Контрольная работа 1. Что такое астероиды, где они расположены, каковы их орбиты и размеры? Назовите наиболее крупные из них. Период обращения Плутона равен 250 земных лет, так каково его расстояние от Солнца и какую часть своего «года» он прошел после того, как его открыли? Астероиды - это твердые каменистые тела, которые подобно планетам движутся по околосолнечным эллиптическим
орбитам. Но размеры этих тел намного меньше, чем у обычных планет, поэтому их еще называют малыми планетами. Диаметры астероидов находятся в пределах от нескольких десятков метров (условно) до 1000 км (размер наибольшего астероида Цереры). Термин "астероид" (или "звездоподобный") был введен известным астрономом XVIII века Уильямом Гершелем для характеристики вида этих объектов при наблюдениях в телескоп. Даже с помощью самых крупных наземных телескопов невозможно различить видимые диски у наибольших
астероидов. Они наблюдаются как точечные источники света, хотя, как и другие планеты, в видимом диапазоне сами ничего не излучают, а лишь отражают падающий солнечный свет. Диаметры некоторых астероидов были измерены с помощью метода "покрытия звезд", в те удачные моменты, когда они оказывались на одном луче зрения с достаточно яркими звездами. В большинстве же случаев их размеры оцениваются с помощью специальных астрофизических измерений и расчетов.
Основная масса известных на сегодняшний день астероидов движется между орбитами Марса и Юпитера на расстояниях от Солнца 2,2-3,2 астрономических единиц (далее - а. е.). Всего на сегодняшний день открыто примерно 20000 астероидов, из которых около 10000 зарегистрированы, то есть им присвоены номера или даже имена собственные, а орбиты рассчитаны с большой точностью. Имена собственные астероидам, обычно присваивают их первооткрыватели, но в соответствии с установленными
международными правилами. Вначале, когда малых планет было известно еще немного, их имена брали, как и для других планет, из древнегреческой мифологии. Наиболее крупными астероидами являются Церера, Паллада, Юнона, Веста, Флора. Плутон был открыт в конце 1929 го года американским астрономом К. Томбо, но наши знания о нем начали формироваться лишь с развитием техники исследований (с 1976 года).
Космические аппараты ещё не появлялись в окрестностях Плутона, поэтому вся информация получена наземными средствами. Доминирующий цвет на Плутоне — коричневый. Расстояние от Солнца 29.65 -49.28 а.е. Экваториальный диаметр 2284 км Период вращения (обратное) 6.4 дня. Период обращения 248.54 лет
Скорость движения по орбите 4.74 км/сек Температура видимой поверхности -2330 C Масса (Земля=1) 22 Средняя плотность вещества (вода=1) 2 Кол-во спутников 2. Приведите доказательства справедливости закона всемирного тяготения на Земле, в Солнечной системе и за ее пределами. Определите массу Солнца, если известно, что Земля движется вокруг него со скоростью 30 км/с на среднем расстоянии 150
млн. км. Когда какой-нибудь предмет ничем не поддерживается, он падает на Землю, потому что Земля его притягивает. Иногда говорят, что здесь действует «земное тяготение». Но этим свойством обладает не только Земля. Учёные установили, что все тела во вселенной притягиваются друг к другу с силой, которая тем больше, чем тяжелее эти тела и чем меньше расстояние между ними. Земля, Луна, Солнце, планеты, звёзды — каждое из этих тел притягивается к другому с некоторой силой.
Поэтому тяготение всех тел друг к другу названо «всемирным». Учёные поставили опыт, на котором было обнаружено притяжение друг к другу свинцовых шаров. На очень тонкой нити был подвешен в горизонтальном положении лёгкий стержень с двумя маленькими свинцовыми шариками на концах. К каждому из этих шариков было поднесено сбоку по большому свинцовому шару (с разных сторон от стержня). Тогда в каждой паре большой и маленький шары притянулись друг к другу, и в результате
этого притяжения стержень заметно повернулся. Такое притяжение нельзя было смешать с магнитным, которое бывает при приближении магнита к железу: свинец — не магнитное вещество. Здесь шарики притягивались по закону всемирного тяготения. По закону всемирного тяготения все тела во вселенной притягиваются друг к другу, независимо от того, есть ли между ними ещё какие-нибудь тела или нет, независимо от того, из каких веществ состоят притягивающиеся
тела, какова их температура и т. п. Земля притягивает Луну, и именно это притяжение заставляет её вращаться вокруг Земли. Своим притяжением Земля заставляет Луну двигаться прямо к Земле. Казалось бы, что Луна должна упасть на Землю. Но этого произойти не может потому, что Луна не находится в покое, а движется, и движение это направлено
не к Земле, а в сторону . Если бы не было всемирного тяготения и Земля не удерживала бы своим притяжением Луну, то Луна по прямой линии навсегда улетела бы прочь от Земли. Земля своим притяжением всё время сворачивает Луну с её прямолинейного пути и таким образом превращает её путь в круговой. Точнее, путь Луны вокруг Земли очень похож на круг, отличаясь от него только небольшой вытянутостью
в одном направлении. Такая кривая линия называется эллипсом. Земля обращается вокруг Солнца тоже по эллипсу, мало отличающемуся от круга, под действием притяжения Солнца. Притяжение Солнца заставляет вращаться вокруг него и другие планеты. Тяготение к Земле, удерживающее Луну возле Земли, удерживает также и все предметы на поверхности самой Земли, и потому они двигаются вместе с нею. Брошенный камень снова падает на
Землю под действием её притяжения. Всемирное тяготение, проявляющееся на каждом шагу вокруг нас в нашей повседневной жизни, действует на всех расстояниях — оно существует во всей вселенной. В этом убедились учёные ещё в прошлом столетии. Далеко-далеко от Земли — так далеко, что свет, несущийся со скоростью 300 000 километров в секунду, употребляет сотни лет, чтобы пройти это расстояние,— существуют звёзды — далёкие солнца, вра¬щающиеся друг около друга.
Их движения показывают нам, что эти звёзды связаны взаимным тяготением так же, как Луна и Земля . Масса солнца Благодаря своей инерции Земля постоянно стремится улететь от Солнца по прямой (первый закон Ньютона). Вместе с тем Земля испытывает солнечное притяжение (закон всемирного тяготения) и приобретает ускорение, направленное к Солнцу (второй закон Ньютона).
Эти два движения складываются — получается вечное обращение Земли вокруг Солнца. Стоит напомнить, что свободное падение отнюдь не обязано быть отвесным. Пуля, вылетевшая из дула пистолета параллельно земной поверхности, приближается к ней так же быстро, как и пуговица, упавшая со стола. Земля как пуля. Она не отвесно падает на Солнце. Каково же ускорение падающей
Земли? Длину земной орбиты подсчитать проще простого. Эта орбита — круг радиусом 150 миллионов километров. Помножьте радиус на «два пи» (6,28) — выйдет миллиард километров. Время — 365 суток, год нашей жизни. Отсюда нетрудно подсчитать, что за секунду Земля успевает пролететь 30 километров по своей орбите и одновременно упасть к
Солнцу на три миллиметра. По формуле Галилея S=acr2/2 сразу же получаем значение ускорения земли ас = 0 6 см/сек2. Маловато, конечно. Но зато мы можем, не опасаться катастрофического столкновения со своим жарким светилом. Масса Солнца теперь выясняется автоматически по формуле , получается 2*1027 тонн. Обратите внимание, на этот раз нам не понадобилась масса Земли. Достаточно было знать ускорение ее падения на
Солнце. Любое( тело находящееся на земной орбите будет падать к Солнцу с тем же ускорением - 0,6 см/сек2. Так в астрономическом масштабе продолжает действовать постоянство ускорения свободного падения для тел каких, угодно масс. 3. Чем отличается естественнонаучный подход от философского? Данные подходы отличаются, тем, что положения естественнонаучного подхода строятся на основе доказанных
утверждениях и предложениях разработанных на основе доказанных утверждений. Философский подход зачастую выходит за пределы доказанных утверждений. 4. Как развивались представления о составе веществ? Какие основные законы определяют состав веществ? Каково значение закона Авогадро? Вещество - некая субстанция, представляющая вид материи и состоящая из дискретных образований,
обладающих массой покоя, в том числе из неделимых элементарных частиц, обладающих физическими параметрами (заряд, масса, энергия, спин и т.д.). Эта субстанция структурирована и ее структурные элементы находятся в беспрерывном движении, взаимодействуют друг с другом и образуют материальные тела. В физическим смысле природа вещей определяется веществом . Законы определяющие состав веществ Закон Кюри Пьер
Кюри в 1895г. показал, что парамагнитная восприимчивость сильно зависит от температуры и для многих веществ обратно пропорциональна абсолютной температуре. Уравнение, выражающее эту зависимость, называют законом Кюри, а входящую в него величину называют мольной константой Кюри; D выражает диамагнитный вклад (он обычно отрицателен).
Первый член этого уравнения можно рассчитать на основе принципа Больцмана при допущении, что данное вещество содержит постоянные магнитные дипольные моменты, способные ориентироваться в магнитном поле. Такой теоретический расчет был выполнен французским ученым Полем Ланжевеном в 1905г. Он вывел уравнение, где - величина дипольного магнитного момента в расчете на один атом или молекулу. Это уравнение позволяет рассчитать значения магнитных моментов по экспериментальной
магнитной восприимчивости парамагнитных веществ, измеренной в некотором интервале температур. На основании полученных значений можно определить число не спаренных электронов в молекулах веществ. Закон постоянства состава вещества Закон постоянства состава был впервые сформулирован французским ученым Ж. Прустом в 1808г. Современная формулировка закона такова: Всякое чистое вещество независимо от способа его получения имеет постоянный качественный и количественный
состав. Закон постоянства состава вещества вытекает из атомно-молекулярного учения. Вещества с молекулярной структурой состоят из одинаковых молекул, потому и состав таких веществ постоянен. При образовании из двух элементов нескольких соединений атомы этих элементов соединяются друг с другом в молекулы различного, но определенного состава. Например, азот с кислородом образует шесть соединений. В начале ХХ века выяснилось, что соединения переменного состава встречаются не только среди соединений
металлов друг с другом, но и среди других твердых тел, например оксидов, сульфидов, нитридов, карбидов и других неорганических веществ, имеющих кристаллическую структуру. Для многих соединений переменного состава установлены пределы, в которых может изменяться их состав. Например, оксид урана (IV) имеет состав UO2.5 до UO3, оксид ванадия (II) – от VO0.9 до VO1.3. Таким образом, в формулировку закона постоянства состава вносится уточнение:
Состав молекулярной структуры, т. е. состоящих из молекул является постоянным независимо от способа получения. Состав соединений с молекулярной структурой (с атомной, ионной и металлической решеткой) не является постоянным и зависит от условий получения. Закон сохранения массы вещества М. В. Ломоносов впервые сформулировал закон сохранения массы вещества в 1748г а экспериментально подтвердил его на примере обжига металлов в запаянных сосудах в 1756г.
Современная формулировка закона такова: Масса веществ, вступивших в химическую реакцию, равна массе веществ, образующихся в результате реакции. Независимо от Ломоносова это закон был установлен в 1789г. французским химиком Лавуазье, который показал, что при химических реакциях сохраняется не только общая масса веществ, но и масса каждого из элементов, входящих в состав взаимодействующих веществ.
Закон сохранения массы веществ М. В. Ломоносов связывал с законом сохранения энергии (количества движения). Он рассматривал эти законы в единстве как все общий закон природы. Ломоносов писал: «Все перемены в натуре случающиеся такого суть состояния, что, сколько чего у одного тела отнимается, столько присовокупится к другому. Так, ежели где убудет несколько материи, то умножится в другом месте.
Сей всеобщий естественный закон простирается и в самые правила движения: ибо тело, движущее своей силою другое, столько же оные у себя теряет, сколько сообщает другому, которое от него движение получает». Взгляды Ломоносова были подтверждены современной наукой. В 1905г. А. Эйнштейн показал, что между массой тела (m) и его энергией (E) существует связь, выражаемая уравнением, где с – скорость света в вакууме. Закон сохранения массы дает материальную основу для составления
уравнений химических реакций. Закон Авогадро - одно из важных основных положений химии, гласящее, что "в одинаковых объемах различных паров и газов находится одинаковое число частиц". Формулированное еще в 1811 году (Амедеем Авогадро, профессором физики в Турине, род. в 1776 г умер в 1856 г.) положение это имело громадное значение для развития химии, так как оно дает возможность определять частичный вес тел, способных переходить в газообразное или парообразное
состояние. Если через m мы означим частичный вес тела, и через d удельный вес его в парообразном состоянии, то отношение m должно быть постоянным для всех тел. Опыт показал, что для всех изученных, переходящих в пар без разложения, эта постоянная равна 28,9, если при определении частичного веса исходить из уд. в. воздуха, принимаемого за единицу, но эта постоянная будет равняться 2, если принять за единицу уд. вес водорода.
Означив эту постоянную, или что то же, общий всем парам и газам частичный объем через С, мы из формулы имеем с другой стороны m = d C. Так как уд. вес пара определяется легко, то значит, подставляя значение d в формулу выводится и неизвестный частичный вес данного тела. Элементарный анализ напр. одного из полибутиленов указывает, в нем пайное отношение углерода к водороду, как 1 к 2, а потому частичный вес его может быть выражен формулою
СН2 или C2H4, C4H8 и вообще (СН2)n. Частичный вес этого углеводорода тотчас определяется, следуя закону Авогадро, раз мы знаем удельный вес, т.е. плотность его пара; он определен Бутлеровым и оказался 5,85 (по отношению к воздуху); т.е. частичный вес его будет 5,85?28,9 = 169,06. Формуле C12H22 отвечает частичный вес 154, формуле C12H24 - 168, а C13H26 - 182. Формула C11H24 близко отвечает наблюденной величине, а потому она и должна
выражать собою величину частицы нашего углеводорода CH2 . 5. Каковы источники энергии звезд? Дайте представление об эволюции обычных звезд и красных гигантов и поясните процессы, происходящие в их недрах. Какова перспектива эволюции Солнца? Откуда берется энергия звезд? Делалось много разных предположений об источниках солнечной энергии. Но только новые открытия физики позволили это объяснить.
Зная, что происходит в наружных слоях Солнца, и пользуясь законами физики, астрономы установили, что в недрах Солнца температура около 20 млн. градусов. В этих условиях происходит сложное превращение самого легкого элемента - водорода - в гелий. При этом выделяется огромное количество атомной энергии, которой вполне достаточно, чтобы обеспечить излучение Солнца. Как и все тела в природе, звёзды не остаются неизменными, они рождаются, эволюционируют,
и наконец "умирают". Чтобы проследить жизненный путь звёзд и понять, как они стареют, необходимо знать, как они возникают. В прошлом это представлялось большой загадкой ; современные астрономы уже могут с большой уверенностью подробно описать пути, ведущие к появлению ярких звёзд на нашем ночном небосводе. Не так давно астрономы считали, что на образование звезды из межзвёздных газа и пыли требуются миллионы лет. Но в последние годы были получены поразительные фотографии области неба, входящей в состав
Большой Туманности Ориона, где в течение нескольких лет появилось небольшое скопление звёзд. На снимках 1947г. в этом месте была видна группа из трёх звездоподобных объектов. К 1954г. некоторые из них стали продолговатыми, а к 1959г. эти продолговатые образования распались на отдельные звёзды - впервые в истории человечества люди наблюдали рождение звёзд буквально на глазах этот беспрецедентный случай показал астрономам, что звёзды могут рождаться за короткий интервал времени,
и казавшиеся ранее странными рассуждения о том, что звёзды обычно возникают в группах, или звёздных скоплениях, оказались справедливыми. Каков же механизм их возникновения? Почему за многие годы астрономических визуальных и фотографических наблюдений неба только сейчас впервые удалось увидеть "материализацию" звёзд? Рождение звезды не может быть исключительным событием : во многих участках неба существуют условия, необходимые для появления этих тел.
В результате тщательного изучения фотографий туманных участков Млечного Пути удалось обнаружить маленькие чёрные пятнышки неправильной формы, или глобулы, представляющие собой массивные скопления пыли и газа. Они выглядят чёрными, так как не испускают собственного света и находятся между нами и яркими звёздами, свет от которых они заслоняют. Эти газово-пылевые облака содержат частицы пыли, очень сильно поглощающие свет, идущий от расположенных
за ними звёзд. Размеры глобул огромны - до нескольких световых лет в поперечнике. Несмотря на то что вещество в этих скоплениях очень разрежено, общий объём их настолько велик, что его вполне хватает для формирования небольших скоплений звёзд, по массе близких к Солнцу. Для того чтобы представить себе, как из глобул возникают звёзды, вспомним, что все звёзды излучают и их излучение оказывает давление. Разработаны чувствительные инструменты, которые реагируют на давление
солнечного света, проникающего сквозь толщу земной атмосферы. В чёрной глобуле под действием давления излучения, испускаемого окружающими звёздами, происходит сжатие и уплотнение вещества. Внутри глобулы гуляет "ветер", разметающий по всем направлениям газ и пылевые частицы, так что вещество глобулы пребывает в непрерывном турбулентном движении. Глобулу можно рассматривать как турбулентную газово-пылевую массу, на которую со всех сторон давит
излучение. Под действием этого давления объём, заполняемый газом и пылью, будет сжиматься, становясь всё меньше и меньше. Такое сжатие протекает в течение некоторого времени, зависящего от окружающих глобулу источников излучения и интенсивности последнего. Гравитационные силы, возникающие из-за концентрации массы в центре глобулы, тоже стремятся сжать глобулу, заставляя вещество падать к её центру. Падая, частицы вещества приобретают кинетическую энергию и разогревают газово-пылевое облако.
Падение вещества может длиться сотни лет. Вначале оно происходит медленно, неторопливо, поскольку гравитационные силы, притягивающие частицы к центру, ещё очень слабы. Через некоторое время, когда глобула становится меньше, а поле тяготения усиливается, падение начинает происходить быстрее. Но, как мы уже знаем, глобула огромна, не менее светового года в диаметре. Это значит, что расстояние от её внешней границы до центра может превышать 10 триллионов километров.
Если частица от края глобулы начнёт падать к центру со скоростью немногим менее 2км/с, то центра она достигнет только через 200 000 лет. Наблюдения показывают, что скорости движения газа и пылевых частиц на самом деле гораздо больше, а потому гравитационное сжатие происходит значительно быстрее. Падение вещества к центру сопровождается весьма частыми столкновениями частиц и переходом их кинетической энергии в тепловую. В результате температура глобулы возрастает.
Глобула становится протозвездой и начинает светиться, так как энергия движения частиц перешла в тепло, нагрела пыль и газа. В этой стадии протозвезда едва видна, так как основная доля её излучения приходится на далёкую инфракрасную область. Звезда ещё не родилась, но зародыш её уже появился. Астрономам пока неизвестно, сколько времени требуется протозвезде, чтобы достигнуть той стадии, когда она начинает светиться как тусклый красный шар и становится видимой.
По различным оценкам, это время колеблется от тысяч до нескольких миллионов лет. Однако, помня о появлении звёзд в Большой Туманности Ориона, стоит, пожалуй считать, что наиболее близка к реальности оценка, которая даёт минимальное значение времени. Продолжительность жизни звезды зависит от её массы. Звёзды с массой меньшей, чем у Солнца, очень экономно тратят запасы своего ядерного "топлива"
и могут светить десятки миллиардов лет. Внешние слои звёзд, подобных нашему Солнцу, с массами не большими 1,2 масс Солнца, постепенно расширяются и в конце концов совсем покидают ядро звезды. На месте гиганта остаётся маленький и горячий белый карлик . 6. Что представляет собой процесс фотосинтеза? Сравните клеточное дыхание и фотосинтез. В настоящее время известно, что фотосинтез проходит две стадии, но только одна из них – на свету.
Доказательства двухстадийности процесса впервые были получены в 1905 году английским физиологом растений Ф.Ф. Блэклином, который исследовал влияние освещенности и температуры на объем фотосинтеза. На основании экспериментов, Блэклин сделал следующие выводы. 1. Имеется одна группа светозависимых реакций, которые не зависят от температуры. Объем этих реакций в диапазоне низких освещенностей мог возрастать с увеличением освещенности, но не
с увеличением температуры. 2. Имеется вторая группа реакций, зависимых от температуры, а не от света. Оказалось, что обе группы реакций необходимы для осуществления фотосинтеза. Увеличение объема только одной группы реакций увеличивает объем всего процесса, но только до того момента, пока вторая группа реакций не начнет удерживать первую. После этого необходимо ускорить вторую группу реакций, чтобы первые могли проходить без ограничений.
Таким образом, было показано, что обе стадии светозависимы: «световая и темновая». Важно помнить, что темновые реакции нормально проходят на свету и нуждаются в продуктах световой стадии. Выражение «темновые реакции» просто означает, что свет как таковой в них не участвует. Объем темновых реакций возрастает с увеличением температуры, но только до 30о, а затем начинает падать. На основании этого факта предположили, что темновые реакции катализируются ферментами, поскольку обмен
ферментативных реакций, таким образом, зависит от температуры. В последствие оказалось, что данный вывод был сделан неправильно. На первой стадии фотосинтеза (световые реакции) энергия света используется для образования АТР (молекула аденозин-трифосфата) и высокоэнергетических переносчиков электронов. На второй стадии фотосинтеза (темновые реакции) энергетические продукты, образовавшиеся в световых
реакциях, используются для восстановления СО2 до простого сахара (глюкозы). Процесс фотосинтеза все больше и больше привлекает к себе внимание ученых. Наука близка к разрешению важнейшего вопроса – искусственного создания при помощи световой энергии ценных органических веществ из широко распространенных неорганических веществ. Проблема фотосинтеза усиленно разрабатывается ботаниками, химиками, физиками и другими специалистами.
В последнее время уже удалось искусственно получить синтез формальдегида и сахаристых веществ из водных растворов карбонатной кислоты; при этом роль поглотителя световой энергии играли вместо хлорофилла карбонаты кобальта и никеля. Недавно синтезирована молекула хлорофилла. Успехи науки в области синтеза органических веществ наносят сокрушительный удар по идеалистическому учению – витализму, который доказывал, что для образования органических веществ из неорганических необходима
особая «жизненная сила» и что человек не сможет синтезировать сложные органические вещества. Фотосинтез в растениях осуществляется в хлоропластах. Он включает преобразования энергии (световой процесс), превращение вещества (темновой процесс). Световой процесс происходит в гилакоидах, темновой – в строме хлоропластов. Обобщенное циркулирование фотосинтеза выглядит следующим образом: свет 6СО2 + 12Н2О
C6H12O6 + 6Н2О + 6О2 Два процесса фотосинтеза выражаются отдельными уравнениями свет 12Н2О 12H2 + 6О2 + энергия АТР (световой процесс) свет 12H2 + 6О2 + энергия АТР С6Н12О6 + Н2О (темновой процесс) Основными процессами, обеспечивающими клетку энергией, являются фотосинтез, хемосинтез, дыхание, брожение и гликолиз как этап дыхания. С кровью кислород проникает в клетку, вернее в особые клеточные структуры – митохондрии.
Они есть во всех клетках, за исключением клеток бактерий, сине-зеленых водорослей и зрелых клеток крови (эритроцитов). В митохондриях кислород вступает в многоступенчатую реакцию с различными питательными веществами – белками, углеводами, жирами и др. Этот процесс называется клеточным дыханием. В результате выделяется химическая энергия, которую клетка запасает в особом веществе – аденозинтрифосфорной кислоте, или АТФ. Это универсальный накопитель энергии, которую организм тратит на рост, движение, поддержание
своей жизнедеятельности. Дыхание – это окислительный, с участием кислорода распад органических питательных веществ, сопровождающийся образованием химически активных метаболитов и освобождением энергии, которые используются клетками для процессов жизнедеятельности. Общее уравнение дыхания имеет следующий вид: Где Q=2878 кДж/моль. Но дыхание, в отличие от горения, процесс многоступенчатый.
В нем выделяют две основные стадии: гликолиз и кислородный этап. Гликолиз Драгоценная для организма АТФ образуется не только в митохондриях, но и в цитоплазме клетки в результате гликолиза (от греч. «гликис» - «сладкий» и «лисис» – «распад»). Гликолиз не является мембранозависимым процессом. Он происходит в цитоплазме. Однако ферменты гликолиза связаны со структурами цитоскелета.
Гликолиз – процесс очень сложный. Это процесс расщепления глюкозы под действием различных ферментов, который не требует участия кислорода. Для распада и частичного окисления молекулы глюкозы необходимо согласованное протекание одиннадцати последовательных реакций. При гликолизе одна молекула глюкозы дает возможность синтезировать две молекулы АТФ. Продукты расщепления глюкозы могут затем вступать в реакцию брожения, превращаясь в этиловый спирт
или молочную кислоту. Спиртовое брожение свойственно дрожжам, а молочнокислое – свойственно клеткам животных и некоторых бактерий. Многим аэробным, т.е. живущим исключительно в бес кислородной среде, организмам хватает энергии, образующейся в результате гликолиза и брожения. Но аэробным организмам необходимо дополнить этот небольшой запас, причем весьма существенно . Кислородный этап дыхания Продукты расщепления глюкозы попадают в митохондрию.
Там от них сначала отщепляется молекула углекислого газа, который выводится из организма при выходе. «Дожигание» происходит в так называемом цикле Кребса (приложение №1) (по имени описавшего его английского биохимика) – последовательной цепи реакций. Каждый из участвующих в ней ферментов вступает в соединения, а после нескольких превращений вновь освобождается в первоначальном виде. Биохимический цикл вовсе не бесцельное хождение по кругу.
Он больше схож с паромом, который снует между двумя берегами, но в итоге люди и машины движутся в нужном направлении. В результате совершающихся в цикле Кребса реакций синтезируются дополнительные молекулы АТФ, отщепляются дополнительные молекулы углекислого газа и атомы водорода. Жиры тоже участвуют в этой цепочке, но их расщепление требует времени, поэтому если энергия нужна срочно, то организм использует не жиры, а углеводы. Зато жиры – очень богатый источник энергии.
Могут окислятся для энергетических нужд и белки, но лишь в крайнем случае, например при длительном голодании. Белки для клетки – неприкосновенный запас. Главный по эффективности процесс синтеза АТФ происходит при участии кислорода в многоступенчатой дыхательной цепи. Кислород способен окислять многие органические соединения и при этом выделять много энергии сразу. Но такой взрыв для организма был бы губителен. Роль дыхательной цепи и всего аэробного, т.е. связанного
с кислородом, дыхания состоит именно в том, чтобы организм обеспечивался энергией непрерывно и небольшими порциями – в той мере, в какой мере это организму нужно. Можно провести аналогию с бензином: разлитый по земле и подожженный, он мгновенно вспыхнет без всякой пользы. А в автомобиле, сгорая понемногу, бензин будет несколько часов совершать полезную работу. Но для этого такое сложное устройство, как двигатель.
Дыхательная цепь в совокупности с циклом Кребса и гликолизом позволяет довести «выход» молекул АТФ с каждой молекулы глюкозы до 38. А ведь при гликолизе это соотношение было лишь 2:1. Таким образом, коэффициент полезного действия аэробного дыхания намного больше . Как устроена дыхательная цепь? Механизм синтеза АТФ при гликолизе относительно прост и может без труда быть воспроизведен в пробирке. Однако никогда не удавалось лабораторно смоделировать дыхательный синтез
АТФ. В 1961 году английский биохимик Питер Митчел высказал предположение, что ферменты – соседи по дыхательной цепи – соблюдают не только строгую очередность, но и четкий порядок в пространстве клетки. Дыхательная цепь, не меняя своего порядка, закрепляется во внутренней оболочке (мембране) митохондрии и несколько раз «прошивает» ее будто стежками. Попытки воспроизвести дыхательный синтез АТФ потерпели неудачу, потому что роль мембраны исследователями недооценивались.
А ведь в реакции участвуют еще ферменты, сосредоточенные в грибовидных наростах на внутренней стороне мембраны. Если эти наросты удалить, то АТФ синтезироваться не будет. Дыхание, приносящее вред. Молекулярный кислород – мощный окислитель. Но как сильнодействующее лекарство, он способен давать и побочные эффекты. Например, прямое взаимодействие кислорода с липидами вызывает появление ядовитых перекисей и нарушает
структуру клеток. Активные соединения кислорода могут повреждать также белки и нуклеиновые кислоты. Почему же не происходит отравления этими ядами? Потому, что им есть противоядие. Жизнь возникла в отсутствие кислорода, и первые существа на Земле были анаэробными. Потом появился фотосинтез, а кислород как его побочный продукт начал накапливаться в атмосфере. В те времена этот газ был опасен для всего живого.
Одни анаэробы погибли, другие нашли бескислородные уголки, например, поселившись в комочках почвы; третьи стали приспосабливаться и меняться. Тогда-то и появились механизмы, защищающие живую клетку от беспорядочного окисления. Это разнообразные вещества: ферменты, в том числе разрушитель вредоносной перекиси водорода – катализа, а также многие другие небелковые соединения. Дыхание вообще сначала появилось, как способ удалять кислород из окружающей организм атмосферы и лишь
потом стало источником энергии. Приспособившиеся к новой среде анаэробы стали аэробами, получив огромные преимущества. Но скрытая опасность кислорода для них все же сохранилась. Мощность антиокислительных «противоядий» небезгранична. Вот почему в чистом кислороде, да еще под давлением, все живое довольно скоро погибает. Если же клетка окажется повреждена каким-либо внешним фактором, то защитные механизмы обычно отказывают
в первую очередь, и тогда кислород начинает вредить даже при обычной атмосферной концентрации 7. Характеризуйте концепции близкодействия и дальнодействия. Кто и как создавал теорию электромагнитного поля? Как определили скорость света? Дальнодействие - действие на расстоянии, при котором действие тел друг на друга передается мгновенно через пустоту на любые расстояния без каких-либо посредствующих звеньев.
Близкодействие - передача взаимодействия посредством полей от точки к точке с конечной скоростью, не превышающей скорость света в вакууме. Теория электромагнитного поля была создана Максвеллом (Maxwell) Джеймсом Клерком (Clerk) (1831-1879), английским физиком, создателем классической электродинамики. Теории поля посвящен ряд работ: «О физических линиях силы» (1861 - 1862), «Динамическая теория поля» (1864 - 1865). Вот в этой последней работе и дана система знаменитых
уравнений. Теория Максвелла, по словам Герца это уравнения Максвелла. Суть этой теории сводилась к тому, что изменяющееся магнитное поле создает не только в окружающих телах, но и в вакууме вихревое электрическое поле, а оно, в свою очередь, вызывает появление магнитного поля. Теория электромагнитного поля Максвелла знаменовала собой начало нового этапа в физике. Именно на этом этапе развития физики электромагнитное поле стало реальностью, материальным носителем
взаимодействия. Мир постепенно стал представляться электродинамической системой, построенной из электрически заряженных частиц, взаимодействующих посредством электромагнитного поля. РЕМЕР (Roemer) Оле (1644–1710), датский астроном. В 1671–81 годах работал в Париже. По наблюдениям спутников Юпитера впервые определил скорость света (1675). Изобрел несколько инструментов, в т. ч. меридианный
круг и пассажный инструмент. Составил каталог из 1000 звезд. 8. Поясните понятие элементарной частицы, как классифицируются элементарные частицы и как они исследуются. Что такое «античастицы»? В чем состоит гипотеза кварков? Какие проблемы стоят в теории элементарных частиц? Элементарные частицы, в точном значении этого термина это первичные, далее неразложимые частицы, из
которых, по предположению, состоит вся материя. Элементарные частицы современной физики не удовлетворяют строгому определению элементарности, поскольку большинство из них по современным представлениям являются составными системами. Общее свойство этих систем заключается в том. Что они не являются атомами или ядрами (исключение составляет протон). Поэтому иногда их называют субъядерными частицами.
Частицы, претендующие на роль первичных элементов материи, иногда называют "истинно элементарные частицы". Первой открытой элементарной частицей был электрон. Его открыл английский физик Томсон в 1897 году. Первой открытой антицастицей был позитрон - частица с массой электрона, но положительным электрическим зарядом. Это античастица была обнаружена в составе космических лучей американским физиком
Андерсоном в 1932 году. В современном физике в группу элементарных относятся более 350 частиц, в основном нестабильных, и их число продолжает расти. Если раньше элементарные частицы обычно обнаруживали в космических лучах, то с начала 50-х годов ускорители превратились в основной инструмент для исследования элементарных частиц. Микроскопические массы и размеры элементарных частиц обусловливают квантовую специфику их поведения: квантовые закономерности являются определяющими в поведении элементарных частиц.
Наиболее важное квантовое свойство всех элементарных частиц - это способность рождаться и уничтожаться (испускаться и поглощаться) при взаимодействии с другими частицами. Все процессы с элементарными частицами протекают через последовательность актов их поглощения и испускания. Различные процессы с элементарными частицами заметно отличаются по интенсивности протекания. В соответствии с различной интенсивностью протекания взаимодействия элементарных частиц феноменологически
делят на несколько классов: сильное, электромагнитное и слабое. Кроме того, все элементарные частицы обладают гравитационным взаимодействием. Сильное взаимодействие элементарных частиц вызывает процессы, протекающие с наибольшей по сравнению с другими процессами интенсивностью и приводит к самой сильной связи элементарных частиц. Именно оно обусловливает связь протонов и нейтронов в ядрах атомов.
Электромагнитное взаимодействие отличается от других участием электромагнитного поля. Электромагнитное поле (в квантовой физике - фотон) либо излучается, либо поглощается при взаимодействии, либо переносит взаимодействие между телами. Электромагнитное взаимодействие обеспечивает связь ядер и электронов в атомах и молекулах вещества, и тем самым определяет (на основе законов квантовой механики) возможность устойчивого состояния таких микросистем.
Слабое взаимодействие элементарных частиц вызывает очень медленно протекающие процессы с элементарными частицами, в том числе распады квазистабильных частиц. Слабое взаимодействие гораздо слабее не только сильного, но и электромагнитного взаимодействия, но гораздо сильнее гравитационного. Гравитационное взаимодействие элементарных частиц является наиболее слабым из всех известных. Гравитационное взаимодействие на характерных для элементарных частиц расстояниях
дает чрезвычайно малые эффекты из-за малости масс элементарных частиц. Слабое взаимодействие гораздо сильнее гравитационного, но в повседневной жизни роль гравитационного взаимодействия гораздо заметнее роли слабого взаимодействия. Это происходит потому, что гравитационное взаимодействие (как, впрочем, и электромагнитное) имеет бесконечно большой радиус действия. Поэтому, например, на тела, находящиеся на поверхности
Земли, действует гравитационное притяжение со стороны всех атомов, из которых состоит Земля. Слабое же взаимодействие обладает настолько малым радиусом действия, что он до сих пор не измерен. В современной физике фундаментальную роль играет релятивистская квантовая теория физических систем с бесконечным числом степеней свободы - квантовая теория поля. Эта теория построена для описания одного из самых общих свойств микромира - универсальной взаимной
превращаемости элементарных частиц. Для описания такого рода процессов требовался переход к квантовому волновому полю. Квантовая теория поля с необходимостью является релятивистской, поскольку если система состоит из медленно движущихся частиц, то их энергия может оказаться недостаточной для образования новых частиц с ненулевой массой покоя. Частицы же с нулевой массой покоя (фотон, возможно нейтрино) всегда релятивистские, т.е. всегда движутся со скоростью света.
Универсальный способ ведения всех взаимодействий, основанный на калибровочной симметрии, дает возможность их объединения. Квантовая теория поля оказалась наиболее адекватным аппаратом для понимания природы взаимодействия элементарных частиц и объединения всех видов взаимодействий. Квантовая электродинамика - та часть квантовой теории поля, в которой рассматривается взаимодействие электромагнитного поля и заряженных частиц (или электронно-позитронного поля).
В настоящее время квантовая электродинамика рассматривается как составная часть единой теории слабого и электромагнитного взаимодействий.
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |