Реферат по предмету "Технологии"


Процессы, идущие при повышенном или пониженном давлении

Процессы, идущие при повышенном или пониженном давлении План 1.Роль давления в технологии 2.Давление как фактор интенсификации газообразных процессов 3. Роль давления в жидкофазных процессах 1.Роль давления в технологии В технологии применение повышенного и пониженного давления позволяет создавать не только принципиально новые материалы, но и методы воздействия на их структуру, свойства и форму.

Так, вакуум является основой многих технологических процессов напыления топких пленок, создания электронных приборов, а также производства очень чистых материалов в фармации, химии, металлургии, радиоэлектронике. Повышенное давление, вызывая перестройку электронного состояния, способно кристаллический диэлектрик превратить в металл, а некоторые металлы – в диэлектрик. Сверхвысокие давления (250000 МПа) не исключают возможности получения в будущем металлического водорода

и даже придания ему сверхпроводящих свойств. В настоящее время при давлении около 10 000 МПа и 2400ºС изменением электронной структуры углерода графит превращают в алмаз. При давлении 80 000 МПа и температуре 1800ºС из смеси соединений, содержащих бор и азот, синтезируют неизвестный в природе минерал боразон (нитрид бора). По твердости он не уступает алмазу, а по теплостойкости даже превосходит его.

Повышенное давление широко используется для пластической деформации в процессах формообразования и упрочнения, тонкого и сверхтонкого измельчения, пропитки пористых материалов жидкостью, фильтрации и т. д. В производстве отдельных видов химической продукции (стирола, аммиака, некоторых сверхтвердых материалов) высокое и сверхвысокое давление применяется как один из факторов интенсификации технологического процесса. Однако в большинстве случаев этот фактор оказывается дорогостоящим и часто экономически нецелесообразным

из-за неоправданно больших эксплуатационных и энергетических затрат, необходимости установки толстенного оборудования повышенной прочности, надежности и материалоемкости. Поэтому в технологической практике вопрос о целесообразности использования давления решается в каждом конкретном случае в зависимости от ряда факторов, агрегатного состояния взаимодействующих веществ, степени достижения равновесия, влияния режима процесса на выход продукта.

В химической технологии изменение давления обеспечивает повышение или понижение концентрации веществ, изменение их объема и теплофизических свойств. Иногда изменением давления ускоряют или замеляют переход веществ из одного агрегатного состояния в другое. Это позволяет регулированием скорости конденсации, испарения, кристаллизации, абсорбции, адсорбции или десорбции добиваться оптимального выхода продукта и улучшения его качества. В некоторых процессах повышенное или пониженное давление играет вспомогательную

роль и применяется не самостоятельно, а комбинированно, совместно с температурой или катализатором, либо с тем и другим одновременно. Пример тому – термический и каталитический крекинг нефтяных фракций, гидрирование топлив, вулканизация каучука, производство карбамида, полиэтилена высокого давления. 2. Давление как фактор интенсификации газообразных процессов Для процессов, протекающих в газовой фазе, применение повышенного давления иногда целесообразно по той

причине, что при сжатии газов они занимают меньший объём, в результате чего возрастает их концентрация. Скорость же химической реакции пропорциональна концентрации реагентов. Из этого следует, например, что превращение азотоводородной смеси в аммиак либо оксида углерода и водорода в метанол может быть ускорено увлечением концентрации исходных газов компонентов за счет высокого давления. Для гомогенных газовых реакций, протекающих в состоянии, далеком от равновесия, их скорость оказывается

пропорциональной фактическому давлению. Но так как с ростом давления может меняться порядок реакции и уменьшаться константа ее скорости, то в каждом конкретном случае необходима оптимизация условий её протекания. Это особенно относится к производству крупнотоннажных продуктов (аммиаку, метанолу, карбамиду и др.). Гомогенные газовые реакции, как известно, могут сопровождаться уменьшением или увеличением объёме. Например, в производстве аммиака из азотоводородной смеси по схеме

N2 +3N2 &#8594; 2NH 3 + Q из 1+3 моль исходного вещества получают 2 моль конечного продукта. Здесь процесс идет с уменьшением объёма ( 4 моль&#8594;2 моль). В таких реакциях выход продукта и скорость его образования увеличиваются с повышением давления вначале очень быстро, а затем всё медленнее и медленнее. Это объясняется тем, что в результате сжатия происходит своеобразное <<сгущение>>, т. е. концентрирование газа, сдвиг равновесия в сторону конечного

продукта при одновременном накоплении балласта в виде нежелательных инертных примесей. В результате этого повышение давления оказывается эффективным лишь до некоторого предела, после которого сжатие становится невыгодным, так как газ, оказавшийся под высоким давлением, приобретает все меньшую и меньшую сжимаемость. В результате энергозатраты начинают возрастать быстрее прироста продукта экономически рациональное давление определяется технико-экономическими исследованиями и обычно колеблются от десятка

до нескольких сотен МПа. В производстве аммиака выбор давления обусловливается его содержанием в равновесной смеси, энергетическими затратами на сжатие газа, временем и температурой контактирования на катализаторе, требованиями к аппаратному оформлению и т.д. влияние некоторых из этих факторов отражено в таблице. Давление, МПа Расход энергии на сжатие газа, кВт • ч Объемное содержание аммиака в равновесной смеси 200 &#186;С 400 &#186;С 600 &#186;С 10 30 100 607 723 976 80,6 89,94 98,29 25,12 47,0 79,82 4,52 13,77 31,43

Из таблицы видно, что низкие температуры и высокие давления смещают равновесие в сторону образования аммиака и увеличения его выхода. Содержание аммиака в равновесной смеси указывает на целесообразность проведения процесса при высоком давлении. В этом случае в результате конденсации аммиака облегчается его отделение от непрореагировавшей азотоводородной смеси. Однако значительно увеличивается расход энергии на её сжатие, ужесточаются требования к качеству и

надежности оборудования. При понижении же давления упрощается аппаратурное оформление процесса, хотя габариты аппаратов растут. Одновременно снижается расход энергии на сжатие, но увеличиваются энергозатраты на циркуляцию газа и выделения аммиака; повышаются требования к чистоте исходной азотоводородной смеси. Оптимизацией технико-экономических показателей процесса было выявлено, что наивыгоднейшее значение давления равно 32 МПа. Поиск оптимального давления несколько упрощается в случае обратимых газовых реакций,

протекающих с увеличением объема. Примером такой реакции может быть конверсия водяным паром для получения водорода: СН4 + Н2О&#8594; СО2 + 4Н2 - Q газ пар газ газ в этой реакции число молей конечных продуктов ( 1 + 4 = 5) больше числа молей исходных реагентов (1 + 1 = 2), что указывает на ее протекание с увеличением объема. Рассмотренные газовые реакции часто завершаются переходом газового компонента в жидкую или твердую фазу в результате его конденсации либо улавливания твердым или жидким поглотителем.

Скорость процессов адсорбции, растворения, абсорбции и конденсации газового компонента всегда пропорциональна давлению, под которым этот компонент находится. Поэтому в промышленности для ускорения перехода газа в другое агрегатное состояние часто применяют давление выше атмосферного. Так, в холодильных установках сжижение аммиака при плюсовых температурах достигается использованием давления 1,5 – 5 МПа. Обеззараживание воды хлором и насыщение её кислородом также форсируются применением

избыточного давления. И наоборот, для перевода компонентов в газообразное состояние после их поглощения жидкостью или твердым телом, а также для ускорения этих процессов применяют вакуум. Удаление газов и паров из различных материалов при низкой температуре в вакууме позволяет получить особо чистые химические вещества, электротехнические и полупроводниковые материалы, фармацевтические препараты, а также очень чистые от адсорбированных газов поверхности.

На такие поверхности напыляются тонкие пленки в производстве микроминиатюрных радиоэлектронных изделий. В металлургии с помощью вакуума из жидкого металла удаляются растворенные в нем газы (О2, N2, Н2), неметаллические включения, летучие – олово, висмут, сурьму, свинец. Одновременно с этим вакуум повышает плотность слитков. В строительстве вакуумирование провибрированного бетона увеличивает его прочность у поверхности на 20

– 40% повышает морозостойкость и износостойкость за счет снижения водоцементного отношения. Это экономит время бетонирования, так как дает возможность использовать покрытие вскоре после его вакуумной обработки. 3. Роль давления в жидкофазных процессах Для процессов, протекающих в жидкой фазе, применение повышенного давления эффективно лишь при его значениях более 200 МПа. Примером может служить жидкофазная гидратация этилена при получении этилового спирта

(С2Н4 + Н2О&#8594; С2Н5ОН) либо его полимеризация в производстве полиэтилена высокого давления. В последнем случае уже при давлении 200 МПа и температуре 200 &#186;С плотность газообразного этилена очень близка к плотности жидкости. В существующих технологических процессах полиэтилена давление достигает 300 МПа. Подобное повышение давления благоприятствует образованию полиэтилена большей плотности, уменьшает разветвленность и количество непредельных групп в структуре макромолекул.

Однако при таком давлении влияние температуры и агрегатного состояния проявляется в очень противоречивой форме. С одной стороны, повышение температуры ускоряет распад инициатора и увеличивает скорость полимеризации, с другой – с повышением температуры уменьшается молекулярная масса и плотность полимера, в результате качество полиэтилена высокого давления как одного из лучших диэлектриков для высокочастотной техники несколько ухудшается. Фазовое состояние реакционной смеси также влияет на эффектность процесса.

В гомофазной системе Ж – Ж преобладают процессы роста молекулярной цепи с образованием небольшого числа коротких боковых ответвлений. В гетерофазной системе Г – Ж – Т образуется большое число молекул с длинными боковыми ответвлениями, сильно ухудшающими качество полимера. По этой причине полимеризацию этилена под высоким давлением проводят в гомофазной системе Ж – Ж, а подготовительные и завершающие операции – в гетерофазных системах типа

Г – Ж либо Ж – Т. Другая область применения высокого давления – жидкофазная пропитка пористых материалов и изделии. Применение для этой цели высокого гидростатического давления (3000 МПа) в многих отраслях промышленности сокращает продолжительность пропитки с нескольких суток до 10 – 30 с. В ряде случаев удается совмещением нескольких технологических операций одновременно с пропиткой производить уплотнение и формообразование (профилирование).

Например, древесину железнодорожных шпал, мебельных изделий, шахтного крепежного леса обрабатывать антисептиками, консервантами, синтетическими смолами или лаками. Это исключает длительную и энергоемкую сушку, позволяет использовать плохосмазываемые и даже высоковязкие жидкости без подогрева. В настоящее время пропиткой пористых материалов и изделий жидкостью под высоким гиростатическим давлением осуществляют консервирование и гидролиз древесины, изготовление древесных

пластиков, изготовление высоковольтных пленочных конденсаторов, антифрикционной металлокерамики и т. д. Для процессов, протекающих в твердой фазе, визу незначительной сжимаемости твердых тел эффективными являются лишь сверхвысокие давления ~10 000 – 250 000 МПа. При таких больших сжатиях происходит перестройка электронных оболочек атомов, деформация молекул и сдвиг фазового равновесия. Как правило, это заканчивается образованием новых химических связей, которые

обладают большой прочностью. Подобный принцип воздействия на вещество положен в основу создания новых материалов с необходимыми свойствами. Сейчас сверхтвердые материалы типа эльбера, боразона и синтетических алмазов получают при температурах 1600 - 2400&#186;С целенаправленными полиморфными превращениями в кристаллической структуре. Так, графит в результате перегруппировки атомов углерода в кристаллической решетке переходит в синтетический алмаз. Гексагональная структура нитрида бора трансформируется до кубической,

что придает полученным кристаллам твердость, превышающую твердость алмаза. Техника получения сверхвысоких давлений уже сейчас обеспечивает возможность сжатия материалов до 106 – 108 МПа. Это открывает большие возможности получения совершенно новых сплавов большой твердости, прочности и жестокости либо создания неметаллических материалов с металлическими свойствами. Например, серый чугун после его обработки высоким давлением напоминает по механическим характеристикам

высокосортную сталь, а не металлы (сера, йод) и металлоиды (например, селен) приобретают ярко выраженные металлические свойства. Таким образом, сверхвысокие давления значительно расширяют диапазон возможностей в создании новых материалов и прогрессивной технологии их переработки. Литература 1. Гинберг А.М Хохлов Б.А Дрякина И.П. и др. Технология важнейших отраслей промышленности. — М.:

Высшая школа, 1985.



Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Маркетинговый анализ бизнеса ООО "Яковлевостройдеталь"
Реферат Алтухов е в
Реферат История московского трамвая
Реферат Обстоятельства исключающие участие в производстве по уголовному делу
Реферат Крайня необхідність як обставина, що виключає злочинність діяння
Реферат Усадьба Марьино вековые традиции и современная функция
Реферат Кон’юнктурне дослідження світового ринку великої побутової техніки
Реферат "Холодная война" как противостояние двух политических систем
Реферат Физическая организация баз данных на машинных носителях
Реферат Преступления по Вавилонскому Талмуду
Реферат К вопросу о грамматических трансформациях при переводе
Реферат Физические опыты в теме МАГНИТНОЕ ПОЛЕ ТОКА
Реферат Криминализация российской экономики и экономическая безопасность России
Реферат Ломоносов: заслуги перед русской школой
Реферат Разработка автоматизированной системы учета выбывших из стационара