Реферат по предмету "Математика"


Шпаргалки по геометрии, алгебре, педагогике, методике математики (ИГПИ)

Кольцом называется числ. множ. На котором выполняются три опер-ии: слож, умнож, вычит.
Полем наз. Числ множ. На котором выполняются 4 операции: слож, умнож, вычит, деление(кроме деления на 0).
Впопрос 1.
Система натуральных чисел. Принцип мат. Индукции. Аксиомы Пиано: 1.В N cущ. ! элем. a’ непосредст. следующий за а. 2.Для люб- го числа а из N сущ-т ! эл-т а’ непосредственно следующий за а. 3. Для люб. элем-та из N сущ. не более 1 эл-та за которым непосредственно следует данный эл-т. 4. Пусть М ? N и выполн-ся: 1. 1€ М 2. если а€М след-но а’€M тогда М=N опр: Любое множество N для эл-тов которого установлено отношение ‘непосредственно следовать за’ удавлет-щее аксиомама Пиано наз-ся множеством натуральных чисел. Алгебр-ие операц-и на N: 1. Сложение – это алг. опер-я определенная на N и обладающая свойствами: 1.(для люб. а) а+1=а’ 2. (для люб. а,b) a+b’= (a+b)’ (a+b-сумма, а,b -слогаемые) Т.Сложение нат. чисел сущ и !. 2. Умножение: 1. для люб а а*1=а 2. для люб а,b a*b’=ab+a T/ Умножение нат чисел сущ. и !. Свойства сложения: 1. для люб. а,b^N a+b=b+a (комут-ть) 2. Длб люб. a,b,c^N (a+b)+c=a+(b+c) (ассац-ть) Свойства умнож-я: 1.(Для люб. а,b^N) ab=ba 2. (для люб. a,b,c ^N) (ab)c=a(bc) 3.(a,b,c^N) a(b+c)=ab+ac Операции вычитания и деления лишь частично выполняются на N. Отношение порядка на N: На N введем отношение ‘ n=р*q (1), р?q. Заменим в (1) q на р: n?р2, т.к. р2?n, р??n. + Всякое нат-е число n>1 либо явл-ся простым, либо м.б. предст-а в виде произв-я простых множ-й n=р1*р2*…*рr, r?1 (1) и (1) явл-ся ! с точностью до порядка следования множ-й. (1) наз-ся разл-м числа n на простые множ-ли. Док-во: 1. док-во сущ-я предст-я (1): Если n –число простое, то +. Пусть n- сост-е и р1 его натур-й дел-ль. Как было док-но р1 число простое и можно записать: n=р*n1, где р?n1. Если n1 число простое, то +; если n1 сост-е, то р2 – его наименьший простой делитель. n1=р2*n2, n=р1*р2*n2. Если n2 сост- е, то рассуждаем аналог. Это можно прод-ть пока не придем к какому-либо ns=1. То, что после конечного числа шагов такое ns должно получ-ся => из того, что n>n1>n2>…>ns мн-во нат-х чисел, т.е. все эти числа меньше n. Итак, через конеч-е число шагов число n можно пред-ть в виде (1). 2. Док-во !: Предпол-м, что сущ-т 2 разлож-я числа n на простые множ-ли n=p1*p2*…*pr и n=q1*q1*…*qs, где р1, …рr, q1,…qs простые числа. p1*p2*…*pr= q1*q2*…*qs. Нужно показ-ть r=s. Левая часть делит-ся на р1 => на р1 делит-ся и правая часть. Учит-я, что в правой части стоят также простые числа, то по свойству простых чисел р совпадает с одним из них. Пусть р1=q1, тогда после сокращ- я: p2*…*pr= q2*…*qs. Аналог. рассуж-я, убеждаемся, что р2 совп-т с одним из множ-й q. Пусть р2=q2, после сокр-я: p3*…*pr= q3*…*qs и т.д. Предпол-м, что r?s. Пусть r считать закон-м как только найдено число >?m.
Вопрос 3. Кольцо целых чисел. Теорема о делении с остатком. НОД и НОК двух чисел. На N вып-ы опер-и “+” и “*”, но опер-я “-” вып-ся частично, т.е. ур-е а+х=в в N не всегда разреш-о. Это одна из причин разширения N. При расщ-и одной с- ы чисел до др-й должны вып-ся несколько треб-й: 1) NЄZ. 2) +,* должны вып- ся в Z, причем рез-ы опер-й для чисел из N в N и Z должны совп-ть. 3) +,* - комут-ы, ассоц-ы и связ. дистр-м законом. 4) в Z должна вып-ся опер-я “-”. т.е. ур-е а+х=в одноз-о разрешимо в Z для люб-х а,вЄZ. 5) Z должно быть миним. расш-м из всех расш-й мн-ва N облад-е св-ми 1-4. Число в делит а, если сущ-т qЄZ, что а=b*q. Отношение “b делит а” наз-ют отношением делимости и зап-т b|а. Св-ва: 1) (Ґа)(а|a). 2) (Ґa,b,c)(a|b^b|c=>a|c). 3) (Ґа)(а|0). 4) (Ґа)(0?a). 5) (Ґа)(1|a^-1|a). 6) a|b^b|a=> b=±a. 7) (Ґx)(а|b=>a|b*x). 8) (Ґx1,x2,…xr)(b|a1^b|a2…^b|ar=>b|(x1a1+x2a2+…+xrar)).9)(Ґа,b)(b|a=>|b|0^b>0=>bb|(-a)=>(-b)|a. Теорема о делении с остатком. Разделить целое число a на bЄZ, это значит найти 2 таких q и rЄZ, что a=b*q+r (1) 0?r f(x) и g(x) ассоц- ы, f(x)=cg(x), cЄP[x]. 3. g(x)|f(x) и ?(x)|g(x) => g(x)|(f(x)±?(x)). 4. Если f1(x), f2(x),…, fk(x) делятся на g(x), для Ґc1, c2,…ckЄР, то сумма [c1f1(x)+c2f2(x),…,ckfk(x)] делится на g(x). 5. Если g(x)|f1(x) => f1(x)f2(x)…fk(x) делится на g(x). 6. Если f1(x)|g(x), f2(x)|g(x),…fk(x)|g(x) => g(x)|[ n1(x)f1(x)+ n2(x)f2(x)+…+nk(x)fk(x)], ni(x), fi(x), gi(x)ЄP[x], i=1,2,…k. 7. Если n(x), f(x), g(x)ЄP[x] и n(x)|f(x) и g(x)|n(x), то g(x)|f(x). 8. Мн-ны нулевой степени из Р[х] явл- ся делителями Ґf(x)ЄP[x]. 9. Мн-ны cf(x), где с?0 и только они будут делителями мн-на f(x) имеюш-ми такую же степень, что и f(x). 10. ҐДелитель f(x), cf(x), c?0 будут делителями и для другого мн-на. Пусть Ґf(x), g(x)ЄP[x]. Общим делителем мн-в f(x), g(x) явл-ся такой мн-н d(x)ЄP[x], что d(x)|f(x) и d(x)|g(x). Нод(f(x), g(x)) наз-ся мн-н D(x) такой, что 1. D(x)=ОД(f(x), g(x)), 2. d(x)|D(x), где d(x)=ҐОД(f(x), g(x)). Покажем, что НОД сущ-т для Ґмн-в f(x), g(x)ЄP[x]?0. пусть степень f(x) ? степени g(x). Делим f(x) на g(x) с остатком f(x)=g(x)q(x)+r1(x). Если r1(x)=0, тогда НОД(f(x), g(x))=q(x). Если r1(x)?0, то степень r1(x)0. Делим g(x) на r1(x) с остатком g(x)=r1(x)q1(x)+r2(x). Если r2(x)?0, 0 Евклида. Итак, применяя алгор-м Евкл-а для мн-в f(x) и g(x) мы получили совокупность f(x) = g(x)q(x)+r1(x), g(x) = r1(x)q1(x)+r2(x), r1(x) = r2(x)q2(x)+r3(x) … rk-2(x) = rk-1(x)qk-1(x)+rk(x), rk-1(x) = rk(x)qk(x) (1). Док-м, что послед-й ?0 остаток rk(x) в алгоритме Евк-а явл-ся НОД. Будем рассм-ть (1) снизу вверх: rk(x)|?k-1(x), rk(x)|?k(x) и ?k(x)|?k-1(x) => rk(x)|rk-2(x)…, rk(x)|rk-2(x) и rk(x)|r1(x) => rk(x)|g(x), rk(x)|r1(x) и rk(x)|g(x) => rk(x)|f(x). Получим, что rk(x)|f(x) и ?k(x)|g(x) => ?k(x)= ОД(f(x),g(x)). Покажем, что rk(x)=НОД(f(x), g(x)). Пусть n(x) - Ґдругой ОД(f(x), g(x)). Рассм-м (1) сверху вниз: n(x)|f(x) и n(x)|g(x) => n(x)|r1(x), n(x)|g(x) и n(x)|r1(x) => n(x)|r2(x), n(x)|r1(x) и n(x)|r2(x) => n(x)|r3(x)… n(x)|rk-2(x) и n(x)|rk-1(x) => n(x)|rk(x). Получили: n(x)|rk(x)=ОД(f(x), g(x)) => rk(x)=НОД(f(x), g(x)). Итак, мы док-ли, что последний ?0 остаток в алгор-е Евклида явл-ся НОД для мн-в f(x) и g(x). Нетрудно убелиться, что НОД мн-в f(x) и g(x) явл-ся ! с точностью до мн-ля нулевой степени. Действительно, пердположим, что D1(x)=НОД(f(x), g(x)) и D2(x)=НОД(f(x), g(x)). Т.к. D1(x)=НОД(f(x), g(x)) => D2(x)|D1(x), а т.к. D2(x)=НОД(f(x), g(x)), то имеем D1(x)|D2(x). Получим: D2(x)|D1(x) и D1(x)|D2(x) => св-во 2 D1(x)=cD2(x). Алгоритм Евклида показываем, что если f(x) и g(x) имеют оба рац-е коэф-ы или оба действ-е коэф-ы, то и коэф-ы их НОД будут соотв-о или рац-ми, или дейст-ми. Если D(x)=НОД(f(x), g(x)), где f(x), g(x)ЄP[x], то сущ-т ?(x), ?(x)ЄP[x], что f(x)?(x)+g(x)?(x)=D(x). Обратимся к алгор-у Евклида для мн-на f(x) и g(x): f(x) = g(x)q(x)+r1(x), g(x) = r1(x)q1(x)+r2(x), r1(x) = r2(x)q2(x)+r3(x) … rk-2(x) = rk-1(x)qk- 1(x)+rk(x), rk-1(x) = rk(x)qk(x). Перепишем все рав-ва алго-а Евклида, кроме послед-го (1). Выразим остаток из каждого равенства r1(x)=f(x)- g(x)q(x), r2(x)=g(x)-r1(x)q1(x), r3(x)=r1(x)-r2(x)q2(x)…rk(x)=rk-2(x)-rk- 1(x)qk-1(x) (1). Перепишем первое рав-во (1): r1(x)=f(x)*1+g(x)(-q(x)). Обозначим ?1(x)=1, ?1(x)=-q(x), тогда имеем r1(x)=f(x)?1(x)+g(x)?1(x). Теперь второе из (1): r2(x) = g(x)-r1(x)q1(x) = g(x)-(f(x),?1(x) + g(x)?1(x)) q1(x) = g(x)-f(x)?1(x)q1(x)-g(x)?1(x)q1(x) = f(x)(-?1(x)q1(x)) + g(x)(1-?1(x)q1(x)) = f(x)?2(x)+g(x)?2(x). r2(x) = f(x)?2(x)+g(x)?2(x). Подставим полученное выражение для r1(x) и r2(x) в выражение для r3(x) из (1). Получим, проделывая аналогичные преобразования r3(x)= f(x)?3(x)+g(x)?3(x). и т.д. опускаясь ниже получим rk(x)= f(x)?k(x)+g(x)?k(x). Как было док-но выше rk(x) явл-ся НОД мн-в f(x) и g(x) , причем НОД определен с точностью до множ-ля нулевой сиепени. Умножая обе части последнего равенства на с: crk(x)= f(x)(c?k(x))+g(x)(c?k(x)).
Вопрос 7. Неприводимые над полем многочлены. Мн-н f(x)ЄP[x] наз-ся неприводимым над полем Р, если он не разлагается в произведение многоч-в положительной степени над полем Р. Мн-н наз-ся приводимым над полем Р, если он разлагается в произведение мн-в положит-й степени. Вопрос приводимости зависит от того поля, над которым мы его рассматриваем. Н-р, 1)f(x)=x2-2 неприводим над полем Q, но приводим над полем R. 2) f(x)=x2+1 неприводим над R, приводим над C. 3)?(x)=x+1 непривд- м ни над одним числовым полем. Над полем ком-х чисел неприво-м только мн-ы 1-й степени. Над полем дейст-х чисел неприводимы мн-ны 1-й степени и квадратный трехчлен, у которого дискр-т эти мн-ны отлич- ся друг от друга множ-м нулевой степени. (Док-во. Т.к. p1(x) - неприводим, то в p1(x) = p2(x)g(x) один из множ-й есть мног-н нулевой степени g(x)=c- const. Т.о. p1(x) = p2(x)c. Мног-ны p1(x), p2(x) явл-ся ассоциированными.) 2. Ґf(x)ЄP[x], p(x)ЄP[x] – непривомн-н => либо f(x), p(x) взаимно просты, либо p(x)|f(x). (Док-во. Т.к. p(x) неприводимый мн-н, то возм-ы 2 случая:1) НОД(f(x),p(x))=c-const, тогда f(x), p(x) – взаимно просты. 2) НОД(f(x),p(x))=D(x), где D(x)=cp(x), но тогда т.к. D(x)|f(x) => cp(x)|f(x) => p(x)|f(x)). 3) Если произ-е p(x)|f(x)g(x), где p(x), f(x), g(x)ЄP[x] и p(x) – непривод-м над полем P, р(x)|f(x) или p(x)|g(x). Это св-во можно распрост-ть и на случай произвольного числа множ-й. Теорема. Ґ мн-н f(x)ЄP выше нулевой степени явл-ся неприводимым над полем Р или разлагается в произведение неприводимых мн-в. f(x)=p1(x)p2(x)…pn(x) (*), где pi(x) – неприводимые мн-ны над полем Р, i=1,2,…n, причем это разложение явл-ся ! с точностью до порядка. Док-во. 1) Док-м возможность представления (*). Пусть мн-н f(x) выше нулевой степени. Если f(x) неприводим, то теорема док-на. Если f(x) приводим, то f(x)=f1(x)f2(x). Если оба мн-на f1(x) и f2(x) неприводимы над полем Р, то теорема док-на, если хотя бы 1 из них приводим над полем Р, то его разлагают в произведение множ- й положит-й степени. и т.д. Этот процесс конечен, т.к. степень мн-й в разложении f(x) уменьшается, оставаясь положит-ми и их может быть лишь конечное число. Итак, в конце концов мн-н f(x) будет предст-н в виде произвед-я непривод-х мн-й, т.е. в виде (*). 2) Док-м ! разложения мн-на f(x) на непривод-е мн-ли. Пусть f(x) допускает 2 разложения: f(x)=p1(x)p2(x)…pn(x) (1) и f(x)= q1(x)q2(x)…qn(x) (2). p1(x), …pn(x), q1(x),…,qn(x) неприводимые над полем Р мн-ны. Левые части равны => равны и правые части. p1(x)p2(x)…pn(x)=q1(x)q2(x)…qn(x) (3). Левая часть делится на р1(х) => и правая часть делится. Т.к. р1(х) неприводим, то на р1(х) разделится хотя бы один мн-ль правой части. Пусть р1(х)|q1(x). А т.к. р1(х) и q1(x) неприво-ы и один из них дел-ся на другой, то они ассоциированы, т.е. q1(x)=ср1(х). Подставляя это выр-е в (3) и сокращая обе части на р1(х): p2(x)…pk(x)=c1q2(x)q3(x)…ql(x) (4). Аналогично расс-я относительно p2(x) из (4): p3(x)…pk(x)=c1с2 q3(x)q4(x)…ql(x). И т.д. утверждаем, что k=l. Предположим противное. Пусть k и через всю с-у столб-в матницы ?, т.е. справед-о (2). => Веркор (?1,?2,…?n) – реш-е с-ы (1). Метод Гаусса – м-д последов-го исключения неизв-х. Сводится к привед-ю с-ы лин-х ур-й к ступен-у виду, при этом получ-ся с-а равнос-я данной. Если в рез-те элем-х преоб-й получ-но ур-е с коэф-ми в левой части =0 , а своб-е члены ?0, то с-а несовм-на. Если и своб-е члены =0, то это ур-е удаляется из с-ы. С-а лин-х ур-й явл-ся опред-й, т.е. имеет ! реш-е, если ступ-я с-а лин-х ур-й имеет треуг-й вид. В этом случ-е послед-е Ур-е с-ы содержит только 1 неизв-ю. Если ступ-я с-а имеет вид трапеции, то с-а неопределенная. Тогда в послед-м Ур-и с-ы несколько неизв-х (k V, ??(?)=?*xЄV, ?ЄP, xЄV. С-а V – наз-ся век-м прост-м над полем Р, а эл-ы мн-ва V – векторами = a, b,c,…x, y, если 1. (V, ?, +,-)- аддит-я абел-я группа, 2. (?*?)*a=?*(?*?), Ґ?,?ЄP,aЄV. 3. (?+?)*a=?*a+?*a, Ґ?,?ЄP,aЄV. 4. ?*(a+b)=?*a+?*b, Ґa,bЄV,Ґ?ЄP. 5. 1*a=a, Ґa. Например, ариф-е вект-е прост-во n мерных векторов V=Pn, мн-во C- к.ч. есть век-е прост-во над полем R действ-х чисел относ-о опер-й “+” к.ч. и “*” их на дейст-е число. Простейшие св-ва. Пусть V=(V,?,+,-,??) – вектор-е прост-во. Р – поле скаляров. Ґa,bЄV, Ґ?, ?ЄP. 1. a+b=a => b=0. 2. 0*?=?. 3. ?*?=?. 4. a+b=? => b=(-1)*a=-a. 5. ?*a=?*b ^ ??0 =>a=b. 6. ?*a=? => ?=0 или a=?. 7. ?*a=?*a ^ a?? => ?=?. Пусть V – вект-е прост-во над Р, a1,a2,…amЄV, с-а вект-в a1,a2,…am наз-ся лин-о незав-й, если ?1*a1+?2*a2*…?m am=? возм-но при всех коэф-х = 0. a1,a2,…am – лин-но завис-ы, если ?1*a1+?2*a2*…?m am=? возм-но хотя бы при 1 коэф-е ?i?0. Вект- е прост-во наз-ся конечномерны, если оно породж-ся конечным мн-м вект-в или сущ-ют a1,a2,…amЄV, что V – лин-я оболочка порожд. этим мн-м V=L(a1,a2,…am). Базисом (базой) конеч-го век-го прос-ва наз-ся непуст-я конеч-я лин-но незав-я с-а векторов порожда-я это прост-во. ???не доконца.
Вопрос 12. Линейные преобразования век-х прост-в. Пусть u и v векторные простр-ва над полем Р. Отобр-е ?: u(v наз-ся лин-м отображ-м или гомоморфизмом, если Ґа,bЄu,Ґ?ЄP: 1. ?(a+b)=?(a)+?(b). 2. ?(?a)=??(a). Если бы лин-е отоб-е u на v было бы биективным, то тогда его наз-и бы изоморфизмом вект-х прост-в. Мн-во всех лин-х отображ-й прост-ва u в v обозн-ся Hom(u,v). Св-ва. 1. Всякий лин-й опер-р ? в прост-ве v оставл- т неподвижный нулевой вектор,т.е.?(?)= ?. 2. ?(-x)=-?(x). 3. Всякий лин-й опре-р ? в прост-ве v переводит Ґ лин-ю комбин-ю произвольно выбранных вект- в a1,a2,…am прост-ва V прост-ва в лин-ю комбин-ю образов этих вект-в, причем с теми же самыми коэф-ми, т.е. ?(?1a1+?2a2+…?mam) = ?1?(a1)+?2(a2)+…+?m?(am). Док-во. Применим метод мат-й индукции. 1) Проверим справ-ть при m=2. ?(?1a1+?2a2) = ?(?1a1)+?(?2a2) = ?1?(a1)+?2(a2). 2) Предположим справ-ть утвер-я для m-1 вектора, т.е. ?(?1a1+?2a2+…?m-1am-1) = ?1?(a1)+?2(a2)+…+?m-1?(am-1). 3) Док-м справ-ть данного утвер-я для m век-а, т.е. ?(?1a1+?2a2+…+ ?m-1am-1+?mam) = ?[(?1a1+?2a2+…?m-1am-1)+ ?mam] = ?(?1a1+?2a2+…?m-1am-1) + ?(?mam) = ?1?(a1)+?2(a2)+…+?m-1?(am-1)+?m?(am). 4. Совокупность L всех образов ?(a) вектора а вектор-го простр-ва v, получ-е при данном преоб-ии ?, есть некоторое подпростр-во вект-го простр-ва v. Пусть ? некоторая лин-я опре-я прос-ва vn. Выберем в прос-ве vn некот-й базис e1,e2,…en. Тогда опре-р ? переводит век-ы базиса в векторы ?(e1),?(e2),…?(en). Каждый из этих век-в ! образом выраж-ся через век-ры базиса: ?(e1) = ?11*e1+?21*e2+…+?n1*en, ?(e2) = ?12*e1+?22*e2+…+?n2*en,… ?(en) = ?1n*e1+?2n*e2+…+?nn*en. Матрица A?= k–й столбец которой явл-ся коорд-ми
столбца век-ра ?(ek) относительно базиса e1,e2,…en, наз-ся матрицей лин-го опрер-ра ? в базисе e1,e2,…en. Т.о. при фиксир-м базисе e1,e2,…en, каждому лин-у опрер-у ? прост-ва vn соответ-т вполне опред-я матрица n–го порядка. И наоборот, каждая матрица n–го пор-ка явл-ся матрицей некот-го вполне опред-го лин-го опре-ра ? прост-ва vn в базисе e1,e2,…en. Совокупность ?(vn) образов всех век-в прост-ва vn при действии оператора ? наз-ся областью значений опер-ра ?. Размерность области значений ?(vn) наз- ся рангом лин-го опер-а ?. Ядром линей-го опер-а ? прост-а Vn наз-ся совокупность всех век-в прост-ва Vn отображ-ся операторов ? в нулевой вектор т. Ker ?= {aЄVn|?(a)=т}. Размерность ядра Ker ? опер-ра ? прост-ва Vn наз-ся дефектом этого опер-ра. Сумма ранга и дефекта лин-го опер-а ? прост-ва Vn = размерности этого прост-ва. Если век-р b ?0 переводится оператором ? в пропорц-й самому себе,т.е. ?(b) = ?0b, где ?0 – действ-е число, то b наз-ся собст-м вектором опер-а ?, а ?0 собственным знач-м этого опер-ра. Причем гов-т, что собст-й век-р b относ-я к собств-у знач-ю ?0. Нулевой век-р не считается собственным для опер-ра . Матрица А-?Е, где Е един-я матрица n пор-ка наз-ся харак-й матрицей матрицы А (по главной диагонали от Эл-в «-«?). Многочлен n степени |А-?Е| наз-ся харак-м мног-м матрицы А, а его корни, которые могут быть как компл-е так и действ-е, наз- ся характер-ми корнями этой матрмцы. ?0ЄR был собств-м значением лин-го опер-а ? ( ?0 было характ-м корнем опер-ра ?. Лин-е преоб-е наз-ся невыроженным, если определитель матрицы А?0. Рассм-м преоб-е x1=y1,…xn=yn (I). Это преоб-е наз-ся тождеств-м. Оно ведет себя точно также как число 1 при арифм-м умнож-и,т.е. (ҐS) S*I=I*S=S. Т.е. преоб-е I это нейтр-й эл-т относ-о умнож-я преоб-я. Обратным преоб-м преобразованию S наз-ся преоб-е S- 1 такое, что S*S-1=S-1*S=I. Подпрост-во L явл-ся инвариантным относ-о преоб- я ? пространства Vn, если образ Ґ век-ра из снова есть вектор L.
Вопрос 13. Определители. Опред-м (детерминантом) n-го порядка составл-м из n2 чисел матрицы А наз-ся алгеб-я сумма всевозм-х членов, каждый из которых представл-т собой произвед-е n эл-в, каждый из которых взят по 1 из каждой строки и столбца, взятый со знаком (-1)t , где t число инверсий перестановки вторых индексов, при усл-и, что первые индексы расположены в натуральном порядке. ?=?(- 1)ta1?a2?…an?, ?,?,…? n! перестан-к 1,2,…n. Правило Саррюса.
Св-ва опред-й. 1. Равноправность сторк и столбцов (транспонирование). 2. Опред-ль n-го порядка, у которого 2 строки (2 столбца) одинаковы =0. 3. Если все Эл-ты какого-либо столбца (строки) опред-ля n порядка * на одно и то же число m, то и значение опред-я *m. 4. Если все Эл-ты какого-либо столбца (строки) опред-я n-го пор-ка облад-т общим множителем, то его можно вынести за знак опред-ля. 5. Опред-ль n-го пор-ка, у которого Эл-ты 2-х строк (столбцов) соответ-о пропорциональны ,=0. 6. Если все Эл-ты k строки (столбца) опред-я n-го пор-ка явл-ся суммой 2-х слагаемых, то такой опред- ль = сумме 2-х опред-й n-го пор-ка. В одном из них k-я строка (столбец) состоит из первых слаг-х, а в другом - из вторых слаг-х, все остальные строки (столбцы) те же, что и в данном опред-е. 7. Если в опред-е какая- либо строка есть линейная комбинация других строк, то такой опред-ль =0. 8. Если к Эл-м какой-либо строки (столбца) опред-я n-го пор-ка прибавить соответ-ие Эл-ты другой строки (столбца) умноженные на одно и то же число, то значение опред-я не изменится. 9. Если поменять местами 2 строки (столбца) в опред-е n-го пор-ка, то опред-ль сменит свой знак на противоположный, а его абсол-я величина не изменится. Минором Мij Эл-та aij опред-я n-го пор-ка наз-ся опрде-ль n-1 порядка, который получается из опред-я вычеркиванием i строки и j столбца. Алгебаическим дополнением Aij Эл-та aij наз-ся произ-е (-1)i+j*Mij. Теорема. Какую бы строку (столбец) опред-я n пор-ка мы не взяли, значение опред-я = сумме произв=й Эл=в этой строки (столбца) на их же алгеб-е дополнения. ?=ai1Ai1+ ai2Ai2+…ainAin (i=1,2,…n)(1). ?= a1jA1j+a2jA2j+…anjAnj (2). Док-во. В силу справ-ти строк и столбцов ограничимся выводом разлож-я по строкам (1). 1) мы знаем, aijAij есть также член опред-я, причем в опред-ль входит с тем же знаком, что и в это произв- е. Т.о. Ґ слагаемое (1) состоит из членов опред-я. 2) Никакие 2 слагаемых в (1) не содержат общих членов (всего Ґ слаг-й содержит (n-1)! членов). Действительно, пусть aikAik и ailAil из (1) содержат общий член, тогда в него будут входить мн-ли aik ,ail, чего не может быть, т.к. из i строки взяты 2 эл-та. Итак (1) состоит из всех различных членов опред-я. 3) ai1Ai1+ai2Ai2+…ainAin (3). Док-м, что (3) исчерпывает все члены опред-я, т.е. Ґ член опред-я обязательно входит в (3). Рассм-м произв-е членов опред- я: (4) a1?a2?…ai-1?aijai+1?…an?, ?,?,…? пробегают n! перестан-к чисел 1,2,…n. aija1?a2?…ai-1?ai+1?…an?, ?,?,…? пробегают n! перестан-к чисел 1,2,…n. Но произведение a1?a2?…ai-1?ai+1?…an?член минора Мij => входит в алгеб-е доп-е Aij => член (4) входит в произвеление aijAij.+ 1) Если в опред-е пор-ка все эл-ы I строки, кроме эл-а aij , =0, то такой опред-ль = произв-ю его эл-та на его алгеб-е допол-е. 2) Если в опред-е n пор-ка все эл-ты лежащие ниже главной диагонали =0, то опрд-ль = произв-ю диагональных эл-в. 3) Сумма произведений эл-в какой-либо строки на алгеб-е дополнения соответствующих эл-в другой строки = 0. Формулы Крамера. Если ??0, то опред-ль имеет ! решение хn=?n/?.
Вопрос 14 Основ-ы св-ва срав-й. Приложение теории срав-й к выводу признаков делимости. Отнош-е сравним-ти в кольце цел-х чисел: 1 опр. a?b(mod m) ( m|(a-b). 2 опр. a?b(mod m) ( a=b+m*t, tЄZ. 3 опр. a?b(mod m)(a=m*q1+z ^ b=m*q2+r. Из опр. 3 =>что сравнимые по (mod m) числа явл-ся равноостаточными при делении на m. Док-во: 1) опр. 1(2. Пусть a?b (mod m) в смысле опр.1, т.е. m|(a-b) => сущ-т tЄZ, a=b+m*t, т.е. a?b(mod m) в смысле опр.2. Пусть a?b(mod m) в смысле опр.2, т.е. a=b+m*t => a-b=m*t => m|(a-b), т.е. a?b(mod m) в смысле опр.1. 2)Док-м, что опр.1(опр.2. Пусть a?b(mod m) в смысле опр.3, т.е. a=m*q1+r ^ b=m*q2+r => a-b=m*(q1-q2), где q1-q2ЄZ => m|(a-b) => a?b(mod m) в смысле опр.1. Пусть a?b(mod m) в смысле опр.1, т.е. m|(a-b). Пусть a=m*q1+r1, b=m*q2, 0?r1 m|(r1-r2). m|(r1-r2) и 0?r1-r2 r1-r2=0 => r1=r2, т.е. a?b(mod m) в смысле опр.3. т.к. отеош-е равнос. явл-ся эквивал- ти, т.е. оно симмет-о, тран-о, рефл-о, то опр.1(опр.2 ( опр.3. Сл-е 1. Если a=m*q+r, 0?r a?r(mod m). Сл-е 2. Если m|a => a=0(mod m). Сл-е 3. ҐtЄZ, m*t?0(mod m). Св-ва срав-й: 1)Отнош-е сравнимости в Z явл-ся отнош-м эквив- ти. 2)Сравнимые числа по mod m можно почленно складывать, вычитать. Док-во: a1?b1(mod m) => a1=b1+m*t1, t1ЄZ. a2?b2(mod m) => a2=b2+m*t2, t2ЄZ. a1±a2=(b1±b2)+m*(t1±t2) => ( по опр.2) (a1+a2)?(b1±b2)(mod m). Сл-е 1.Слаг- е можно из одной части сравн-я переносить в др-ю, изменив знак на против-й. 2. К Ґ части сравн-я можно прибавить число кратное модулю. 3)Сравн-е числа по mod m можно почл-о перем-ть. a1?b1(mod m) и a2?b2(mod m) => a1*a2?b1*b2 (mod m). Док-во: a1?b1(mod m) =>(по опр.2) a1=b1+m*t1, t1ЄZ. a2?b2(mod m) =>(по опр.2) a2=b2+m*t2, t2ЄZ. a1*a2=b1*b2+m*(t1*b2+t2*b1+m*t1*t2) => a1*a2?b1*b2(mod m) tЄZ. Сл-е 1. a1?b1(mod m) и a2?b2(mod m) и … an?bn(mod m) => a1*a2*…an=b1*b2*…bn(mod m). 2. a?b(mod m) => an?bn(mod m). ҐnЄN. 3. a?b(mod m) => k*a?k*b(mod m), ҐkЄZ. 4. Выраж-я сост-е путем умнож-я, выч-я, слож-я срав-х чисел, срав-ы между собой по тому же модулю. 5. f(x)=a0*xn+ a1*xn-1+…+ an-1*x+an, мн-н с цкл-ми коэф-ми Ґх1,х1,...ЄZ, тогда x1?x2(mod m) => f(x1)?f(x2)(mod m). 6. В сравн-х по mod m числах можно замен-ть слаг- е и множ-ли с сран-ми с ними числами. 4)На общий делитель взаим-о простой с mod m можно разд-ть обе части сравнения, оставив mod без измен-я. a*d=b*d(mod m) и НОД(d,m)=1 => a?b(mod m). Док-во. a*d=b*d(mod m)=> m|(a*d- b*d) => m|d*(a-b). т.к. НОД(d,m)=1, то m|(a-b) => a?b(mod m). Замтим, что если усл-е взаим-ной простоты не выпол-ся, то сокр-е обеих частей на одно и то же число можно привести к нарушению срав-ти. 5)a*d?b*d(mod m*d) => a?b(mod m), dЄN. Док-во. a*d?b*d(mod m*d) => m*d|(a*d-b*d) => m*d|d*(a-b) => m|(a-b) => a?b(mod m). 6) a?b(mod m1) и a?b(mod m2) => a?b(mod[m1,m2]), [m1,m2]=НОК(m1,m2). Признак дел-ть на 3. m=3. a=an10n+ an-110n-1+… a110+a0. 10?1(mod 3), 102?1(mod 3), 103?1(mod 3),… 10n?1(mod 3). R3=a0r0+ a1r1+…+ anrn= a0 *1+ a1 *1+ …+an 1= a0+ a1+…+an. 3|a (3|R3. Признак дел-ти на 11: a=an10n+ an-110n-1+… a110+a0. r0=1. 10?-1(mod 11), 102?1(mod 11), 103?- 1(mod 11),… 10n?(-1)n(mod 11). a?R11(mod 11). R11=a0r0+ a1r1+…+ anrn= a0 -a1+ …+(-1)n an = (a0+ a2+…)-(a1+a3+…). 11|a (11|R11, т.е. число дел-ся на 11 ( на 11 дел-ся раз-ть суммы цифр числа стоящих на неч-й и чет-х местах.
Вопрос 15 Полная и приведенная с-а вычетов. Теор-а Эйлера и Ферма. Все числа сравнимые с a по mod m объединим в одно мн-во, кот-е наз-м классом-вычитов по mod m. Обозн-м ?={xЄ|x?a(mod m)}. Ґ предст-ль мн-ва ? наз-м вычитом. Рассм-м класс вычитов по mod m: ?={xЄ|x?a(mod m)}. Т.к. сравн-е числа,т.е. все числа Є-щие одному и тому же классу вычитов по mod m имеют одинак-е ост-ки при делении на m, то и все различ-е классы вычитов можно обоз-ть с пом-ю этих ост-в,т.к. при делении Z на m получ-ся m ост-в 0,1,…, m-1, то и мн-во Z распад-ся на m классов 0,1,...m-1 (с черт-ми). Обоз-м мн-во всех классов-вычитов по mod m через Zm. Св-ва классов-вычитов: 1. ?={a+m*t|ҐtЄZ}. 2. xЄ? ^ xЄ? => ?=?. 3. ҐбЄ? => б(с чер-й)=?. 4. a?d(mod m) => ???. 5. a?0(mod m) => aЄ0(чер-й). 6. a=m*q+r, 0?r из того, что соотв-е опре-и на этом мн-ве ком-ы, ассоц-ы и св-я дист-м законом. Нетру-о пров-ть, что класс 0(с чер-й) нейтр-й Эл-т относ-о «+», 1(с чер-й) нейтр-й эл-т относ-о «*». Т.о. мн-во Zm явл-ся кольцом относ-о «+», «*» классов-вычитов по mod m и кольцо Zm=(Zm,0(с чер- й), 1(с чер-й), +,-,*) наз-ся кольцом классов-вычитов по mod m. Т.к. число классов-вычитов всегда конечно и =m,то все кольца конечны. Если из Ґ класса-вычитов по mod m взять по одному представ-ю, то получ-я с- а вычетов наз-я полной с-й вычитов по mod m. Н-р:1. полная с-а наим-х неот- х вычитов по mod m Rm={0,1,2,..m-1}, пол-я с-а наим-х полож-х вычитов по mod m Rm+={1,2,…m}, пол-я с-а абсолютно наим-х вычитов по mod m. Ґ совокуп-ть m целых чисел х1, х2, …хm попарно не сравн-х между собой по mod образ-т полную с-у вычитов по mod m. (1-я теор-а). Если в лин-й форме а*х+b, где а и mзам-но просты, переем-я х пробег-т все знач-я из полной с-ы вычитов по mod m, то и лин-я форма пробегает все знач-я некот-й полной с-ы вычитов по mod m. Док-во. Пусть х={ х1, х2, …хm} произ-я полная с-а вычетов по mod m. Док-м, что с-а x’={aх1+b1, aх2+b2, …aхm+bm} также полная с-а вычитов. С-а х’ содержит m чисел(вычитов) и все эти вычеты попарно не сравнимы между собой. Допустим противное: пусть axi+b?axj+b(mod m), 1?i, j?m, i?j. Тогда по св-ву срав-й axi?axj(mod m). А т.к. НОД(a,m)=1 (по усл-ю), то xi?xj(mod m). Это привит к тому, что xi ,xj входят в полную с-у вычитов по mod m, т.е. в Х. Итак, с-а х’ состоит из m чисел и все они попарно не срав-ы между собой => х’ явл-ся полной с=й вычитов по mod m.+ Если из Ґ класса взаимно простых с mod m взять по 1 предст-ю, то получ-ая с-а чисел наз-ся привед-й с-й вычитов по mod m. Функцией Эйлера ?(m) наз-ся число по mod m взамно простых с m или число нат-х чисел ?(p)=p-1. 2) m=p? => ?(m)=m(1-1/p). 3) m=p1?1* p2?2 *…pk?k => ?(m)=m(1-1/p1) (1-1/p2) …(1-1/pk). Признак прив-й с-ы. С-а чисел a1 ,a2…as (1) образует привед-ю с-у вычитов по mod m, если: 1) s= ?(m); 2) числа из (1) попарно не сравнимые по mod m,т.е ai не срав-ы с aj(mod m), i?j, i,j=1,2,..s; 3) НОД(ai,m)=1, i=1,2,…s. (Док-во. В силу усл-я 3) числа с-ы (1) нах-ся в классах взаимно простых с mod m, причем в силу усл-я 2) они лежат в разных классах. Т.к. число чисел в с-е (1)= ?(m) и число классов взаимно простых с mod m=?(m), то всякое число из (1) попадает в ! класс взаимно простых по mod m=> с-а (1) явл-ся привед-й с-й вычитов.) (2-я теорема) Если в лин-й форме ax, a и m взаимно просты, переменная х пробегает все значения из приведенной с-ы вычитов по mod m, то и лин-я форма ax пробегает все знач-я из некот-й привед-й с-ы вычитов. Док-во. Пусть Х={x1,x2,..x?(m)} привед-я с-а вычитов по mod m. Тогад х’={ax1, ax2,..ax?(m)} привед-я с-а вычитов по mod m. Проверим 3-е усл-е признака привед-й с-ы: 1) в с-е х’ ?(m) чисел, т.к. вместо х мы можем подст-ть ?(m) чисел; 2) Эти числа Є по mod m разным классам,т.к. вместо х берутся числа из разных классов. В этом случае числа ax (даже ax+b) попарно не сравнимы между собой по mod m.3) ax взаимно просты с mod m. НОД(a,m)=1 по усл-ю. НОД(xi, m)=1, i=1,2… ?(m), т.к. xi взяты из привед-й с-ы вычитов. НОД(axi,m)=1. i=1,2,… ?(m) => с-а х’ обр-т привед-ю с-у вычитов по mod m. Теорема Эйлера. Если а и m взаимно просты, т.е. НОД(а,m)=1, то а?(m) ?1(mod m). Док-во. Восп-ся теоремой: если в лин-ю форму ах вместо х будем подст-ть вычиты из некот-й привед-й с-ы вычитов по mod m, то и лин-я форма пробегает также все знач-я привед-й с-ы вычитов по mod m. Рассм-м привед-ю с-у наим-х полож-х вычитов по mod m: r1,r2,…rk, k=?(m), тогда ar1,ar2,…ark - также привед-я с-а вычитов. Ґ вычит последней с-ы заменим наим-м положит-м вычитом. ar1?r1’(mod m), ar2?r2’(mod m)… ark?rk’(mod m). Перемножим: ak(r1r2…rk)?r1’r2’…rk’(mod m) (1). Но r1r2…rk=r1’r2’…rk’. В левой и правой частях стоит произв-е всех вычитов из привед-й с-ы наим-х полож-х вычитов. Эти произв-я взаимно просты с mod m, т.к. Ґ множ-ль с mod m взаимно прост. => ak?1(mod m), т.к. k= ?(m) => а?(m) ?1(mod m)+ Теорема Ферма. Если m=p простое число и НОД(а,р)=1, то ар-1?1(mod m). Док- во. Если m=p,то ?(p)=p-1, тогда по теор-е Эйлера ар-1?1(mod m).+ След-е. Для ҐаЄZ, Ґp -простое число, ap?a(mod m).
Вопрос 16. Бинарные отнош-я. Отнош-я экв-ти и разбиение на классы. Фактор мн-ва. Прямое произведение 2-х мн-в: A*B={(a,b)|aЄA,bЄB}. Декартов квадрат A*A={(a,b)|a,bЄA}=A2. Бинарное отнош-е, зад-е на паре мн-в A и B: ?[pic]A*B. Бинарное отнош-е, зад-е на мн-е A: ?[pic]A2. Св-ва бин-х отнош-й: Пусть ? бин-я отнош-е опред-е на А, т.е. ?[pic]А2. 1. ? рефлек-о: (Ґ?ЄА) (а?а). 2. ? симмет-о: (Ґa,bЄA) (a?b => b?a). 3. транз- ть: (Ґа,b,cЄA) (a?b ^ b?c => a?c). Бинарное отнош-е ? опред-е на мн-ве А наз-ся отнош-м эквивал-ти, если оно реф-но, симмет-но и тран-но. Н-р: 1. А- мн-во прямых на плос-ти, ? –отнош-е параллел-ти. 2. Отнош-е подбие фигур на А точек пл-ти. С-а S={A1,A2,…An} непустых подмн-в мн-ва А наз-ся разбиением мн-ва А на классы, если ҐаЄА попад-т в ! подмн-во из системы S.Тогда –разбиение А на классы, если вып-ся 1)Ai?Ш, i=1,2,…n 2) A1[pic] A2[pic]… An=A 3)Ai[pic]Aj=Ш, i?j. Теорема. Ґ разбиению мн-ва А на классы соответствует отношение эквивал-ти. Док-во. Пусть S={A1,A2,…An} разбиение мн-ва А. Определим на А бинар-е отнош- е ? т.о.: а?b ( a,bЄAi (*). AiЄS. Покажем, что так опред-е отнош-е ? явл-ся отнош-м экв-ти, т.е. оно рефл-о, сим-о, тран-о. 1)Из (*) => а?а, т.к. Ґ эл- т нах-ся в 1 подмн-ве с самим собой. 2) Из (*) => b,aЄAi ( b?a. a?b => b?a.3)Пусть а?b ^ b?c => a,bЄAi^ b,cЄAj?Ш, что противоречит требованию 3)разбиения => Ai=Aj. A,bЄAi ^ b,cЄAi => a,cЄAi. а?b ^ b?c => a?c.+ Пусть ? отношение эквив-ти опред-е на мн-ве А. Выберем в А все элы, нах-ся в отнош- и ? с эл-ми а, образ-е из них мн-во обозн-м [a]. [a]={x|xЄA,x?a}. Мн-во [a] наз-ся смежным классом мн-ва А по отнош-ю эквив-ти ?. Теорема. Если ? отнош-е эквив-ти на мн-ве А, то с-а всех смежных классов мн- ва А явл-ся разбиением мн-ва А.Док-во.Пусть ? отнош-е эквив-ти на А. Рассм- м смежный класс ҐаЄА, [a]={x|xЄA,x?a}. Покажем, что с-а разлож-я смежных классов обр-т разбиение мн-ва А. Т.к. ? рефлек-о, т.е. а?а => [a]? Ш. Возьмем произв-й aЄA, aЄ[a] => aЄ[a][pic][b][pic][c][pic]…т.е. А[pic][a][pic][b][pic][c][pic]…Т.к. [a][pic]A, [b][pic]A, [c][pic]A…=>[a][pic][b][pic][c][pic]… [pic]A. Из этих 2-х включений => [a][pic][b][pic][c][pic]…=A. Покажем, что Ґa,bЄA, a?b(с чертой) => [a][pic][b]=Ш. Предположим: пусть [a][pic][b]?Ш => сущ-т сЄ[a] ^ cЄ[b] => a?c ^ c?b => но это противоречит усл-ю a?b(с чертой) => Ґa,bЄA, a?b(с чертой) => [a][pic][b]=Ш.+ Мн-во всех смежных классов мн-ва А по отнош-ю эквивал-ти наз-ся фактор-мн-во А по отнош-ю ?. Обозн. А|?.
Вопрос 17. Группа. Прост-е св-ва групп. Подгруппы. Изоморфизмы гомомор-ы групп. Если А?Ш, то n-мерной алгеб-й опре-й наз-ся «отношение Аn (А, т.е. (?1,?2,…?n)(( ?1,?2,…?n)ЄAn. Алгеб-й с-й наз-ся не пустое мн-во А, на котором опред-а совокуп-ть алгеб-х опер-й и отнош-й (А,[pic]f, [pic]p), где А основное мн-во,[pic]f совокуп-ть алг-х опер-й, [pic]p совокуп-ть отнош-й. Бинар-я опер-я (*) на мн-ве А наз-ся ассоц-й, если (Ґa,b,cЄA) (a*b)*c=a*(b*c). Бин-я опер-я (*) опред-я на А наз-ся комут-й, если (Ґa,bЄA) a*b=b*а. Полугруппой наз-ся с-а (А,*), сост-я из А?Ш и бин-й опер- и (*) опре-й на А, кот-я ассоц-а. Если (*) доп-о комут-а, то полугр-а наз- ся комут-й или абелевой. Моноидом наз-ся с-а (А,е,*), сост-я из А?Ш, выд-го эл-та е и бин-й опер-и (*) опре-й на А, если выпол-ся 1) * - ассоц-а, 2) е – нейт-й Эл-т относ-о *. Группой наз-ся с-а G=(G,e,*,’), где G?Ш, e - выд-й эл-т, *- бинар-я опер-я, ' – унар-я опер-я, причем: 1)* ассоц-а, 2)e- нейт- й эл-т относ-о *,т.е. (ҐaЄA) a*e=e*a=a, 3) (ҐaЄA) (сущ-т a’ЄG) a*a'=a'*a=e. Если * ком-а, то группа абелева. Если * в группе обозн-ть «+», то имеем аддит-ю группу, нейт-й Эл-т – «0», симмет-й для а: (-а)- против-й. Если * обоз-м *(точка), то имеем мультип-ю группу. Св-ва групп. 1) Всякая группа имеет ! нейтр-й эл-т. Док-во. Всякая группа явл-ся моноидом, а в моноиде нейт-й эл-т !. 2) Ґэл-та аЄG сущ-т ! симмет-й Эл-т. 3) (Ґa,bЄG) a*x=b (1) и x*a=b (2) одноз-но раз-ы. Док-во. 1. Рассм-м (1). x0 – реш-е (1),т.е. a*x0=b. x0=е*x0=(a’*a)*x0=a’*(a*x0)=a’*b. x0=a’*b. Этот Эл-т опре-й одно-о, т.к. Ґa одноз-о опред-н a’ и * есть отоб-е. *:A2(А, т.е. (a’,b)ЄA2. Одно-м соотв-т Эл-т из мн-ва А. В данном случае x0. (a’,b)(x0. Ур-е a*x=b имеет ! реш-е x0=a’*b. 2.Рассм-м (2). (x*a)*a’=b*a’. x*(a*a’)=b*a’. x*e=b*a’. 4) В группе имеет место правило сокр-я a*c=b*c => a=b. c*a=c*b =>a=b 5) (a*b)’=b’*a’. 6) (а’)’=a. Подмн-во А группы G наз-ся подгруппой этой группы, если оно само явл-ся группой относ-но установ-й на G опер-и. Чтобы установить явл-ся ли подмн-во А группы G группой нужно проверить 2 усл-я: для мульт-й группы: 1. Ґa,bЄA => abЄA 2. ҐaЄA => a-1ЄA.; для аддит-й группы: 1. Ґa,bЄA => a+bЄA 2. ҐaЄA => -aЄA. Группа G и G’ наз-ся изоморфными, если можно установить взаимно одноз-е отобр-е ?: G ( G’, G=(G,e,*,’), G’=(G’,e’,*,’), при котором ?(a*b)=?(a)*?(b). Группа G наз-ся циклич-й, если все ее Эл-ы могут быть предст-ы в виде целых степеней некоторого ее Эл-та а. Этот Эл-т наз-ся образующим Эл-м. Произ-е хА, ҐхЄG, A n=kj => n|k.+
Вопрос 18. Кольца и поля. Кольцом наз-ся с-а А=(А,0,1,+,-,*), А?Ш, 0,1 –выд-е Эл-ты, +,* бинар-е опре- и, - унар-я опер-я, если 1) (А,0,+,-) аддит-я абел-я группа, 2) (А,1,*) мульт-й моноид, 3) a(b+c)=ab+ac, (b+c)a=ba+ca, Ґa,b,cЄA. Кольцом наз-ся числ. множ., на котором выполняются три опер-и: слож-е, умнож-е, вычит-е. Св-ва колец. 1). A+b=a => b=0. 2) a+b=0 => b=-a. 3) a*0=0*a=0. Док-во. a*0+ab=a(0+b)=ab. a0+ab = ab => a0 = 0. 0a+ba = a(0+b) = ba. 0a+ba = ba => 0a = 0. 4) a(-b) = (-a)b = -ab. Док-во. a(-b)+ab = a(-b+b) = a0=0. a(-b)+ab = 0 => a(-b) = -ab. 5) (-a)(-b) = ab. Док-во. (-a)(-b) = (-a)(-b)+0 = (-a)(- b)+a(-b)+ab = ((-a)(-b)+a(-b))+ab = (-a+a)(-b)+ab = 0(-b)+ab = 0+ab = a(- b)+ab = 0 => a(-b) = -ab. 6) a(b-c) = ab-ac. Док-во. a(b-c) = a(b+(-c)) = ab+a(-c) = ab-ac. Полем наз-ся коммут-е кольцо, в котором 0?1 для Ґ Эл-та а?0 сущ-т обратный Эл-т. Р(Р,0,1,+,-,*) – поле, если 1) (Р,0,1,+,-,*) комут- е кольцо 0?1. 2) ҐаЄЗ, а?0 сущ-т а-1ЄР. Если Р – числовое мн-во, то для поля можно дать опред-е. Эл-ты a,bЄA, где А кольцо, наз-ся делителями нуля в кольце, если a?0, b?0, но ab=0. Полем наз. числ множ. на котором выполняются 4 операции: слож, умнож, вычит, деление (кроме деления на 0). Св-ва полей. 1. ab = 1 => a?0,b = a-1. 2. ac = bc ^ c?0 => a = b. 3. ab = 0 => a = 0 или b = 0. 4. a?0 ^ b?0 => ab?0 , a/b = ab-1. 5. a/b = c/d ( ad = bc. 6. a/b±c/d = (ad±bc)/bd. 7. (a/b)*(c/d) = (ac)/(bd). 8. a/b = (ac)/(bc), c?0. 9. a/b+(-a/b) = 0. 10. (a/b)*(b/a) = 1.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Художественные особенности трагедии Борис Годунов
Реферат Геофизические методы исследования горизонтальных скважин Федоровского нефтегазового месторождения Западной Сибири
Реферат Эдвард Мунк
Реферат Altered States Essay Research Paper Most americans
Реферат Актуальность программы. Актуальность курса «Экономическая и юридическая грамотность» в рамках Университета пожилых «Серебряный возраст» может быть отражена в двух направлениях
Реферат Стоимостный метод
Реферат В.И.Вернадский. Кто он?
Реферат Уголовная ответственность за насильственные действия сексуального характера
Реферат Разработка информационной системы "Производство продукции/услуг"
Реферат І. О. Навчальне завдання як засіб формування технічної творчості студентів вищих навчальних закладів Постановка проблеми
Реферат Горные породы и их виды
Реферат Восстание гербовой бумаги
Реферат Влияние вибрации на организм человека
Реферат Технология возведения многоэтажного кирпичного здания
Реферат Западники и Славянофилы. Проблема "Россия-Запад". Евразийство.