Реферат по предмету "Мировая экономика"


Використання алгебри матриць

Використання алгебри матриць.
В економічний задачах алгебра матриць використовується як засібзбереження інформації в табличній формі.
Приклад 1.
Сезонний продаж товарів трьох видів (α, β, γ) здійснюють три магазини (12 3). Обсяги реалізації цих товарів (в грош. од.) кожним магазином представлено у вигляді матриць
/>; В = />; С = />,
де в рядках вказано суми, отримані кожним магазином за відповідний сезон (зима, весна, літо, осінь), а в стовпчиках – суми, отримані за продаж відповідного товару (α, β, γ). Потрібно: 1) перевірити, що суми реалізації товарів першого і третього магазинів разом більші, ніж другого; 2) записати у вигляді матриці сукупні суми реалізації товарів трьома магазинами.
Розв'язування.
Знаходимо обсяг реалізації товарів кожного виду першим і третім магазинами. Він дорівнює сумі А+С:
А+С = />
Порівнюючи елементи матриці А+С з відповідними елементами матриці В, легко пересвідчитися, що у кожному сезоні перший і третій магазини разом продали кожному виду товарів більше, ніж другий магазин. Щоб записати у вигляді матриці дані про сукупний продаж магазинів, знайдемо матрицю А+В+С:
А+В+С = />
Приклад 2.
Випуск готової продукції п'яти підприємств включає чотири види виробів (α, β, γ, δ). Для їх виробництва використовуються три різні типи сировини (І, ІІ, ІІІ). Дані щоденної продуктивності підприємств з кожного виробу (число виробів за дань) і витрат сировини на одиницю виробу (кг/шт.), а також число днів роботи кожного підприємства і вартість у гривнях 1 кг сировини кожного типу, наведено в таблиці.
Вироби
Продуктивність підприємств шт. /день
Витрати сировини, кг/шт.


1
2
3
4
5
І
ІІ
ІІІ
α
6
10
6
2
5
3
4
β
4
3
4
5
10
4
6
γ
15
10
3
4
2
5
5
δ
3
5
8
7
6
4
8
6


Час роботи підприємств (дн.)
Ціна сировини (грн./кг)
100
200
140
150
170
30
20
50
Потрібно визначити:
а) сумарну продуктивність кожного підприємства по кожному з виробів за весь виробничий період);
б) потреби кожного підприємства у різних типах сировини;
в) розміри кредитування підприємств для закупівлі сировини.
Розв'язування.
Розглянемо матрицю А, що характеризує продуктивність підприємств, матрицю В – витрат сировини і С – матрицю цін, тоді Продуктивність підприємств Вид виробу
1 2 3 4 51 2 3 4
А = />Вид виробуВ = />/>Вид сировини
С= (30 20 50).
а) Кожний стовпчик матриці А відповідає денній продуктивності окремого підприємства з кожного виду продукції. Щоб отримати річну продуктивність j-го підприємства (j=1,2,3,4,5), потрібно помножити j-тий стовпець матриці А на кількість робочих днів цього підприємства. Час роботи кожного з підприємств запишемо у вигляді діагональної матриці
Т = />
Тоді загальна продуктивність за виробничий період є добуток матриць А.Т:
АТ = />/>=
підприємства
/>вироби
б) Витрати сировини кожного підприємства є добуток В.(АТ):
В.АТ =/>/>=--PAGE_BREAK--
/>
в) Вартість річного запасу сировини одержуємо як добуток матриці цін С на матрицю витрат В(АТ):
D = C.(B.(AT)) = (30 20 50)/>=
(692000 3038000 1223600 157500 1587800).
Отже, величини кредитування j-го підприємства на закупівлю сировини визначаються компонентами матриці D.
Економічні задачі, що зводяться до систем лінійних рівнянь.
Приклад 3.
Для випуску виробів трьох видів (α, β, γ) підприємство використовує сировину 3-х типів (S1, S2, S3). Норми витрат кожного з типів сировини на один виріб і обсяг витрат сировини за один день задано таблицею:
Вид сировини
Норми витрат сировини на один виріб, ум. од.
Витрати сировини за день, ум. од
α
β
γ
S1
9
3
4
2700
S2
7
1
6
2700
S3
14
5
6
4200
Знайти щоденний обсяг випуску кожного виду виробів.
Розв'язування.
Припустимо, підприємство щодня виробляє х1одиниць виробів виду α, х2одиниць – виду βі х3одиниць виробів виду γ. Тоді, відповідно з витратами
Сировини кожного виду, маємо систему: />
Розв'Язавши цю систему, знайдено х1=100, х2=200, х3=300. Це означає, що підприємство щоденно виробляє 100 виробів виду α, 200 виробів виду βі 300 виробів виду γ.
Приклад 4.
Два заводи виготовляють апарати для двох підприємство. Підприємствам необхідно отримати 120 і 80 апаратів відповідно. Перший завод випустив 150 апаратів, а другий – 50. Витрати на перевезення апаратів із заводів кожного підприємства такі:
Завод
Витрати на перевезення, грош.од.
1
2
1
10
20
2
5
25
Мінімальні витрати на перевезення становлять 2850 грош.од. Знайти оптимальний план перевезення апаратів.
Розв'язування.
Позначимо хij– кількість апаратів, що надходять з і-го заводу до j-го підприємства. Тоді можемо скласти таку систему:
/>
Розв'язавши систему, наприклад, методом Гаусса, знайдемо х11=100, х12=50, х21=20, х22=30.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.