Реферат по предмету "Металлургия"


Композиционные материалы

Тема: Композиционные материалы. План: 1. Виды композитных материалов 2. Композитные материалы на металлической основе 3. Композитные материалы на неметаллической основе Композиционными называют сложные материалы, в состав которых входят сильно отличающиеся по свойствам нерастворимые или малорастворимые один в другом компоненты, разделённые в материале ярко выраженной границей. Композиционным материалам (КМ) можно также дать следующее определение: это материалы, представляющие

собой твёрдое вещество, состоящее из матриц и различных наполнителей, частицы которых особым образом расположенные внутри матрицы, армируют её. Композиционный материал должен обладать свойствами, которыми не может обладать ни один из компонентов в отдельности. Лишь только при этом условии есть смысл их применения. Все КМ можно разделить на два вида: естественные и искусственные.

Примером естественных КМ могут служить стволы и стебли растений (волокна целлюлозы соединены пластичным лигнином), кости человека и животных (тонкие прочные нити фосфатных солей соединены пластичным коллагеном), а также эвтектические сплавы. Основой матрицы КМ могут служить металлы или сплавы (КМ на металлической основе), а также полимеры, углеродные и керамические материалы (КМ на неметаллической основе). Роль матрицы в КМ состоит в придании формы и создании монолитного материала.

Объединяя в одно целое армирующий наполнитель, матрица участвует в обеспечении несущей способности композита. Она передаёт напряжения на волокна и позволяет воспринимать различные внешние нагрузки: растяжение, сжатие, изгиб, удар. Матрица предохраняет наполнитель от механических повреждений и окисления. Выбором матрицы определяется температурная область применения КМ. Рабочая температура деталей из КМ повышается при переходе от полимерной матрицы к металлической,

а далее – к углеродной и керамической. КМ с комбинированными матрицами называют полиматричными. Для полиматричных материалов характерен более обширный перечень полезных свойств. Например, использование в качестве матрицы наряду с алюминием титана увеличивает прочность КМ в направлении, перпендикулярном оси волокон. В соответствии с геометрией армирующих частиц различают порошковые (или гранулированные), волокнистые, пластинчатые

КМ. Порошковые композиты представляют собой смесь порошков металлов и неметаллических соединений, которые образуют дисперсно-упрочнённый сплав. Они отличаются изотропностью свойств. В волокнистых композитах матрицу упрочняют непрерывно и дискретно расположенные волокна. Волокнистые и пластинчатые композиты так же, как и металлические сплавы, имеют анизотропию механических свойств. В матрице равномерно распределены остальные компоненты (наполнители).

Поскольку главную роль в упрочнении КМ играют наполнители, их часто называют упрочнителями. Основная функция наполнителя – обеспечить прочность и жёсткость КМ. Частицы наполнителя должны иметь высокую прочность во всём интервале температур, малую плотность, быть нерастворимыми в матрице и нетоксичными. Армирующими веществами в КМ являются оксиды, карбиды (обычно – карбид кремния

SiC), нитрид кремния (Si3N4), стеклянные или углеродные нити, волокна бора (бороволокна), стальная или вольфрамовая проволока. По форме наполнители разделяют на три основные группы (рис. 1, 1): нульмерные, одномерные, двумерные. Нульмерными называют наполнители, имеющие в трёх измерениях очень малые размеры одного порядка (частицы). Одномерные наполнители имеют малые размеры в двух направлениях и значительно превосходящий их размер в третьем измерении (волокна).

У двумерных наполнителей два размера соизмеримы с размером КМ и значительно превосходят третий (пластины, ткань). По форме наполнителя КМ разделяют на дисперсно-упрочнённые, слоистые и волокнистые. Дисперсно-упрочнёнными называют КМ, упрочнённые нульмерными наполнителями; волокнистыми – КМ, упрочнённые одномерными или двумерными наполнителями; слоистыми –

КМ, упрочнённые двумерными наполнителями. По схеме армирования КМ подразделяют на три группы: с одноосным, двуосным и трёхосным армированием (рис. 1, 2– 4). Для одноосного (линейного) армирования используют нуль-мерные и одномерные наполнители (рис. 1, 2). Нульмерные располагаются так, что расстояние между ними по одной оси значительно меньше, чем по другим. В этом случае содержание наполнителя составляет 1 – 5 %.

Одномерные наполнители располагаются параллельно один другому. При двухосном (плоскостном) армировании используют нуль одно- и двумерные наполнители (рис. 1, 3). Нульмерные и одномерные наполнители располагаются в параллельных плоскостях. При этом расстояние между ними в пределах плоскости значительно меньше, чем между плоскостями. При таком расположении нульмерного наполнителя его содержание доходит до 15 – 16 %.

Одномерные наполнители находятся также в параллельных плоскостях. При этом в пределах каждой плоскости они расположены параллельно, а по отношению к другим плоскостям – под разными углами. Двумерные наполнители параллельны один другому. При трёхосном (объёмном) (рис. 1, 4) армировании нет преимущественного направления в распределении наполнителя. Расстояние между нульмерными наполнителями одного порядка.

В этом случае их содержание может превышать 15 – 16 %. Одномерные наполнители располагаются в трёх и более пересекающихся плоскостях. Рис.2. Композитные материалы на металлической основе. Преимущества КМ на металлической основе по сравнению с другими основами состоят в следующем: механические свойства – высокие значения характеристик, зависящих от свойств матрицы (предела прочности и модуля

упругости в направлении, перпендикулярном оси армирующих волокон); высокая пластичность, вязкость разрушения; сохранение прочностных характеристик до температур плавления основного металла; физические свойства – высокая тепло- и электропроводность; химические свойства – негорючесть (по сравнению с КМ на полимерной основе); технологические свойства – высокая деформируемость, обрабатываемость. Наиболее перспективными материалами для матриц металлических

КМ являются металлы, обладающие небольшой плотностью (Al, Mg, Ti), и сплавы на их основе, а также никель – широко применяемый в настоящее время в качестве основного компонента жаропрочных сплавов. В порошковых (дисперсно-упрочнённых) КМ на металлической основе наполнителями служат дисперсные частицы тугоплавких фаз – оксидов Al2O3, SiO2 и карбидов. Отличительная особенность порошковых

КМ, как было указано, состоит в изотропности механических и физических свойств. Примером порошкового КМ на металлической основе является материал САП (спечённая алюминиевая пудра), состоящий из смеси порошков алюминия и оксида алюминия (6-22%). В настоящее время в двигателестроении из САП изготавливают многие ответственные детали: поршни, шатуны, тарелки клапанных пружин. САП имеет высокую технологичность при деформации, сварке, резании; отличается

высокой коррозионной стойкостью и жаропрочностью. В отличие от жаропрочных алюминиевых сплавов они работают при температурах до 500˚ С, а не до 300˚ С. Для изготовления деталей ГТД – дисков, лопаток, роторов – применяют порошковые сплавы типа ВДУ (высокотемпературные дисперсно-упрочнённые), представляющие собой смесь порошков никель-хромового сплава и оксидов гафния (HfO2) или тория (ThO2). Сплавы

ВДУ получают методом механического легирования. Жаропрочность и жаростойкость таких КМ выше, чем никелевых сложнолегированных сплавов, получаемых как по традиционной технологии, так и при направленной кристаллизации поликристаллических и монокристаллических сплавов. В волокнистых КМ упрочнителями служат волокна и нитевидные кристаллы чистых элементов или тугоплавких соединений (B, C, Al2O3, SiC), проволоки. Волокна могут быть непрерывными или дискретными.

Объёмная доля колеблется от нескольких единиц до 80…90 %. Свойства волокнистых КМ зависят от схемы армирования. Механическим свойствам волокнистых КМ присуща анизотропия, поэтому при изготовлении из них деталей волокна ориентируют так, чтобы с максимальной выгодой использовать свойства композита с учётом действующих нагрузок. Сходство первичной структуры чугуна с волокнистыми композитами, основанное на морфологическом

подобии дендритов дискретным упрочняющим волокнам, замечено давно. Однако анализ соответствия фактической структуры чугуна основным требованиям КМ показал, что они либо выполняются не в полной мере, либо вовсе не выполняются, не позволяя реализовать полномасштабное композитное упрочнение. Так условие σвволок. >>σвматр. может частично выполняться при сорбитной структуре первичных дендритных кристаллов, но утрачивает смысл при

выделении в дендритах феррита. Другой принцип КМ, ограничивающий морфологию волокон по длине и толщине соотношением l/d > 100, в чугунах выполняется не в полной мере, поскольку дендриты едва достигают нижних границ указанного соотношения, и технических решений по увеличению их длины пока нет. Важнейший принцип КМ, требующий прочной, но не диффузной связи волокон с упрочняемой матрицей, в чугунах практически не реализуется, и дендриты очень ограниченно участвуют в работе разрушения чугуна, отслаиваясь

без разрушения от малопрочной матрицы. Тем не менее, литейная технология позволяет хорошо освоенными методами усилить сцепление дендритов с матрицей, например, за счёт измельчения эвтектических ячеек, снижения разветвлённости графитовых включений, повышенного содержания фосфора, формирующего монолитную кайму фосфидов вокруг эвтектических ячеек и др. Эти частные решения, по отдельности и для других целей, опробованные литейщиками с положительными результатами, целесообразно использовать в комплексе по новому

назначению для усиления композитного упрочнения серого чугуна. Принципиальное значение для конструктивной прочности чугунов имеет необходимость предотвращать образование феррита в дендритных ветвях, предупреждая катастрофическое разупрочнение литых деталей. В чугунах существуют объективные термодинамические ограничения на использование упрочняющего легирования. При прочих равных условиях менее легированный чугун с меньшим содержанием

Si, Mn, Cr будут иметь более однородную перлитную структуру, в том числе и в дендритных ветвях, и, как следствие, лучшие прочностные свойства. В таблице 1 приведены свойства некоторых волокнистых КМ с металлической матрицей. Для примера даны свойства чистого алюминия (нагартованный лист) и самого прочного легированного сплава В95. Этот сплав упрочняется при старении и имеет предел прочности 600 МПа, и предел выносливости – 155 МПа (сопротивление циклическим нагрузкам).

Создание КМ – введение в алюминий волокон бора (КМБ) – повышает предел прочности почти на порядок по сравнению с алюминием и вдвое по сравнению со сплавом В95; при этом втрое возрастает модуль упругости и вчетверо – предел выносливости. Таблица 1 Свойства однонаправленных КМ на металлической основе Марка Состав Плотность ρ, т/м3 Модуль упругости

Е, ГПа Предел прочности σв, МПа Предел выносливости σ-1 МПа σв/ρ, км (растяжение) Al Холодно-катанный 2,70 71 150 – – В95 Сплав Al, Mg, Zn 2,72 – 600 55 22 ВКА Al–B 2,65 240 1200 600 45 ВКУ Al–C 2,25 270 950 200 44 КАС Al–стальная проволока 4,80 120 1600 350 33 Если же в качестве наполнителя используют стальную проволоку, диаметр которой больше, чем диаметр волокон

бора или углерода, то снижается модуль упругости, однако этот материал (КАС) имеет самый высокий предел прочности и отличается значительно более высокой удельной прочностью благодаря малой плотности. Для всех КМ характерен высокий предел выносливости, свидетельствующий об их противостоянии циклическим нагрузкам. Прочность КМ в большой степени зависит от прочности сцепления волокон с матрицей. Между матрицей и наполнителем в КМ возможны различные типы связи.

1. Механическая связь, возникающая благодаря зацеплению неровностей поверхностей матрицы и наполнителя, а также действию трения между ними. КМ с механическим типом связи (например, Cu – W) имеют низкую прочность при поперечном растяжении и продольном сжатии. 2. Связь, обеспечиваемая силами поверхностного натяжения при пропитке волокон жидкой матрицей вследствие смачивания и небольшого растворения компонентов (например,

Mg – B до 400˚ С). 3. Реакционная связь, обусловленная химическим взаимодействием компонентов (Ti и B) на границе раздела, в результате чего образуются новые химические соединения (TiB2). 4. Обменно-ракционная связь, возникающая при протекании двух и более стадийных химических реакций. Например, алюминий из твёрдого раствора матрицы титанового сплава образует с борным волокном AlB2, который затем вступает в реакцию с титаном, образуя

TiB2 и твёрдый раствор алюминия. 5. Оксидная связь, возникающая на границе раздела металлической матрицы и оксидного наполнителя (Ni – Al2O3), благодаря образованию сложных оксидов типа шпинели и др. 6. Смешанная связь, реализуемая при разрушении оксидных плёнок и возникновении химического и диффузионного взаимодействий компонентов (Al – B, Al – сталь). Для металлических КМ прочная связь между волокном и матрицей осуществляется благодаря их взаимодействию и образованию

очень тонкого слоя (1 – 2 мкм) интерметаллидных фаз. Если между волокнами и матрицей нет взаимодействия, то на волокна наносят специальные покрытия для его обеспечения, но прослойки образующейся при этом фазы должны быть очень тонкими. Связь между компонентами и КМ на неметаллической основе осуществляется с помощью адгезии. Плохой адгезией к матрице обладают высокопрочные борные, углеродные, керамические волокна.

Улучшение сцепления достигается травлением, поверхностной обработкой волокон, называемой вискеризацией. Вискеризация – это выращивание монокристаллов карбида кремния на поверхности углеродных, борных и других перпендикулярно их длине. Полученные таким образом «мохнатые» волокна бора называют «борсик». Вискеризация способствует повышению сдвиговых характеристик, модуля упругости и прочности при сжатии без снижения свойств вдоль оси волокна. Так, увеличение объёмного содержания нитевидных кристаллов до 4

– 8 % повышает сдвиговую прочность в 1,5 – 2 раза, модуль упругости и прочность при сжатии на 40 – 50 %. 3. Композитные материалы на неметаллической основе. Матрицей в таких КМ служат термореактивные пластмассы – эпоксидные, фенолформальдегидные смолы, полиамиды и др. Основную часть КМ на неметаллической основе составляют волокнистые материалы. Их название обычно включает характеристику наполнителя: карбоволокниты, бороволокниты, стекловолокниты,

органоволокниты. КМ на неметаллической основе (полимеры) имеют следующие преимущества по сравнению с металлическими сплавами и КМ на металлической основе: механические свойства – высокая удельная прочность; высокая усталостная прочность; хорошие антифрикционные и амортизационные свойства; химические свойства – высокая химическая стойкость; технологические свойства – хорошая обрабатываемость; экономические свойства – дешёвые исходные материалы. Общими недостатками КМ на полимерной основе являются: резкая потеря прочности

при температурах выше 100…200 С, горючесть, отсутствие способности к сварке. Механические свойства волокнитов указаны в таблице 2. Родоначальниками КМ на полимерной основе являются стеловолкниты. По удельной прочности они превосходят легированные стали, сплавы алюминия, магния, титана. В ДВС на ряде зарубежных автомобильных фирм из стекловолокнитов изготавливают разнообразные детали:

детали топливно-подающей системы (фирма Zeta), крыльчатки вентиляторов систем охлаждения, расширительные бачки радиаторов (Ford), головки цилиндров, бензиновые баки (BMV, Du Pont). Таблица 2 Свойства однонаправленных КМ на неметаллической основе Марка Состав Плотность ρ, т/м3 Модуль упругости Е, ГПа Предел прочности σв, МПа Предел выносливости σ-1,

МПа σв/ρ, км (растяжение) КМУ Карбоволокнит 1,40 20 650-1000 300-500 53 КМБ Бороволокнит 2,1 210-260 900-1300 300-500 55 КМО Органоволокнит 1,25 35 650-700 100 58 КМС Стекловолокнит 2,2 70 100 – 96 В карбоволокнитах (ρ = 1,4…1,55 т/м3) полимерная матрица армирована углеродными волокнами; в бороволокнитах – бором. Эти два типа КМ отличаются высоким модулем упругости, высокой прочностью и

выносливостью. Бороволокниты отличаются высокой усталостной прочностью, специфическими химическими свойствами: стойкостью к проникновению воды, органических растворителей, радиации, горюче смазочных материалов. Бороволокниты применяют в авиационной и космической технике для изготовления роторов, лопаток компрессоров, лопастей винтов, трансмиссионных валов вертолётов. Карбоволокниты отличаются высокой стойкостью к динамическим нагрузкам.

Их применяют для тепловой защиты дисков авиационных тормозов, а также как химически стойкий материал для химической аппаратуры. Применение в органоволокнитах в качестве наполнителя синтетических волокон (капрон, лавсан, винол, полиамид) имеет преимущество для снижения плотности КМ (до 1,15…1,5 т/м3); при этом также существенно снижают предел выносливости и модуль упругости (вдвое ниже, чем у чистого алюминия). Однако эти КМ отличаются стабильностью механических свойств при резком

перепаде температур, действии ударных и циклических нагрузок; высокой химической стойкостью и диэлектрическими свойствами. Их применяют в качестве изоляционного и конструктивного материалов в электрорадиопромышленности, авиа- и автостроении (трубы, ёмкости для агрессивных сред, покрытия корпусов). Выполнил: студент группы ТЭ-602 Спиридонов Н.В.



Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Медицинское страхование в Российской Федерации
Реферат Utopia Essay Research Paper The Life of
Реферат Сценарій виховного заходу: "У дружбі наша сила"
Реферат О критериях котируемости активов
Реферат Суды в Советский период
Реферат Академія педагогічних наук україни державна науково-педагогічна бібліотека україни імені В. О. Сухомлинського
Реферат І свічки миpної не ваpта та кpаїна, що в боpотьбі її не засвітила
Реферат Анализ эффективности деятельности гостиничного предприятия
Реферат Выщелачивание цинкового огарка
Реферат Judicial Choices Essay Research Paper Judicial ChoicesSupreme
Реферат Математическое обеспечение схемотехнического проектирования
Реферат Australia Essay Research Paper AustraliaINTRODUCTIONAustralia island continent
Реферат Нетрадиционные спортивно-педагогические подходы к изучению физико-технических дисциплин во ВТУЗе
Реферат Возникновение марксистского направления в экономической мысли
Реферат Агрикола Георг