Реферат по предмету "Математика"


Теорема Бернулли. Закон распределения Пуассона. Критерий Колмогорова

Московский Государственный Авиационный
Институт
(Технический Университет)
Филиал „Взлёт“
Курсовая работа
«Теорема Бернулли. Законраспределения Пуассона. Критерий Колмогорова»

Задание 1. Проверка выполнимоститеоремы Бернулли на примере вероятности прохождения тока по цепи
Теоремаутверждает, что при большом числе опытов частота события приближается (точнее — сходится по вероятности) к вероятности этого события. Она устанавливает фактсходимости по вероятности тех или иных случайных величин к постоянным, неслучайным величинам.
Краткаятеория:
Теорема Я.Бернулли: приувеличении количества опытов, частота появлений событий сходится по вероятностик вероятности этого события.
/>
где />,/> — сколь угодно малыеположительные числа.
Вероятностьтого, что в nнезависимых испытаний, в которых вероятность появления события равнар(0
/>, или
/>
где q=1-p
Вероятностьтого, что в nиспытаниях событие наступит:
a) менеек раз;
b) болеек раз;
c) неменее к раз;
d) неболее к раз; — находятся по формулам:
a) />;
b) />;
c) />;
d) />.
Теорема Я.Бернулли утверждает устойчивость частоты при постоянных условиях опыта. Но приизменяющихся условиях опыта аналогичная устойчивость также существует. Теорема,устанавливающая свойство устойчивости частот при переменных условиях опыта,называется теоремой Пуассона.
Схема цепи:
/>/> /> /> /> /> /> />

Вычислениевероятности:
Пусть вероятностибезотказной работы элементов выглядят следующим образом:
P1 = 0.5
P2 = 0.45
P3 = 0.6
P4 = 0.9
P5 = 0.39
P6 = 0.42
P7 = 0.6
Текстпрограммы:
Program Shiva;
Uses CRT;
Label Start;
Const
     k = 7; n = 100000;
     Top = 60; Left = 55; Width = 360; Height = 380;
Type Real = Extended;
Var
     GrDriver, GrMode: Integer;
     R: Array[1..k] Of Record P: Real; Works: Boolean; End;
     Fr: Real; j: Byte;
     m, i, w: LongInt; Gone: Boolean;
Function Calc: Real;
Var P1, P2, P3, P4: Real;
Begin
     Calc := (R[1].P +R[2].P-R[1].P*R[2].P+R[3].P-R[3].P*
     (R[1].P+R[2].P-R[1].P*R[2].P))*R[4].P*
     (R[5].P +R[6].P-R[5].P*R[6].P+R[7].P-R[7].P*
     (R[5].P+R[6].P-R[5].P*R[6].P));
End;
Procedure Init_Condit;
Var i: Byte;
      Begin
          For i := 1 To k Do Begin
               R[i].Works := False;
               If Random
          End;
          Gone := (R[1].Works Or R[2].Works Or R[3].Works)
             And R[4].Works And (R[5].Works Or R[6].Works OrR[7].Works);
      End;
Begin
     ClrScr; Randomize;
     R[1].P := 0.5; R[2].P := 0.45; R[3].P := 0.6; R[4].P :=0.9;
     R[5].P := 0.39; R[6].P := 0.42; R[7].P := 0.6;
     WriteLn; WriteLn(' Расчетная вероятность: ', Calc:0:3); WriteLn;
     WriteLn('        n             p*'); WriteLn; m := 0; w:= 0;
     For j := 1 To 18 Do Begin
          For i := 1 To 1000 Do Begin
               Inc(w);
               Init_Condit;
               If Gone Then Inc(m);
          End; Fr := m / w;
          WriteLn(w: 10,  Fr:15:3);
     End;
     Repeat Until KeyPressed;
End.
Результатыпрограммы:
Расчетная вероятность:0.688N, числоопытов p*, частота 1000 0.675 2000 0.678 3000 0.676 4000 0.680 5000 0.681 6000 0.682 7000 0.684 8000 0.683 9000 0.683 10000 0.684 11000 0.685 12000 0.685 13000 0.685 14000 0.686 15000 0.687 16000 0.687 17000 0.687 18000 0.688
Проверка вручную:
Первый способ:
/> /> 
Вывод: при большом числе опытовчастота события приближается (точнее — сходится по вероятности) к вероятностиэтого события. Следовательно, можно сделать вывод, что теорема Бернулли верна.Задание 2,3. Моделирование дискретнойслучайной величины, имеющей закон распределения Пуассона. Подтверждениегипотезы о том, что полученная случайная величина имеет данный законраспределения с помощью критерия Колмогорова.
ЗаконПуассона
Рассмотримслучайную величину X, которая может принимать целые, неотрицательныезначения:0,1,2,… ,m,...
Говорят, чтоэта СВ Xраспределена по закону Пуассона, если вероятность того, что она приметопределенное значение т, выражается формулой:
/>
(m=0,1,2...), а — некотораяположительная величина называемая параметром закона Пуассона. Ряд распределенияСВ X, распределенный позакону Пуассона, имеет вид:
/> 1 2 … m …
/>
/>
(a/1!)/>
(а2/2!)/>/> …
(am/m!)/> …
Этораспределение зависит от одного параметра а, на рисунке 1 показан видраспределения Пуассона при различных а.
/>
Математическоеожидание данного распределения случайной величины равно параметру законаПуассона а: />;Дисперсия также равна этому параметру: Dx=a. Таким образом дисперсияслучайной величины, распределенной по закону Пуассона равна ее математическомуожиданию и равна параметру а.
Это свойствоприменяется на практике для решения вопроса, правдоподобна ли гипотеза о том,что случайная величина X, распределена по закону Пуассона, для этого определяют изопыта статистические характеристики: математическое ожидание и дисперсию. Еслиих значения близки, то гипотеза является правдоподобной.
Дискетнойназывается случайная величина возможные значения которой есть отдельныеизолированные числа(т.е. между двумя возможными соседними значениями нетвозможных значений), которые эта величина принимает с определеннымивероятностями. Другими словами, возможные значения дискретной случайнойвеличины можно перенумеровать. Число возможных значений дискретной случайнойвеличины может быть конечным или бесконечным (в последнем случае множество всехвозможных значений называют счетным).
Закономраспределения называют перечень ее возможных значений и соответствующих имвероятностей. Текст программы:
Program Puasson_Kolmagor;
Uses CRT, Graph;
Const a = 2.0; d = 8; n = 500; k = d+1; Lkr = 1.2;
      Top = 68; Left = 45; Width = 550; Height = 340; Ny =14;
Type Real = Extended;
Var  GrDriver, GrMode, X1, Y1, X2, Y2: Integer;
     i, j, w: Word; SumS, SumA, Ran, Dk, Kol: Real;
     Xmin, Xmax, Ry, Mx, Dx, Rx, Sx, Ex, Sk, h: Real;
     HZoom, VZoom, Lx, Ly: Real; Txt: String[20];
     S, AL, AY, Y: Array[0..d] Of Real;
     X: Array[1..n] Of Byte;
Procedure Bue; Far;
Begin
     AssignCrt(Output); Rewrite(Output); CloseGraph;
     Window(1, 1, 80, 25); ClrScr;
     WriteLn ('Programed by Yuri Melnikov RD-2');
     WriteLn ('All rights reserved.  (c) 2004.');
     WriteLn ('Thanks for attention.');
End;
Procedure Pause;
Var TextAtt, i: Byte;
Begin
     Delay(1000); While KeyPressed Do ReadKey;
     TextAtt := TextAttr; TextColor(7);
     GoToXY(1, 25); For i := 1 To 5 Do WriteLn;
     Write(' Press any key to continue or toexit...');
     Repeat Until KeyPressed; If ReadKey = #27 Then Halt;
     TextAttr := TextAtt; GoToXY(1, 1); ClearDevice;
End;
Function Pwr(x, p: Real): Real; {Возведение в степень}
Begin
     If x > 0 Then Pwr := exp(p*ln(x))
              Else Pwr := 0;
End;
Function Fact(x: Word): Real;
{Справка для Егоровой Т.П. Считает до 1000!}
Var i: Word; F: Real;
Begin
     F := 1;
     If x > 0 Then For i := 1 To x Do F := F * i;
     Fact := F;
End;
Function f(m: Word): Real;
Begin
     If m >= 0 Then f := Pwr(a, m)*exp(-a) / Fact(m)
     Else f := 0;
End;
Begin
     Assign(Output, ''); Rewrite(Output); Randomize; ExitProc:= @Bue;
     DetectGraph(GrDriver, GrMode); InitGraph(GrDriver,GrMode, 'BGI');
     SumS := 0;
     For i := 0 To d Do Begin
          S[i] := f(i); SumS := SumS + S[i];
     End;
     For i := 0 To d Do Begin al[i] := 0;
          For j := 0 To i Do al[i] := al[i] + S[j] / SumS;
     End;
     For w := 1 To n Do Begin
          Ran := Random;
          For i := 0 To d Do Begin
               If al[i] > Ran Then Begin
                   x[w] := i; Break;
               End;
          End;
     End; WriteLn; Write('  Смоделирована ');
     WriteLn('последовательность случайных чисел (з. Пуассона):');
     WriteLn; Mx := 0;
     For i := 1 To n Do Begin
          Write(X[i]:2, '  ');
          Mx := Mx + X[i] / n;
     End; Pause; Dx := 0; Sk := 0;
     Xmin := X[1]; Xmax := Xmin;
     For i := 1 To n Do Begin
          Dx := Dx + Sqr(x[i]-Mx) / (n — 1);
          If Xmin > X[i] Then Xmin := X[i];
          If Xmax
     End;
     Sx := Sqrt(Dx); WriteLn;
     Rx := d; h := Rx / k; Ex := -3;
     For i := 1 To n Do Begin
          Sk := Sk + Sqr(x[i]-Mx)*(x[i]-Mx)/(Dx*Sx*k);
          Ex := Ex + Sqr(x[i]-Mx)*Sqr(x[i]-Mx)/(k*Sqr(Dx));
     End;
     WriteLn('  Диапазон значений: ', Xmin:0:3, ' — ', Xmax:0:3);
     WriteLn('  Мат. ожидание: ', Mx:0:3);
     WriteLn('  Дисперсия: ', Dx:0:3);
     WriteLn('  Ср. кв. отклонение: ', Sx:0:3);
     WriteLn('  Коэффициент скошенности: ', Sk:0:3);
     WriteLn('  Эксцесс: ', Ex:0:3); Pause;
     For i := 1 To n Do Begin
          j := Trunc((x[i]-Xmin) / h); If j > d Then j :=d;
          y[j] := y[j] + 1/n;
     End; Dk := 0;
     For i := 0 To d Do Begin ay[i] := 0; al[i] := 0;
          For j := 0 To i Do Begin
               ay[i] := ay[i] + y[j];
               al[i] := al[i] + f(j);
          End;
          If Dk
     End; Ry := 0;
     For i := 0 To d Do Begin
          If Ry
     End;
     HZoom := Width / Rx; VZoom := Height / Ry;
     WriteLn; WriteLn('  Гистограмма смоделированной СВ :');
     Lx := Rx / k; Ly := Ry / Ny; SetTextStyle(0,1,0);
     SetViewPort(Left, Top, Left + Width, Top + Height,False);
     For i := 0 To k Do Begin
          X1 := Round(Lx*i*HZoom);
          SetColor(7); Line(X1, 0, X1, Height + 5);
          Str((Lx*i+Xmin):0:2, Txt);
          OutTextXY(X1+4, Height+10, Txt);
          SetColor(DarkGray); Line(X1, 0, X1, Height);
     End; SetTextStyle(0, 0,0);
     For i := 0 To Ny Do Begin
          Y1 := Round(Height-Ly*i*VZoom);
          SetColor(7); Line(-5, Y1, Width, Y1); Str(Ly*i:0:2,Txt);
          OutTextXY(-40, Y1-4, Txt);
          SetColor(DarkGray); Line(0, Y1, Width, Y1);
          Y1 := Round(Height-Ly*(i-0.5)*VZoom);
          If i > 0 Then  Line(0, Y1, Width, Y1);
     End;
     SetColor(White); SetFillStyle(8, 7);
     For i := 1 To k Do Begin
     X1 := Round((i-1)*Lx*HZoom-Lx*HZoom*0.05);
     X2 := Round(i*Lx*HZoom-Lx*HZoom*0.95);
     Y1 := Round(Height — y[i-1]*VZoom); Y2 := Height;
     Bar3D(X1, Y1, X2, Y2, 0, False);
     End;
     MoveTo(0, Round(Height-f(0)*VZoom));
     For i := 1 To d Do
          LineTo(Round(i*HZoom), Round(Height-f(i)*VZoom));
     Line(0, -30, 0, Height+5); Line(0, -28, 2, -15); Line(0,-28, -2, -15);
     Line(-5, Height, Width + 30, Height);
     OutTextXY(-36,-30,'f(x)');
     OutTextXY(Width+20, Height+5,'x');
     Line(Width + 28, Height, Width + 15, Height-2);
     Line(Width + 28, Height, Width + 15, Height+2);
     Pause; WriteLn;
     Kol := Dk * Sqrt(n);
     WriteLn('  Критерий Колмогорова:'); WriteLn;
     WriteLn('      F(x)          F~(x) '); WriteLn;
     For i := 0 To d Do WriteLn(al[i]:10:2, ay[i]:14:2);
     WriteLn; WriteLn('  Максимум модуля разности: ', Dk:0:2);
     WriteLn('  Значение лямбда: ', Kol:2:2);
     WriteLn('  Лямбда критическое (а=0.1): ', Lkr:2:2);
     Write('  Так как ', Kol:0:2, ' ');
     If Kol
     WriteLn('
     WriteLn('  Нет оснований отвергнуть гипотезу о распределении');
     Write('  данной совокупности по закону Пуассона.');
     End;
     If Kol > Lkr Then Begin
     WriteLn('> ', Lkr:0:2, ' то расхождения следует считатьнеслучайными.');
     WriteLn('  Нет оснований принять гипотезу о распределении');
     Write('  данной совокупности по закону Пуассона.');
     End;
     Pause;
End.

Результатыработы программы
Смоделированапоследовательность случайных чисел (з.Пуассона)
/>
 
/>
/>

F(x)                   F~(x)
0.14                  0.15
0.41                  0.45
0.68                  0.71
0.86                  0.88
0.95                  0.95
0.98                  0.98
1.00                  0.99
1.00                  1.00
1.00                  1.00
Воспользуемся критерием Колмогорова. В качествемеры расхождения между теоретическим и статистическим распределениямирассматривается максимальное значение модуля разности между статистическойфункцией распределения F*(x) и соответствующей теоретической функцией распределения F(x).
D = max | F*(x)- F(x)|
D = 0.04
Далее определяем величину l по формуле:
/> ,
где n – число независимых наблюдений.
/>/>/>
Основанием для выбора в качестве меры расхождениявеличины Dявляется исключительная простота её закона распределения. А.Н. Колмогоровдоказал, что, какова бы ни была функция распределения F(x) непрерывной случайнойвелечины X,при неограниченном возрастании числа независимых наблюдении n вероятность неравенства
/>
стремится к пределу
/>
Значения вероятности />, подсчитанные по формулеприведённой выше занесены в таблицу, по данной таблице находим вероятность />
P(l) = 0,711.
Это есть вероятность того, что (если величина хдействительно распределена по закону F(x)) за счёт чисто случайных причин максимальное расхождениемежду F*(x) и F(x) будет не меньше, чемнаблюдаемое.
Нет оснований отвергать гипотезу о том, что нашзакон распределения является геометрическим законом распределения.
Критерий Колмогорова:
F(x)                  F~(x)
0.14                   0.15
0.41                   0.46
0.68                   0.71
0.86                   0.88
0.95                   0.95
0.98                   0.98
1.00                   0.99
1.00                   1.00
1.00                   1.00

Список используемойлитературы
1.  «Теория вероятностей»В.С. Вентцель
2.  «Теория вероятностей(Задачи и Упражнения)» В.С. Вентцель, Л.А. Овчаров
3.  «Справочник повероятностным расчётам».
4.  «Теория вероятностей иматематическая статистика» В.Е. Гмурман
5.  «Руководство к решениюзадач по теории вероятностей и математической статистике» В.Е. Гмурман.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Організація комплексу топографо-геодезичних робіт для інвентаризації земель
Реферат Получение свойства и применение амидо-аммониевой соли малеопимаровой кислоты на основе малеинизированной
Реферат Владимиро-суздальское искусство
Реферат Народы и культуры - развитие и взаимодействие
Реферат «Не забыть нам этой даты, что покончила с войной» Цели
Реферат Теория денежного обращения. Чем вызван крах золотого стандарта и почему в России невозможно существование такой денежной системы
Реферат Формирование познавательной активности у детей с задержкой психического развития на занятиях по ознакомлению с окружающим
Реферат Собственность как экономическая категория, её эволюция и современные формы
Реферат Анализ экономических показателей фитнес-клуба Заводной
Реферат Церковный раскол и возникновение старообрядчества
Реферат Организация производства хлебобулочных изделий
Реферат Лучевая диагностика. Магнитно-ядерный резонанс при исследовании спинного мозга
Реферат Влияние утренней гимнастики на работоспособность младших школьников
Реферат Популизм как глобальное явление
Реферат Life And Legend Of Howard Hughes Essay