=SΔx ─ елементарних об’єм пружного середовища. Середнє значення густини енергії легко одержати, якщо (33) поділити її на величину виділеного об’єму пружного середовища . (34)
Нехай через площадку S (рис.4), яка є перпендикулярною до напрямку поширення хвилі, за час Δt переноситься енергія ΔW. Тоді вектор густини енергії буде дорівнювати , (35) де ─ вектор густини потоку енергії; ─ середня густина перенесеної хвилями енергії; ─ вектор швидкості, модуль якої дорівнює фазовій швидкості хвиль з напрямком поширення хвиль і відповідно переносу енергії. Вектор потоку енергії вперше одержав
і розглянув видатний російський фізик Умов. На честь цього фізика він був названий вектором Умова.
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |