Реферат по предмету "Биология"


Біохімія трансгенної картоплі в умовах України

МІНІСТЕРСТВО
АГРАРНОЇ ПОЛІТИКИ УКРАЇНИ   



                СУМСЬКИЙ ДЕРЖАВНИЙ
АГРАРНИЙ УНІВЕРСИТЕТ


АГРОНОМІЧНИЙ ФАКУЛЬТЕТ



Кафедра захисту рослин





Завідувач кафедрою_____________________



                                                                      
                                   А.К.Мішньов         



ДИПЛОМНА РОБОТА



на тему: «Біохімія трансгенної картоплі в
умовах



 України»





Для
одержання кваліфікації спеціаліста



за спеціальністю
7.130105 – Захист рослин»



 



  Виконавець 
            
_________________ 
(Загорулько О.)



  Науковий керівник     ______________        (Чіванов В.Д.)



 Консультант з екологічної



  експертизи                    ________________          (Жатова Г.О.)



  Консультант
з питань


  техніки безпеки         _________________
     (Шандиба О.Б.)









Суми - 2001


ЗМІСТ







                                                                                                                             
 Стор.



     Вступ..................................................................................................................   



    1. Огляд
літератури…………………………………………………………….



1.1. Загальна характеристика
фізико-хімічних властивостей глікоалкалоїдів



       рослин родини
Solanaceae................................………………………………



1.1.1.    Глікоалкалоїди рослин картоплі
та їх будова………………………….



1.1.2.    Глікоалкалоїди як токсичні
сполуки……………………………………



1.1.3.    Роль глікоалкалоїдів в явищі
імунітета до бактеріальних, грибкових захворювань і шкідників та їх значення в
селекції нових сортів 



           
картоплі……………………………………………………………………



2. Природні умови
господарства......................................................................   



3.   Методика проведення
досліджень..............................................................   



4.   Результати
досліджень.................................................................................   



5.   Охорона
праці...............................................................................................   



6.   Охорона навколишнього
середовища.......................................................     



Висновки..........................................................................................................     



Список використаної
літератури
...............................................................     













ВСТУП



Підвищений “тиск”
на організм людини ксенобіотичних сполук природного та штучного походження
обумовлює необхідність поглибленого вивчення таких сполук, і в першу тих із
них, котрі входять до складу найбільш поширених харчових продуктів, зокрема
картоплі. Глікоалкалоїди картоплі являють собою групу вторинних метаболітів,
яким притаманні найрізномантніші види біологічної активності [   ]. Так,
дослідами in vitro доведена здатність цих сполук спричинювати хромосомні
аберації, порушувати цілісність ліпосом та природніх біомембран тощо [    ].
Останнє свідчить на користь того, що глікоалкалоїдам притаманна потенційна
мутагенна і, можливо, канцерогенна активність [     ]. Виходячи з наведеного,
цілком природньою є підвищена зацікавленість в дослідженні глікоалкалоїдів з
боку фахівців в галузях медичної токсикології і генетики людини, тим більше, що
в останні роки на світовий ринок виходять нові сорти продовольчої картоплі,
отриманої як шляхом “класичної” селекції за участі дикоростучих видів роду
Solanum [    ], так і за допомогою генетичної інженерії (New LeafÒ, Monsanto, США). Обидва
підходи не виключають біосинтезу в тканинах рослин картоплі, зокрема бульбах,
окрім характерних для культурної картоплі глікоалкалоїдів a-Соланіну та a-Чаконіну “мінорних”
глікоалкалоїдів (солакаулін, соласолін, соламаргін, деміссін, томатін, лептін І
і ІІ, лептінін-І і ІІ тощо), які ведуть походження з дикоростучих попередників,
або синтезуються de novo [   ]. Останнім притаманні токсикологічні
характеристики, відмінні від добре відомих аналогічних показників a-Соланіну та a-Чаконіну. Якщо прийняти до
уваги встановлений факт щодо синергетичного багаторазового підсилення
біологічної активності суміші двох різних за хімічною структурою
глікоалкалоїдів [    ], то стає цілком обгрунтованою необхідність досліджень
кількісних та якісних показників глікоалкалоїдів продовольчої картоплі
паралельно з селекцією та молекулярною інженерією, успішність яких залежить від
наявності нових високочутливих методів фізико-хімічного аналізу. Складність
аналізу сумарної фракції глікоалкалоїдів з рослин картоплі пов’язана, зокрема з
тим, що субфракція “мінорних” глікоалкалоїдів не перевищує за масою 0,5-5%
[        ].



Останнім часом в
аналізі біомолекул набули широкого розповсюдження методи м’якоіонізаційної
мас-спектрометрії, зокрема плазмено-десорбційна мас-спектрометрія (PDMS).
Зважаючи на це, нами зроблена спроба проаналізувати фракцію глікоалкалоїдів
бульб та квітів картоплі трансгенних сортів NewLeaf 6 Russet Burbank та NewLeaf
6 Atlantic за допомогою PDMS мас-спектрометрії. Таким чином, метою наших
досліджень був докладний аналіз глікоалкалоїдів бульб та квітів картоплі
трансгенних сортів NewLeaf 6 Russet Burbank та NewLeaf 6 Atlantic новітнім
мас-спектрометричним методам.































ОГЛЯД
ЛІТЕРАТУРИ



1.1.     
Загальна
характеристика фізико-хімічних властивостей глікоалкалоїдів рослин родини
Solanaceaе



Рослини картоплi
культурних та диких видів мiстять серед численних органiчних сполук групи
вторинних метаболітів глiкоалкалоїди [    ], найважливiшими з яких є a-соланiн, a-чаконiн, деміссин, лептіни I,II,III,
соламарін, коммерсонін [     ]. Фiзiологiчнi функцii глiкоалкалоїдiв пов'язанi
з явищем стiйкостi рослин картоплі проти фiтопатогенiв i шкiдникiв [    ]. Крiм
того, глiкоалкалоїди беруть безпосередню участь в бiохiмiчних процесах, які
притаманні тканинам листкiв, пагонiв, квiток, бульб рослин картоплi (цвiтiння,
видова сумiснiсть, утворення насiння); обумовлюють разом з iншими вторинними
метаболiтами смаковi якостi та придатнiсть картоплi для переробки [    ], а
також мають певне значення як токсичні, ембріотропні і канцерогеннi сполуки
природнього походження [     ]. Зважаючи на це, багато перспективних за
врожайнiстю та iншими господарсько-корисними якостями сортiв картоплi не були
рекомендованi для широкого використання саме завдяки пiдвищеному вмiсту
глiкоалкалоїдiв [     ]. На думку вiтчизняних та зарубiжних [  ] дослiдникiв,
кiлькiснi та якiснi характеристики глiкоалкалоїдiв нових сортiв i гiбридiв
картоплi заслуговують на поглиблене вивчення. Одним з найважливіших питань,
пов’язаних з біохімією та фізіологією глікоалкалоїдів, яке і досі не знайшло
однозначного вирішення, є встановлення корелятивних зв’язків між параметрами
метаболізму глікоалкалоїдів та ступенем стійкості сортів картоплі проти
шкідників і фітопатогенів [     ]. Іншим дискусійним питанням є невизначеність
зв’язків між кількісним накопиченням глікоалкалоїдів в тканинах рослин картоплі
різних сортів, зокрема бульбах і умовами вирощування (погодно-кліматичні умови
протягом конкретного вегетаційного сезону, тип грунтів, удобрення тощо), а
також умовами зберігання (температура, освітленість, вологість тощо)[     ]. На
думку провідних вчених дискусійні та суперечливі результати в цьому напрямку
дослідження отримані тому, що, по-перше, на інтенсивність біосинтезу вторинних
метаболітів взагалі і глікоалкалоїдів зокрема, різноспрямовано впливає велика
кількість факторів зовнішнього середовища і це, разом з підвищеною лабільністю
та чутливістю ферментних систем метаболізму глікоалкалоїдів до зазначених
факторів обумовлює суттєві розбіжності, про які згадувалось вище; і, по-друге,
більшість ранніх робіт були проведені без урахування різноманітності
глікоалкалоїдів за хімічною структурою – в межах цих досліджень визначали
тільки їх сумарну кількість ваговим або колориметричним методами [       ].



       Проте, глікоалкалоїди картоплі
являють собою досить велику групу сполук, до складу якої входять  «мажорні» (a-соланiн та a-чаконiн у культурних видів картоплі)
і численні «мінорні» (b-соламарін, деміссидін, 5b-соланідан-3a-ол, томатіденол) компоненти. Крім
того, тканини рослин картоплі містять спеціалізовані ферментні системи, які
модифікують інтактні молекули глікоалкалоїдів з утворенням численних проміжних
сполук, фізіологічна роль яких вичерпно не з’ясована (b-соланін, b-чаконін, g-соланін, g-чаконін тощо)[   ]. Таким чином,
дослідження статичних і динамічних кількісних та якісних параметрів
глікоалкалоїдів рослин картоплі різних сортів в процесах вирощування в умовах
конкретних кліматичних зон, зберігання та переробки, а також під впливом
фітопатогенів, мають певні перспективи за умов використання з метою аналізу цих
сполук нових високоінформативних фізико-хімічних методів досліджень [      ]. В
Сумському ДАУ та Інституті прикладної фізики НАНУ (м.Суми) в 1994-2000 рр. в
межах проекту «М’якоіонізаційна мас-спектрометрія в агробіології» провели цикл
досліджень глiкоалкалоїдів рослин картоплi за допомогою новiтнього
фiзико-хiмiчного методу аналізу полярних, термолабільних, нелетючих органiчних
сполук – плазмено-десорбційної часопрольотної плазмено-десорбцiйної
мас-спектрометрiї з iонiзацiєю уламками подiлу 252Cf (МС-ПДМС)[     
].



Алкалоїди являють
собой велику групу рослинних речовин різного хімічного складу, яким притаманна
специфічна дія на організм ссавців та людини. Алкалоїди є азотовміськими
гетероциклічними сполуками, що містять в своєму складі атом азоту. Загальною
властивостю даної групи речовин є їх надзвичайно сильна фізиологічна дія на організм
тварин та людей. Більшість алкалоїдів діють на нервову систему: в невеликих
дозах здійснюють збуджуючий вплив, в великих - пригнічують, а в ще більших є
сильнодіючими отрутами [    ]. Фізіологічне значення алкалоїдів в
життєдіяльності самих рослин досі не з`ясовано. До цього часу не вдалося ще з
великою достовірностю показати місце алкалоїдів в життєво важливих процесах
обміну речовин, з іншого боку немає неспростовних доказів того, що
алкалоїдоносні види рослин можуть існувати без алкалоїдів [      ].



В ряді робіт
відзначається вплив алкалоїдів на обмін речовин у рослин, виникнення квітів,
формування органел та органів рослин, ріст клітин, поділ ядер і т.д. Було
доведено, що алкалоїди в клітинах рослин якимось чином ізольовані від
внутрішнього середовища клітини. Так, розчини нікотину, нанесені на  рослинні
тканини табаку, чинять всебічну негативну фітотоксичну дію навіть при
концентрації, рівній їх концентрації в тканинах. Доведено, що високий вміст
алкалоїдів часто пов`язаний зі зниженням сили росту рослин. Інакше кажучи, у
рослин в період вегетації та спокою існує тісний взаємозв`язок: «білковий
азот - алкалоїди»
. Цими причинами, на думку Горяєва, пояснюється зміна
складу алкалоїдів, а в деяких випадках і їх повна відсутність в тканинах
алкалоїдних рослин (Solsola richteri. Girgensonia Oppositiflora. Anabasis
turkestanika) [      ].



 



   1.1. 1. Глікоалкалоїди рослин
картоплі та їх будова.



Глікоалкалоїди,
які містяться в бульбах  картоплі, раніше називали загальним терміном
«соланін». В наш час встановлено, що так званий «соланін» являє собою суміш 
якнайменше 6 різних глікозідних сполук: a-, b-, g-соланіна та a-, b-, g-чаконіна. Ці сполуки мають
один і той же аглікон («корове ядро») – соланідин і відрізняються між собою
складом глікозидного ланцюжка (Рис.1). Трисахаріди - a-соланін і a-чаконін є основними формами
і складають в тканинах картоплі біля 95%  усієї суми глікоалкалоїдів групи
соланіна  [     ]. Крім a-, b-, g-соланіна та a-, b-, g-чаконіна, відомі інші
глікоалкалоїди пасльонових: солакаулін, соласолін, соламаргін, демісін,
томатін, лептін, лептінін-1, лептінін-2 та інші. Всі гликоалкалоїди складаються
з двох основних складових, виникаючих при кислотному гідролізі цих речовин –
аглікона, який і є власне «алкалоїдом», і декількох моносахарів, які
знаходяться в молекулі глікоалкалоїда в вигляді глікозідного ланцюга,
зв`язаного з агліконом [     ]. Глікоалкалоїди культурної та дікої картоплі
(Solanum) можна систематизувати в окремі групи. До групи соланідіна
відносяться: a-, b-, g-соланін та a-, b-, g-чаконін, солакаулін і
глікоалкалоїд, виділений з групи Akaulia. Іншу групу алкалоїдів складають
сполуки, агліконом яких є соласодін. Сюди входять соласонін і соламаргін.
Соласонін і соламаргін є основними алкалоїдами Solanum  nigrum, Solanum
laciniatum більшості інших видів Solanum



[       ].



Соласодамін 
знайдений в листках Solanum auriculatum і Solanum magrinatum. В групу, яка
містить в якості аглікона демісідін, входить демісин, знайдений у Solanum
demissum і глікоалкалоїд, виділений із Solanum polyadenium. Лептіни –
глікоалкалоїди,













Рис.1. Хімічна
структура агліконів, знайдених в рослинах картоплі [      ].





знайдені Куном і Левом, виявлені у
Solanum chacoense. Групи Eutuberosa, Andigena, і Commersonia містять тільки -
соланін, ці види містять також чаконін. Ці два глікоалкалоїди зустрічаються
завжди разом, що доведено хроматографічними дослідженнями. Демісин присутній в
рослинах групи Demissa і Acaulia, за виключенням Solanum acaulia, в складі
якого знайдено солакаулін. Демісин знайдений також у Solanum jamesii. У форм,
які не дають бульб, крім a-соланіна, який і тут частіше всього зустрічається,
найбільшу групу складають форми, які містять томатін. І тільки єдина форма
Solanum poliadenium, яка створює бульби, містить томатін. Інші алкалоїди
зустрічаються тільки в деяких форм, нприклад, соласодамін – у  Solanum
sodomaneum i Slanum aviculare.



Всі алкалоїди
картоплі належать до стероїдної групи похідних циклопентанопергідрофенантрена і
складаються з алкалоїда (аглікона) та цукру, зв’язаного з ним глікозідним
зв’язком. Аглікон має стероїдну будову, містить атоми азоту, який утворює
третинну або вторинну аміногрупу. Прикладом першого типу являється соланідін, другого-томатідін
і соласодін. Глікозідна частина являє собою моно-, ді-,  три-, і тетрасахаріди;
до їх складу може входити глюкоза (Glu), галактоза (Gal), рамноза (Rha) і
ксілоза (Xyl). Наприклад,   a-соланін складається з аглікона-соланідіна і
трисахаріда, який при гідролізі кислотою розпадається на галактозу, глюкозу і
рамнозу. Соланін має розгалужений сахарний ланцюжок: безпосередньо з агліконом
зв`язана галактоза, а глюкоза і рамноза складають бокові ланцюги. Подібну
будову мають глікозідні частини глікоалкалоїдів демісіну, томатіну, a-чаконіну, соласодіну і
соламаргіну [       ].



Під впливом гідролізу
глікоалкалоїди розпадаються на цукор і аглікон, фізичні і хімічні властивості
якого і вказують на велику схожість його зі стероїдами. Стероїди утворюють різноманітну
групу важливих природних речовин. Сюди відносяться стеріни, жовчні кислоти,
гормони розмноження, вітаміни групи Д, глікозиди, різні алкалоїди і інші
речовини. Базовою структурою усіх стероїдів є стеран
(циклопентанопергідрофенантрен).



До класу
стероїдів належать також фітостерини: сіто-, стігма-, і кампестерін,
холестерін, ергостерін, жовчні кислоти.



Сполуки стероїдів
з сахаром належать до групи глікозідів. В цю групу, крім глікоалкалоідів,
входять «сердечні глікозіди», які містяться в деяких рослинах із родини
Strophanthus і Digitalis. Стероїдні саконіни також являють собою глікозіди
агліконів, котрі э похідними циклопентанопергідрофенантрена. Сапоніни не
містять в своєму складі атом азоту [        ].



Одним з доказів
схожості аглікона глікоалкалоідів зі стероїдами є те, що їх можливо перетворити
в метилциклофенантрен. Ця сполука синтезується тим же шляхом із стероїдів. При
третьому атомі вуглецю аглікона знаходиться група, яка може сполучатися
глікозідно з моносахаридами. Остаточно стероїдну будову аглікона вдалося
довести, коли похідне аглікона отримали з відомих стероїдів і, навпаки, похідні
стероїдів- із аглікона глікоалкалоїдів; наприклад, із безазотної речовини
криптогеніна - соласодін, із соласодіна - стероїдний сапогенін - діосгенін. Веліка
схожість з сапонінами виявляється і в будові сахарної частини глікоалкалоідів.
Загальною властивістю сапонинів і глікоалкалоідів являється їх гемолітична дія
[       ].



Таким чином,
основними глікоалкалоїдами культурної картоплі є a- соланін та a-чаконін. Всі глікоалкалоїди
різних видів картоплі складаються з двох основних частин: аглікона (алкалоїда),
який має стероїдну будову, і молекули сахару, в склад якої входять моно-, ді-,
три-, або тетрасахариди.





1.1.2. Глікоалкалоїди як токсичні
сполуки



Глікоалкалоїди
соланін та чаконін в невеликій кількості розглядається як цілком можливі
компоненти бульб картоплі, при  надмірній кількості вони погіршують смакові
якості картоплі. У бульб з`являється гіркуватий смак, при вживанні таких бульб
в харчування віникають чуття зуду в горлянці [  ]. Встановлена визначена
кореляція між наявністю глікоалкалоїдів і органолептичними смаковими якостями
вареної картоплі. При дуже низькому вмісті глікоалкалоїдів в бульбах (порядку
1-5 мг%) смак вареної картоплі трохи гірший, ніж при середньому (5-10 мг%). Але
збільшення їх вмісту вище за 26 мг% на сиру речовину дуже погіршує смак вареної
картоплі і стає небезпечним для здоров`я людини [     ].



Бульби картоплі,
які містять ніж 20  мг% глікоалкалоїдів, не рекомендується вживати в харчування,
осбливо коли картопля вареться зі шкірочкою. Почищені бульби менш небезпечні,
так як значна частина глікоалкалоїдів видаляється зі шкірочкою, а частина
переходить в воду, при варинні ж неочищених бульб цього не відбувається вз`язку
з слабкою проникністю шкірочки. За даними М.Г.Шевченко [   ], нйбільшу
небезпеку для здоров`я становить нерозчинний в воді соланін, зосереджений в
основі пророслх вічок.





1.1.3.  Роль
глікоалкалоїдів в явищі імунітета до бактеріальних, грибкових захворювань і
шкідників та їх значення в селекції нових сортів  картоплі.



Глікоалкалоїди
привертають увагу селекціонерів-картоплярів в зв`язку з їх токсичною дією на
бактеріальні та грибкові захворювання картоплі, а також в зв`язку  з токсичною
дією на колорадського жука [     ].



Встановлено, що
соланін затримує ріст бактерій, а 0,1-0,5% -ний розчин його викликає відмирання
протоплазми. Виділені фунгіцидні якості глікоалкалоїдів в відношенні ряду 
патогенних грибів, таких як Microsporum audoine, Trichophyton gypseum, Fusarium
oxуsporum, зооспор Phytophthora infestans, Helminthosporum carbonum.



В Інституті
біохімії РАН досліджували фунгіцидні властивості глікоалкалоїдів і інших сполук
картоплі, наділених антибіотичними якостями, а також вивчали дію механічних
пошкоджень і зараження Phytophtora infestans на утворення і розподіл
глікоалкалоїдів в тканинах бульб [      ]. Виявилось, що глікоалкалоїдам a-соланіну та a-чаконіну притаманна більша
фунгіцидна активність ніж фенолам (кофейній і хлорогеновій кислотам). Так, в
концентрації 0,1 мг/мл останні не впливали на кінетичні показники росту
фітофтори, тоді як глікоалкалоїди пригнічували його майже на 70%. Зооспори
цього паразита гинули вже при концентрації    a-соланіна  5 мкг/мл.



Соланин, чаконін
і соланідін інгібують радіальний рост Alternaria solani на картоплі. По ступеню
інгібування на першому місці стоїть соладінін, потім чаконін і соланін. При
концентрації 500 мг/л соланін викликає 50% інгібування росту після 96-годинного
періоду інкубації при 24оС. Встановлено наявність збільшення чутливості
листків до розвітку пошкодження яке супроводжується зменшенням концентрації
глікоалкалоїдів в листках в міру їх старіння. Наприклад, 30-денні листки сорту
Катадин містять 950 мг/кг глікоалкалоїдів і стійкі до паразиту, тоді як
старіючі 90-денні листки містять тільки 150мг/кг глікоалкалоїдів і значно
уражаються грибом [      ]. 



Проте подальші
дослідження показали, що хоча глікоалкалоїди і наділені фунгітоксичністю, вони
все ж таки не є вирішальним фактором в явищі фітоімунітета картоплі [   ].
Взагалі після інфікування в бульбах картоплі накопичується хлогенова та кофейна
кислоти, скополетин, a-соланін, a-чаконін, рішитин, фітуберин. Всі зазначені сполуки,
за виключенням рішитіна та фітуберіна, присутні в шкірочці бульби в кількостях
рівних або більших, аніж синтезованих за умов інфікування патогеном очищеної
картоплі. Хлорогенова та кофейна кислоти знайдені в усіх частинах рослини. Вони
продукуються  в бульбах картоплі в результаті пошкоджень та інфекції багатьма
патогенними та не патогенними організмами і накопичуються (або присутні) в
деяких здорових тканинах рослини картоплі в кількостях, які можуть пригнічувати
мікроорганізми. Механічне пошкодження чи інфекція викликає швидке окислення цих
речовин, а продукти окислення токсичні для багатьох мікроорганізмів. На ранніх
стадіях інфекції після інокуляції бульб деякими расами фітофтори накопичуються
поліфеноли. В тканинах, інокульованих несумісними расами фітофтори, або в
зрізах накопичується тільки хлорогенова кислота.



Глікоалкалоїди a-соланін і a-чаконін зосереджуються біля
пошкоджених ділянок бульби [    ]. Про те,  що глікоалкалоїди не є вирішальним
фактором в імунітеті картоплі, свідчать результати дослідів, проведених на
раневій перидермі бульб. В зараженій фітофторою раневій тканині картоплі глікоалкалоїди
не накопичуються. Звідси виходить припущення, що фітофтора наділена здатністю
руйнувати глікоалкалоїди.



В раневій
тканині, зараженій несумісною расою фітофтори, не відбувається накопичення
глікоалкалоїдів, не виявляються фітоaлексини рішитин і любімін. В непошкодженій
паренхимі бульб не синтезуються ні глікоалкалоїди, ані фітоалексіни. В раневій
перидермі весь мевалонат використовується на синтез глікоалкалоїдів. В
відмерлій тканині, навпаки. Утворення глікоалкалоїдів майже не відбувається,  а
мевалонат використовується для синтезу рішитіна та любіміна.  В зараженій
тканині, як і в раневій, глікоалкалоїди хоча і утворюються, але розкладаються
фітофторою [     ].



В США проводили
роботи по виведенню сортів картоплі, наділених полігенною стікістю до фітофтори,
при цьому стикалися з труднощами, обумовленими отриманням гібридів з високим
вмістом в бульбах глікоалкалоїдів. Дослідження, проведені в селекційному центрі
штата Західна Віргінія, на 15 клонах картоплі, наділених різною ступеню
полігенної стійкості до фітофтори і трьох стандартних сортах, не підтвердили
наявність взаємозв`язку між зазначеною стійкістю і вмістом в бульбах
глікоалкалоїдів. В результаті прийшли до висновку, що можливе створення нових
сортів картоплі з полігенною стійкістю до фітофтори і звичайним, або зниженим
вмістом глікоалкалоїдів в бульбах. Встановлена висока ступінь кореляції
(r=0,82) між вмістом глікоалкалоїдів в листках та бульбах випробуваного
селекційного матеріалу [      ].



Дослідженнями
Куна  було встановлено, що непоїдання листків дикого виду картоплі Solanum
demissum колорадським жуком обумовлена наявністю в них глікоалкалоїда демісіна
[     ]. Це спонукало вітчизняних ботаніків організувати експедицію в країни
Південної Америки для пошуків диких видів картоплі, стійких до колорадського
жука. Під час експедиції було знайдено біля 10 таких видів, частина з них
використовується в селекції при виведенні нових сортів картоплі.



Глікоалкалоїди
бульбоносних видів дикої картоплі належать головним чином до групи соланіну чи
демісину. Найбільша кількість стійких до колорадського жука видів картоплі –
S.commersonii, S.chacoense, S.gibberulosum, S.shikii, S.dolichostigma
відноситься до Commersonia, але демісин в них відсутній. Високостійкими до
колорадського жука виявились також S.polyadenum, S.jamesii, котрі містять малу
кількість демісину. Дикі види картоплі, які характеризуються низьким вмістом
демісину, за виключенням видів Acaulia, виявились надто стійкими до
колорадського жука [      ].

































2. ПРИРОДНІ УМОВИ ГОСПОДАРСТВА







Виробнича практика була проведена в
учбово-навчальному комплексі (УНВК) Сумського державного аграрного університету
(СДАУ) який знаходится в м. Суми (південна частина). УНВК розташований у північній частині Лівобережного
Українського Лісостепу, яка в цілому характеризується помірним кліматом. Літо –
тепле, із значною кількістю опадів. Зима – не дуже холодна, з відлигами.



Згідно багаторічних даних Сумської
метеостанції, середньорічна температура району, де розташований УНВК, дорівнює
60 С (табл. 1). Найбільш холодними місяцями є січень і лютий,
найбільш теплими – липень, при чому  абсолютний мінімум температур повітря  -360
С спостерігається в січні, а максимум +380 С  - у серпні. Останні
весняні заморозки у повітрі спостерігаються у ІІІ декаді квітня,  в окремі роки
– на початку травня, а перші осінні заморозки – на початку жовтня, з



1.   
Середня багаторічна температура повітря
за місяцями




































Місяці І ІІ ІІІ IV V VI VII VIII ІХ Х ХІ ХІІ

Середньо-


річна


Середньо-місячна температура повітря -7,8 -7,6 -2,6 6,3 14,6 17,4 19,6 18,3 13,0 6,6 -0,1 -5,5 6,0




коливаннями 11.09. – 27.10. Довжина 
безморозного періоду складає приблизно 155 днів. Зима сніжна, характеризується
нестійкою погодою, поряд із низькими температурами  -250 - -300
спостерігаються відлиги з температурами +40 - +50.



Часті відлиги взимку при глибокому
промерзанні грунту іноді призводить до застою талих вод і утворенню льодяної
кірки, що негативно впливає на перезимівлю озимих. Висота снігового покрову
досягає 22 см. Розподілення його на більшій частині території нерівномірне:
сніг накопичується у балках, ложбинах стоку.



Максимальна глибина промерзання грунту на
рівних ділянках сягає 135 см, мінімально – 40 см, середня – 88 см.



Середньорічна кількість опадів становить
510 мм (табл. 2).



2.   
Середня багаторічна кількість опадів за
місяцями




































Місяці І ІІ ІІІ IV V VI VII VIII ІХ Х ХІ ХІІ За рік
Опади в мм 28 23 26 40 43 67 68 53 45 42 33 37 510




З таблиці видно, що найбільша кількість
опадів випадає у літньо-весняний період, що співпадає з максимальним ростом сільськогосподарських
культур і сівбою озимих і сприяє їх розвитку.



Взимку переважають північно-східний та
північно-західний вітри. Напрямок їх часто змінюється, що призводить до різних
змін температури. За останні роки спостерігаються суховійні південно-східні
вітри, які сильно висушують грунт і знижують врожай основних
сільськогосподарських культур.



Рельєф УНВК рівнинний, але західна
частина дещо полога і засівається багаторічними травами.



Грунти, які представлені на дослідному
полі, -це типові чорноземи, важкосуглинисті, середньогумусні на льосовидному
суглинку. Грунт характеризується високим вмістом крупнопилови часток (0,01-0,05
мм), частка яких сягає 55% і більше. Вміст часток, які належать до фракції
розміром 0,001 мм і менше сягає 25-30%, що обумовлює високу ємність поглинання,
яка досягає 28-30 мг/екв на 100 г грунту. Реакція грунту практично нейтральна.
Значення рН коливається в межах 6,5-7,5/6,5-7,6 у верхніх горизонтах і 7,3-7,5
у нижніх (карбонатних).



Розорювана частина грунту приблизно до 30
см., яка містить у собі необхідні елементи живлення (N, P, K) : азоту нітратного 2,2-3,; азота
амонійного 11,2-10,6; фосфора 157, калія 70 мг на 100 г грунту, відсоток гумусу
4,0%.



 УНВК заснований в 1987 р. для
проведення науково-дослідної роботи та для демонстрації різних технологій
вирощування сільськогосподарських культур. До складу УНВК входять комплекс по
оздоровленню насінневої картоплі методами меристеми, обласне об’єднання “Сортнасіняовоч” і
науково-дослідне об’єднання
“Еліта” з лабораторією картоплі і дослідним господарством. До складу
господарства також входять дослідні поля в с.Постольне, Гамаліївка та
Косівщина, де вирощуються озима пшениця, овес, гречка, картопля, ячмінь, овес,
гречка, горох, багаторічні трави, капуста, морква, столові буряки, цибуля.
Урожайність деяких культур в 2000 році: озима пшениця 35 ц/га; овес 41 ц/га;
гречка 20 ц/га; картопля 150 ц/га; соняшник 15 ц/га; яра пшениця 13 ц/га; горох
13 ц/га; буряки цукрові 460 ц/га; кукурудза на зерно – 42 ц/га.



Дослідні поля УНВК
займають 43 га сільськогосподарських угідь. Сівозміна займає майже всі 43 га.
Схема сівозміни така:



1.               
Овес 10 га.



2.               
Озима пшениця 5
га.



3.               
Картопля (насіння
)0,7.



4.               
Ячмінь .



5.               
Гречка 4,6 га.



6.               
Цукровий буряк 10
га.



Із сівозміни виділена
ділянка 2,5 га, розміщена на схилі, яка засівається багаторічними травами для
тварин віварія.



Крім того в межах УНВК
вирощували в 2000 р.такі культури:



1.    Багаторічні трави 2,4 га



2.    Молодий сад 3 га



3.    Томати 0,2 га



4.    Цибуля 0,25 га



5.    Буряки столові 0,07 га



6.    Морква 0,07 га



7.    Кріп 0,01 га



8.    Петрушка 0,01 га



9.    Капуста 0,75 га



10.  Огірки 0,05 га.



На дослідних ділянках
проводять експериментальні роботи кафедри селекції (0,7 га) і рослинництва (0,3
га).



Для роботи на дослідних
полях УНВК закріплений підрозділ і повний комплекс тракторів та
сільськогосподарського обладнання. Для проведення дослідів виділено ділянки
площею в 0,1 га. В склад підрозділу входять: завідуючий дослідним полем і два
інженери. Для зберігання і ремонту техніки за дослідним полем закріплений
спеціальний бокс, а для зберігання зернової продукції -  ангар. Техніка УНВК
представлена тракторами Т-150, Т-70, Т-150К, МТЗ-82, Т-25, Т-16.



Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.