--PAGE_BREAK--Перечень основных поездных маршрутов
маршрута
наименование
маршрута
Литера
Светофора
стрелки
1/5
3/7
9/11
13/15
17
19/21
23
25
27
29
прием
На 1путь
Н
+
+
+
+
+
На 3путь
Н
+
+
+
+
-
На 5путь
Н
-
-
На 4путь
Н
+
+
-
-
-
На 6путь
Н
+
+
-
-
+
-
+
На 8путь
Н
+
+
-
-
+
-
-
отправ–ление
Со 2 пути
Ч2
+
+
+
С 3 пути
Ч3
+
+
-
-
С 5 пути
Ч5
С 4 пути
Ч4
+
+
-
-
С 6 пути
Ч6
+
+
-
+
-
+
С 8 пути
Ч8
+
+
-
+
-
-
Таблица 2.2
Перечень вариантных поездных маршрутов
направление
Номер
Маршрута
Наименование маршрута
стрелки, определяющие направление маршрута
прием
На 3 путь
-1/3,+17,+19/21
Таблица 2.3
продолжение
--PAGE_BREAK--Перечень маневровых маршрутов
Направление
Номер маршрута
наименование маршрута
стрелки, определяющие направление маршрута
от светофора
М1
ДО М5
+7/3
ДО М9
-7/3,+13/15
ДО М11
-7/3,-13/15
М3
ДО М5
-1/5
ДО М9
+1/5,+13/15
ДО М11
+1/5,-13/15
М5
ЗА Ч5
-17
ЗА Ч3
+17
М7
ДО М9
-9/11
ДО М11
+9/11
М9
ЗА М13
+19/21
ЗА Ч3
-19/21
М11
ЗА Ч2
+23
ЗА Ч4
-23,-25
ЗА Ч6
-23,+25,-27,+29
ЗА Ч8
-23,+25,-27,-29
М13
ЗА М7
-9/11
ЗА М3
+9/11+3/7
ЗА М1
+9/11,-3/7
М15
ЗА Ч6
+29
ЗА Ч8
-29
Ч2
ЗА М7
+13/15
ЗА М3
-13/15,+3/7
ЗА М1
-13/15,-3/7
Ч3
ЗА М7
-19/21,-9/11
ЗА М3
+19/21,-1/5
ЗА М1
+19/21,+1/5
Ч4
ЗА М7
+13/15
ЗА М3
-13/15,+3/7
ЗА М1
-13/15,-3/7
Ч6
ЗА М7
+29,-27,+13/15
ЗА М3
+29,-27,-13/15,+3/7
ЗА М1
+29,-27,-13/15,-3/7
ЗА М15
+29,+27
Ч8
ЗА М7
-29,-27,+13/15
ЗА М3
-29,-27,-13/15,+3/7
ЗА М1
-29,-27,-13/15,-3/7
ЗА М15
-29,+27
3. ДВУХНИТОЧНЫЙ ПЛАН СТАНЦИИ
Двухниточный план станции составляется на основе однониточного плана и представляет собой схему полной изоляции путей с учетом чередования полярности в смежных рельсовых цепях (РЦ), пропуска обратного тягового тока на участках с электротягой и действия АЛС, по главным путям станции. На участках с электротягой все пути, стрелочные и бесстрелочные участки образуются двухниточными РЦ, в которых обратный тяговый ток протекает по обеим рельсовым нитям, а для пропуска его в обход изолирующих стыков устанавливаются дроссель-трансформаторы (ДТ).
На двухниточном плане внутри каждой стрелки устанавливаются дополнительные изостыки, что обусловлено необходимостью предотвращения короткого замыкания через крестовину стрелочного перевода. Эти изостыки на стрелках могут устанавливаться как по главному пути, так и по боковому. Однако для повышения надежности работы АЛС, как правило, эти изостыки устанавливаются по боковому пути. Их установка по главному пути разрешается не более, чем по одной стрелке в пределах кодируемого пути. Данное правило не относится к глухому съезду, так как в этом случае кодирование осуществляется по специальному шлейфу.
Для пропуска обратного тягового тока по РЦ на тяговую подстанцию (ТП) осуществляем его канализацию, с этой целью средние точки ДТ смежных РЦ соединяем между собой. Каждая РЦ должна иметь не менее двух выходов для тягового тока. Выходом считается два медных торса. Соединение средних точек дроссель-трансформаторов выполнено стандартной перемычкой с четырьмя тросами, следовательно имеется два выхода тяговому току. Это позволяет соединять рельсовые цепи по отношению к ТП консольно. В случае образования контуров пользуемся следующим правилом: в контуре должно содержатся не менее десяти двухниточных рельсовых цепей.
На двухниточном плане также показываются в условных обозначениях места расположения аппаратуры питающих и релейных концов РЦ. Особенностью станционных РЦ является наличие неразветвленных и разветвленных РЦ. Неразветвленные РЦ имеют только одно путевое реле, а все ее участки обтекаются током. В разветвленных РЦ имеются участки цепи как обтекаемые током, так и находящиеся только под напряжением. Для того чтобы все участки разветвленной РЦ обтекались током, необходима установка дополнительных реле, причем их число не должно быть более трех. При этом не обтекаемые током параллельные ответвления должны быть длиной не более 60 м.
Двухниточный план станции приведен в прил. 2.
4. КАБЕЛЬНЫЕ СЕТИ
4.1. Общие положения
Кабельные сети (рис 4.2-4.5) применяют для соединения объектов централизации: светофоров, стрелочных электроприводов, РЦ, релейных шкафов, маневровых колонок с постом ЭЦ.
По назначению кабельные сети подразделяются: стрелок (для управления, контроля, очистки стрелок и электрообогрева приводов), светофоров и рельсовых цепей.
В каждом типе кабельной цепи однотипные объекты формируют с помощью разветвительных муфт. До разветвительных муфт прокладывают групповые кабели, от муфт к каждому объекту — индивидуальные.
В кабельных сетях используем сигнально-блокировочный кабель с медными жилами, с полиэтиленовой изоляцией, в пластмассовой (полиэтиленовой) оболочке. Все сигнальные кабели изготавливают с медными жилами диаметром 1 мм; сечением 0.785 ; активным сопротивлением 23.5 Ом/км. Кабели имеют простую скрутку жил емкостью 3; 4; 5; 12; 16; 30; 33; 42 жилы или парную — 1х2; 3х2; 4х2; 7х2; 10х2; 12х2; 14х2; 19х2; 24х2; 27х2; 30х2.
Муфты могут быть на 4; 7 и 8 направлений в зависимости от числа разветвлений.
На двухниточном плане станций намечают основную трассу прокладки групповых кабелей всех видов кабельных сетей. Трасса должна иметь наименьшую длину; быть пригодной для производства работ с применением механизма; проходить по обочине крайнего пути или в междупутьях малодеятельных путей; иметь минимальное число пересечения с путями; не проходить под остряками и крестовинами стрелочных переводов. Минимальная глубина траншеи для укладки кабеля должна быть 0,8 м. Длина кабельных отрезков определяется по следующей формуле:
(4.1)
где 1.03— коэффициент, учитывающий удлинение кабеля за счет
неровности траншеи;
L
орд— разность между ординатами объектов;
n
— число междупутий;
L
т— подъем или спуск в траншею равен 1,5 метра;
L
з
— запас равен 1 метр;
L
п
-удлинение кабеля на 50-70 м, для кабелей, выходящих из поста ЭЦ
4.2 Кабельная сеть стрелок
В кабельную сеть стрелок входят цепи: управления, электрообогрева, автоматической обдувки и местного управления стрелками. Расчет кабельной сети производят для электроприводов СП-6 с двигателем постоянного тока МСП-0,15 на напряжение 160 В. К одиночной и первой из спаренных стрелок требуются два провода, между спаренными стрелками — два контрольных и три рабочих. Между спаренными стрелками дублируют только рабочие провода, контрольные не дублируют.
Для включения ЭПК обдувки в магистральном кабеле от поста ЭЦ до разветвительной муфты предусматривают на каждую стрелку один прямой и один общий для всех стрелок обратный провод. От разветвительной муфты к каждой стрелке прикладывают два провода, а от стрелочного привода в ЭПК — три рабочие жилы кабеля.
Электрообогрев стрелочных электроприводов производят обогревающие элементы (резисторы), установленные внутри привода. Питание резисторов осуществляется с поста ЭЦ переменным током f=50 Гц, напряжение 220 В. Для понижения напряжения используют трансформаторы типа ПОБС-5А, устанавливаемых в районе расположения стрелочных приводов.
Для электрообогрева стрелочных приводов расстанавливают трансформаторы ПОБС-5А в трансформаторных ящиках у стрелочных разветвительных муфт. При расстановке учитывают, что один трансформатор может обогреть не более пяти стрелок. В магистральном кабеле к каждой стрелке предусмотрены жилы для очистки стрелок. Так, для очистки удаленных стрелок предусмотрен дубляж жил кабеля.
Дублирование проводов, идущих от поста ЭЦ к трансформатору, осуществляется при длине отвода свыше 350 м. Провода рассчитываются на переменное сечение. Для этого предварительно составляется диаграмма потребления трансформаторами токов .
Находим удельное сопротивление шлейфа на участке ОА по нижеследующей формуле:
, (4.2)
Согласно найденному значению шунта находим значение нормативного шунта:
, что соответствует 3-м жилам.
На остальных участках расчет количества жил проводим аналогично, получаем:
4.3. Кабельные сети светофоров
В кабельную сеть светофоров входят цепи: выходных, маневровых светофоров, а также релейных шкафов светофоров НА, НБи НД. Кабель для светофоров рассчитывается на три режима напряжения: 220 В — дневной, 180 В — ночной и 127 В — двойного снижения напряжения. Число жил кабеля для включения ламп светофоров определяют по принципиальным схемам каждого светофора: для маневрового требуется 3-и жилы, для выходного 7 жил.
Светофоры подключаются через разветвительные муфты.
Расчеты показывают, что максимальное удаление РШ входного светофора по кабелю без дублирования жил достигает 6 км. Придельное удаление выходных светофоров с лампами мощностью в 15 Вт — до 3 км.
Светофоры можно использовать как транзитные сооружения для подключения следующих светофоров.
4.4. Кабельные сети питающих концов рельсовых цепей
Кабельная сеть питающих трансформаторов (ПТ) объединяет все жилы, необходимые для питания кодируемых и некодируемых РЦ; ПТ каждой кодируемой РЦ независимо от ее типа и длины включает по отдельной паре проводов. При электротяге постоянного тока к дублированию жил питающего конца не прибегают при длине кабеля до 1500 м.
Некодируемые РЦ при ЭП на каждый дроссель-трансформатор требуют затратить две жилы поскольку, ПТ поставлен на посту ЭЦ. Однониточные РЦ (глухие съезды) получают питание от магистрали 220 В, поэтому рассчитываются на переменное сечение. Расчет аналогичен приведенному выше расчету проводов трансформаторов питающих обогрев стрелок, только допустимое падение напряжения в этом случае равно 20 В. В результате расчета получается, что число жил равно двум.
4.5. Кабельные сети релейных концов рельсовых цепей
При составлении кабельной сети релейных трансформаторов руководствуются тем, что предельная длина кабеля без дублирования жил между путевыми реле и ДТ при любом виде тяге составляет 3000 м, при большем удалении, жилы кабеля дублируют.
Каждый релейный конец подключается двухжильным кабелем. Релейные концы удаления и приближения включаются через релейный шкаф входных светофоров данной горловины. Путевые коробки, стоящие на глухих съездах, могут использоваться как транзитные сооружения.
5. УСТРОЙСТВО ЭЛЕКТРОПИТАНИЯ ПОСТА ЭЛЕКТРИЧЕСКОЙ ЦЕНТРАЛИЗАЦИИ
5.1. Общая характеристика устройств электропитания
Устройство ЭЦ получает электропитание от двух независимых внешних источников переменного тока один из которых является основным, второй — резервным.
В настоящее время на сети дорог внедряются в эксплуатацию новые электропитающие установки, эти установки не требуют отдельных изолирующих трансформаторов, имея таковые внутри панели; содержат полупроводниковые преобразователи постоянного тока в переменный, обеспечивая резервным питанием от контрольной батареи 24В гарантированные виды нагрузок, включая стрелочные электродвигатели, что позволяет не применять для последних рабочею батарею в 220В; используют более совершенные выпрямители и зарядные устройства со взаимным резервированием и контролем их неисправности; обеспечивают бесконтактную коммутацию ряда силовых цепей.
В общем случае питающая установка содержит набор панелей определенных типов. Конструктивно панели оформлены в виде металлических шкафов с двухсторонним обслуживанием, позволяющим осуществить свободный доступ ко всем приборам. Все панели выполнены одинакового размера. На лицевой стороне изображена мнемосхема разводки питания с расположенными на ней коммутационными устройствами. С боковых сторон панели закрыты металлическими щитами.
В состав питающей установки ЭЦ крупной станции входят следующие панели:
1. вводная ПВ-ЭЦК;
2. распределительная ПР-ЭЦК;
3. выпрямительно-преобразовательная ПВП-ЭЦК;
4. стрелочная для приводов постоянного тока ПСП-ЭЦК;
5. Преобразовательная для рельсовых цепей ПП25-ЭЦ.
С помощью соответствующего набора панелей можно организовать один из двух видов питания нагрузок при полном отсутствии переменного тока во внешней сети: батарейный или безбатарейный. В курсовом проекте проектируется безбатарейный вид питания с использованием батареи на 24 В. Которая поддерживает питание реле, имеющих цепи самоблокировки, на время необходимое для переключения устройств ЭЦ с одного фидера на другой или на время запуска дизель-генератора. Кроме того, батарея в значительной степени снижает уровень переменной составляющей в токах выпрямителей, повышая надежность электролитических конденсаторов, имеющихся в устройствах. В аварийном режиме к батареи подключаются реле; лампочки табло, отображающие аварийную ситуацию, состояние путевого приближения, удаления и направления движения на прилегающих перегонах; приборы ДЦ; полупроводниковый преобразователь ПП, к которому подключаются необходимые в создавшейся ситуации маломощные цепи переменного тока.
Безбатарейная система используется, если питание получается от двух независимых источников энергии, по двум раздельным линиям с обязательным резервом от дизель-генератора. Если один из внешних источников не удовлетворяет требованиям по отношению к потребителям первой категории, то дизель- генератор включается после исчезновения напряжения и находится в «горячем» резерве вплоть до восстановления основного источника питания.
5.2. Характеристика панелей питания
5.2.1. Вводная панель ПВ-ЭЦК
Данная панель предназначена для передачи в нагрузку переменного тока от одного из двух внешних источников с фазным напряжением 220В и заземленной нейтралью, а также для подключения дизель-генератора (ДГА). Контроль за состоянием питающих фидеров осуществляют реле напряжений РН. При снижении напряжения в источнике до (187±4) В происходит его отключение, а при повышении до (198±4) В — его включение. Если напряжение в фазах фидера 2 и ДГА отсутствует, то подключение фидера 1 происходит без выдержки времени. При наличии напряжения в фидере 2 или ДГА создается выдержка времени 1...2 минуты на переключение нагрузки к фидеру 1. Включение ДГА происходит при отсутствии напряжений в обоих фидерах.
5.2.2. Распределительная панель ПР-ЭЦК
Осуществляет распределение электропитания по основным нагрузкам электрической централизации. Панель управляет режимами горения ламп светофоров и табло, формирует импульсные посылки, обеспечивает контроль заземления шести видов цепей питания с помощью сигнализаторов типа СЗИ1.
Панель содержит два трехфазных трансформатора ТС1 и ТС2 мощностью по 4.5 кВА, обеспечивающих изоляцию нагрузок от заземленной сети, вторичные обмотки трансформаторов используются индивидуально. Максимальная фазовая нагрузка каждой обмотки составляет 1.5 кВА.
При выключении сети переменного тока гарантированные нагрузки получают резервное питание от преобразователя ППВ1, расположенного в панели ПВ-ЭЦК, и контрольной батареи (пунктир на рисунке).
5.2.3. Выпрямительно-преобразовательная панель ППВ-ЭЦК
Осуществляет заряд аккумуляторной батареи 24В в нормальном и форсированном режимах, а также для получения переменного тока для нагрузок с гарантированным питанием. Панель содержит: трехфазное зарядное устройство ТЗУ типа УЗАТ-24-30; преобразователь — выпрямитель ПП типа ППВ1; полупроводниковые реле напряжения РН1 и РН2; сигнализатор заземления полюсов ЩП — ЩМ, к которым подсоединены цепи собственных реле панелей питания, СЗИ1; трансформаторы Т1 и Т2, во вторичные обмотки которых включены выпрямители Вп1 и Вп2 для питания соответственно реле вне постовых схем (2,8А; 28-30В) и электропневматических клапанов устройств пневмоочистки стрелочных переводов (1А; 220В). Выпрямитель Вп1 собран на диодах типа КД202Р, а ВП2 применен типа ВУС-1,3.
В режиме постоянного подзаряда устройств ТЗУ обеспечивает максимальный зарядный ток 30А, поддерживая напряжение на батареи в пределах 25,5-27В. При снижении напряжения до 24В с помощью РН1 включается форсированный режим, который выключается при достижении напряжения 31В. Устройство ПП в режиме выпрямления может использоваться как резерв или для увеличения зарядного тока на 20А. В режиме преобразования оно имеет следующие характеристики: входное напряжение — 24В, выходное переменного тока — 220В, частотой (50±0.5) Гц, КПД не менее 80%. Суммарная нагрузка, подключаемая в этом случае к ПП, не должна превышать 1 кВт. При разряде батарей до напряжения 22 В преобразователь с помощью реле РН2 от нее отключается.
5.2.4. Стрелочная панель ПСП-ЭЦК
Данная панель обеспечивает питание рабочих цепей стрелочных электродвигателей и электрообогрева стрелочных электропроводов. Максимальный допустимый ток, потребляемый панелью от трехфазной сети, составляет 30 А.
Рабочие цепи стрелок разбиты на две группы. Первая группа питается от выпрямителя Вп1, включенного в распределительную сеть через трансформатор ТС1, вторая — от выпрямителя Вп2 и трансформатора ТС2. Выпрямители выполнены по трехфазной мостовой схеме со взаимным резервированием. Переключение питания рабочих цепей стрелок с неисправного выпрямителя на исправный происходит по истечении 15...30 сек. Номинальное напряжение постоянного тока составляет 240 В, максимальный ток питания обеих групп рабочих цепей — 30 А. Все виды панелей имеют схему выключения рабочих цепей стрелок при работе привода на фрикцию с выдержкой времени 10...20 секунд после нажатия специальной кнопки на пульте управления.
Для целей электрообогрева стрелочных приводов предусматриваются трансформаторы ТС3 мощностью 4.5 кВА.
5.2.5. Преобразовательная панель ПП25-ЭЦК
Предназначена для питания переменным током частотой 25 Гц фазочувствительных РЦ с реле типа ДСШ-13А. С этой целью панель содержит 4 преобразователей типа ПЧ 50/25-300, из них один местный (1П) и 3 путевых (11П, 12П, 13П ). Входное напряжение 220 В однофазного переменного тока; при электрической тяге постоянного тока, для исключения влияния на работу преобразователей блуждающих токов, напряжение поступает через специально изолирующие трансформаторы типа ТСА.
5.3. Расчет потребляемой мощности
Расчет мощности, потребляемой питающей установкой поста ЭЦ, расположенного на двухпутном участке при электротяге постоянного тока осуществляется для выбора типа дизель- генератора и плавкой вставки. Станция данного курсового проекта имеет 7 одиночных стрелок и 9 съездов, 10выходных, 18 маневровых,3 входных и 2 дополнительных светофора, 31 РЦ.
Поскольку перспектива относительно развития станции в задании не указана, то к существующему количеству стрелок 25 добавляем 10% и получаем расчетное количество 28 стрелок. Питающую установку выбираем по схеме крупных станций.
5.3.1. Загрузка панели ПР-ЭЦК
Загрузку панели ПР-ЭЦК по отдельным видам устройств, получающих от нее питание определяем как произведение единичных мощностей на количество измерителей данного вида. Результаты промежуточных расчетов приведены в таблице 5.1.
Таблица 5.1
Загрузка панели ПР-ЭЦК
Количество
Мощность
Фаза
Вид нагрузки
Измеритель
измерителей
Р, Вт
Q, Вар
А-Тс1
Табло
Светофоры 1-й группы
Всего с учетом потерь
Стрелка
светофор
фаза
31
6
1
248
126
494
27,9
40,8
268,7
В-Тс1
Контрольные цепи стрелок
Схема смены направления движения
Схема ДСН на перегонах
Схема ДСН на станциях
Суммарная нагрузка
Всего с учетом потерь
комплект
схема
схема
схема
обмотка
фаза
19
2
2
1
1
1
146,3
25,4
25,4
25,4
233,6
353,6
100,7
12
12
5
129,7
329,7
С-Тс1
Вх. светофоры с двумя горящими лампами
Дополнительные входные светофоры с одной горящей лампой
Суммарная нагрузка
Всего с учетом потерь
Светофор
светофор
обмотка
фаза
2
2
1
1
136
70
206
326
38
26
64
264
Продолжение табл.5.1
А-Тс2
Дешифраторная ячейка
Устройство пневмоотчистки стрелок
Светофоры 4-й группы
Суммарная нагрузка
Всего с учетом потерь
подход
ЭПК
светофор
обмотка
фаза
2
2
9
1
1
33
26
189
248
368
34
94
61,2
189,2
389,2
В-Тс2
Схема кодирования
Светофоры 3-й группы
Суммарная нагрузка
Всего с учетом потерь
пост
светофор
обмотка
фаза
1
6
1
1
160
126
286
406
-
40,8
40,8
240,8
С-Тс2
Светофоры 2-й группы
Всего с учетом потерь
светофор
фаза
9
1
196,2
316,2
54
254
5.3.2. Расчет мощности, приходящейся на ПВП-ЭЦК
При расчете мощности необходимо знать нагрузочные токи выпрямителей. Ток заряда батареи с индексом N=5 определяем по следующей формуле:
продолжение
--PAGE_BREAK--, (5.1)
где Q1=
36 Ач— емкость аккумуляторов типа СК1;
N— индекс аккумуляторной батареи;
t
вв=0.8— КПД аккумуляторов.
I
зб=3,2 А.
Общую мощность, потребляемую выпрямителями — трехфазным ТЗУ и однофазным ПП, определяем по формуле:
, (5.2)
гдеU
бф=31 В— напряжение батареи, которого она достигает при форсированном заряде;
I
р=
I
рс+
I
рн — ток потребляемый реле и другими приборами ЭЦ в нормальном режиме работы, А ;
I
рс=
i
стр
×
n=0
,55
×
30
=5,27 А
– ток, потребляемый релейными нагрузками системы БМРЦ, А;
I
рн=2.9— ток, независимый от количества стрелок, А;
n
в=0.6— КПД преобразователя в режиме выпрямления;
Р=530,6 Вт.
5.3.3. Расчет мощностей, потребляемых стрелочными трансформаторами панели ПСП-ЭЦК
Берем удельный расход электроэнергии для привода СП-6 с двигателем МСП-0.15. Согласно рекомендации принимаем одновременный перевод четырех стрелок. Тогда суммарный расчет мощностей составит: Р=272×
4=1088 Вт.
С учетом потерь: Рп=120×
3=360 Вт;
Q
п=200
×
3=600 вар; получаем потребление мощностей от внешней сети на перевод стрелок Рстр=1088+360=1448 Вт; Q
стр= 600 вар.
Вычисляем расход мощностей на обогрев стрелок (сеть 220 В; на одну стрелку Р=45 Вт, Q=22 Вар); Р=45×
29=1260 Вт;
Q
=22
×
29=638 вар. С учетом потерь в обмотках трансформатора ТС3: Роб=1260+360=1620 Вт;
Q
об=638+600=1238 вар.
Суммарная мощность, потребляемая панелью ПСП-ЭЦК, составляет: Р=3068 Вт; Q
=1838 вар.
5.3.4. Мощность, потребляемая панелью ПП-25ЭЦК
Предварительно определим соотношение между количествами имеющихся на станции рельсовых цепей и стрелок: Кр.ц /стр=39/28=1.04. Поскольку полученный коэффициент близок к 1.2, то в последующих расчетах используем данные по расходу электроэнергии: Р=4.1 Вт; Q=4.4вар.
Мощности, потребляемые местными реле ДСШ-13А составят: P=4.1*29=118,9
Вт;
Q=4,4*29=127,6
вар;
S=174,4
ВА.
Мощность, потребляемая путевыми трансформаторами: P=16,9
×
29=490,1
Вт
; Q=29*7,9=229,1
вар
; S=541
ВА. Данную мощность можно получит от одного преобразователя МЭ (1П) и двух преобразователей ПЭ (11П, 12П ).
По таблице определяем мощности потребляемые преобразователями ПЧ50/25-300 от сети 50 Гц для ДСШ-13А: P
50
=290 Вт;
Q
50
=550 вар,
S
50
=
647,2
ВА. Для ПЭ:
P
50
=340
Вт;
Q
50
=530 вар;
S25
=250 ВА.
Общая мощность панели:
P
50
=290+680=970 Вт;
Q
50
=
1060+550=1610
вар;
S
50
=1830 ВА.
5.3.5. Мощность потребляемая панелью ПВ-ЭЦК
Для удобства расчетов составим табл. 5.2.
Таблица 5.2.
Загрузка панели ПВ-ЭЦК
Наименование
панелей
Средняя загрузка по фазе
Расчетная мощность
А
В
С
Р,
Q,
S,
Р, Вт
Q, Вар
Р, Вт
Q, Вар
Р, Вт
Q, Вар
Вт
Вар
ВА
Пр–ЭЦК
0,862
0,658
0,76
0,51
0,642
0,518
1,82
1,75
2,52
ПВП–ЭЦК
0,177
0,177
0,177
0,531
0,531
ПСП–ЭЦК
1,02
0,61
1,02
0,61
1,02
0,61
3,068
1,838
3,58
ПП–25ЭЦК
0,39
0,55
0,39
0,55
0,647
итого по ЭЦ
2,45
1,818
1,96
1,181
1,839
1,128
5,81
4,138
7,278
ПВ–ЭЦК
Нагрузка
С ГП
1,63
0,8
1,63
0,8
1,63
0,8
4,9
2,4
5,45
Нагрузка без ГП
6,37
4,13
6,37
4,13
6,37
4,13
19,1
12,4
22,8
Связь
1,81
1,71
1,81
1,71
3,62
3,42
5,06
Итого по ПВ
10,45
6,748
11,77
7,84
11,649
7,768
33,43
22,358
40,588
Находим самую загруженную фазу панели ПВ-ЭЦК:
Sa=12,44
кВА;
Sb=14,14
кВА;
Sc= 14,001
кВА.
По самой загруженной фазе определяем ток плавкой вставки: 64,27 А; данному значению тока плавкой вставки соответствует плавкая вставка на 80 А.
Определяем мощность дизель-генератора, для этого отнимем активную мощность нагрузки не гарантированного питания, от полной активной мощности, получаем мощность ДГА –14,3 кВт, следовательно выбираем ДГА-2Э16А3.
Структурная схема электропитающей установки приведена в прил.3.
6. БЛОЧНАЯ МАРШРУТНО-РЕЛЕЙНАЯ ЦЕНТРАЛИЗАЦИЯ
6.1. Основные положения
Блочная маршрутно-релейная централизация (БМРЦ) нашла широкое применение на участковых, сортировочных и промежуточных станций с числом стрелок более 30 и значительным объемом поездной и маневровой работы.
Примерно 70 % всей аппаратуры БМРЦ размещается в функциональных блоках, которые в виде типовых конструкций с законченным монтажом изготавливают на заводах. Схемы БМРЦ для станций с любым числом стрелок и светофоров собирают, соединяя между собой наборные и исполнительные блоки в соответствии с топологией однониточного плана станции. Блочное построение электрической централизации позволяет упростить проектирование устройств, сократить сроки монтажных работ, улучшить ремонтопригодность при эксплуатации действующих установок.
Аппаратура БМРЦ и электропитающие устройства размещаются, как правило, в специальном здании (пост ЭЦ). Основными помещениями поста ЭЦ являются: аппаратная, релейная, зарядная, аккумуляторная, связевая и др. В аппаратной за пультом управления работает дежурный по станции. В качестве пульта управления применяют пульт-табло или пульт-манипулятор и выносное табло.
В системе БМРЦ используют маршрутное управление стрелками и сигналами, при котором основной маршрут любой сложности устанавливается последовательным нажатием кнопок начала и конца маршрута, после чего автоматически переводятся ходовые и охранные стрелки, а затем открывается светофор.
Маршрут называется, основным, если он позволяет выполнить поездные или маневровые передвижения от начала до конца маршрута по кратчайшему расстоянию, с наибольшей скоростью и наименьшим количеством враждебных маршрутов.
Вариантные маршруты имеют одинаковые с основным начало и конец, однако их трасса отличается от основного маршрута положением стрелок. Вариантные маршруты задаются при нажатии трех и более кнопок.
В системе БМРЦ используется секционный способ размыкания маршрута, позволяющий размыкать секции постепенно, по мере их освобождения хвостом подвижного состава. Такой способ размыкания по сравнению с маршрутным размыканием, используемым, например, в системе ЭЦ-8, позволяет увеличить пропускную способность горловин станций и их маневренность.
Аппаратура БМРЦ подразделяется на наборную (маршрутный набор), исполнительную (схемы установки и размыкания маршрутов) группы и схемы управления и контроля напольными объектами. Схемы наборной группы БМРЦ предназначены для реализации маршрутного способа управления стрелками и сигналами. Реле, находящиеся в блоках наборной группы, фиксируют действия дежурного по станции на пульте управления и автоматизируют перевод стрелок по трассе маршрута и открытие светофоров. В наборной группе используются следующие типовые блоки:
НПМ — для управления входными, выходными и маршрутными светофорами, может использоваться для маневрового светофора с участка пути за входным светофором, а также для конечной поездной кнопки;
НМ1 — блок управления одиночным маневровым светофором, расположенным на границе двух стрелочных изолированных участков; применяется также для вариантной кнопки;
НМIД — дополнительный блок на шесть блоков НМ1; содержит шесть кнопочных реле — повторителей кнопок пульта управления;
НМIIП — блок управления маневровым светофором, разрешающим передвижение из нецентрализованной зоны, а также для одного из двух маневровых светофоров с участка пути или для одного из двух светофоров в створе;
НМIIАП — то же для второго светофора с участка пути или светофоров в створе; применяется совместно с блоком НМIIП;
НСОх2 — блок управления двумя одиночными стрелками;
НСС — блок управления спаренными стрелками;
НН — блок направления, фиксирующий вид и направление задаваемых маршрутов;
НПС - блок, управляющий последовательным переводом стрелок, при магистральном питании; содержит три комплекта управления аппаратуры;
БДШ-20 — блок для включения угловых кнопочных реле в блоках НСС, содержит схемы диодной развязки.
Схемы исполнительной группы БМРЦ предназначены для установки, замыкания, размыкания и искусственной разделки маршрутов с проверкой условий безопасности движения поездов.
В исполнительной группе используются следующие блоки:
ВI — блок выходного светофора, совмещенного с маневровым,при трехзначной сигнализации;
ВII— блок выходного светофора на два направления при трехзначной сигнализации; используется также для выходного светофора с главного пути при наличии вариантных маршрутов;
ВIII— блок выходного светофора, совмещенного с маневровым, при трехзначной сигнализации;
ВД - дополнительный к блокам BI...BIII; применяется такжедля управления входным светофором при местном питании ламп;
П — блок контроля состояния и отсутствия враждебных маршрутов на приемоотправочном пути;
СП — блок контроля состояния, замыкания и размыкания стрелочной секции;
УП — блок контроля состояния, замыкания и размыкания бесстрелочной секции (участка пути в горловине станции);
С — блок контроля положения стрелки;
ПС — пусковой стрелочный блок; предназначен для управления и контроля двумя (одиночными или спаренными) стрелками;
МI— блок одиночного маневрового светофора, расположенного на границе двух стрелочных изолированных участков;
МII— блок маневрового светофора, расположенного в створе (на одной ординате) со светофором встречного направления; применяется также для светофора из нецентрализованной зоны;
МIII— блок маневрового светофора с участка пути в горловине,станции, а также маневрового светофора со специализированногоприемоотправочного пути;
ОН — блок включения ограждения станционного пути;
ПП — блок управления поездным светофором на промышленном транспорте, где допускаются поездные передвижения вагонами вперед.
6.2. Маршрутный набор
Схемы маршрутного набора для заданного варианта приведены в прил 4. Такие схемы строят, соединяя блоки наборной группы четырьмя электрическими цепями, типологически отображая план станции: цепь 1 — кнопочных реле НКН и КН, 2 — автоматических кнопочных реле АКН, 3 — управляющих стрелочных реле ПУ, МУ, 4 — схема соответствия СС. Для коммутации этих цепей используют стрелочные управляющие реле ПУ и МУ, противоповторные реле ОП, МП, вспомогательное конечное реле ВКМ.
6.2.1. Фиксация начала, направления и рода маршрута
Рассмотрим фрагмент схематического плана станции, содержащий секции маневровые светофоры М5, М7 и М13, а также блочный план этого фрагмента.
При задании маневрового маршрута приема по светофору М5 до М13 последовательно нажимают кнопки М5К и М13К. Нам необходимо одновременно открыть светофор М5, для этого достаточно проделать предыдущую операцию.
Отметим, что одна и та же кнопка пульта управления может быть начальной н конечной, а при наличии вариантных маршрутов кнопки маневровых светофоров могут использоваться в качестве вариантных. Поэтому в системе БМРЦ предусматривается установка блока направления НН, который для каждого маршрута определяет его начало, вид (поездной или маневровый) и направление движения (нечетное или четное). Для этого контакты кнопочных реле, управляющие блоком НН, делят на четыре группы в зависимости от вида и направления маршрутов: нечетные поездные (шина ВН), четные поездные (ВЧ), нечетные маневровые (ВНМ) и четные маневровые (ВЧМ). Нажатие первой кнопки в каждой из групп включает соответствующее реле направления П, О, ПМ, ОМ. Реле П и О включаются непосредственно контактами кнопочных реле, реле ПМ и ОМ — через вспомогательные реле ВПМ и ВОМ.
Контактами включившегося реле направления подается полюс питания П через контакт реле отмены набора ОН шины направления Н,Ч, НМ. Включение реле направления отражается индикацией на табло в виде стрелок с зеленой (при задании поездных маршрутов) или белой (при маневровых маршрутах) полосой.
6.2.2. Схема кнопочных реле
Реле НКН и КН устанавливаются в наборных блоках, управляющих светофорами, и включаются при нажатии соответствующих кнопок на пульте управления.
Если задается маршрут по светофору М5 и кнопка М5К нажимается первой, то включается реле НКН. После отпускания соответствующих кнопок включаются цепь самоблокировки реле НКН и КН, которые выключаются при размыкании тыловых контактов реле ПУ и МУ, находящихся в соседних блоках НСС или НСО, по первой цепи межблочных соединений.
6.2.3. Автоматические кнопочные реле
Реле АКН устанавливают в наборных блоках НМI. Они предназначены для обеспечения автоматического перевода стрелок в маршрутах, содержащих два и более элементов, т. е. в маршрутах, которые, кроме начальной и конечной, имеют промежуточные кнопки.
Схема реле АКН (вторая цепь межблочных соединений) получает питание от одного полюса в блоке начальной кнопки благодаря замкнутому фронтовому контакту противоповторного реле, а от другого — в блоке конечной кнопки через контакт вспомогательного конечного реле. Реле АКН, срабатывая, замыкает цепь включения кнопочных реле НКН и КН продолжение
--PAGE_BREAK--