Реферат по предмету "Математика"


Метод потенциалов для решения транспортной задачи в матричной форме. Задача оптимального распред

--PAGE_BREAK--Задача №2

Графический метод решения задачи оптимизации производственных процессов

Задание: Решить задачу линейного программирования графическим методом. Исходные данные (вариант 7):

Целевая функция: f(x) = x1+ 2x2→ max,

Ограничения: –x1– x2≥ –1, x1– 2x2 ≤ 1.

Решение:


–х1 – х2 ≥ –1

х1 – 2х2 ≤ 1 (–1)

х1 ≥ 0; х2 ≥ 0

х1 + х2 ≤ 1

2х2 – х1 ≥ 1

х1 + х2 = 1

х1 = 1 – х2
Если х1 = 0, то х2 = 1;

если х2 = 0, то х1 = 1.
х1 – 2х2 = 1

х1 = 1 + 2х2
Если х1 = 0, то х2 = –1/2;

если х2 = 0, то х1 = 1.

Строим прямые уравнений ограничений и находим область допустимых решений (рис. 1).

х2 ≤ – х1 +1 – нижняя полуплоскость;

2х2 ≥ х1 –1 – верхняя полуплоскость.


Рис. 1 — Решением системы неравенств является т. С (0;1)


Ответ: х1= 0

х2 = 1

Задача №3

Применение симплекс-алгоритма для решения экономической оптимизированной задачи управления производством.

Исходные данные (вариант 7):

Целевая функция: f(x) = x1+ 2x2–3х3 → max.

Ограничения: x1+ x2+ х3 = 25,
2x1 – 3x2 + 3х3 ≥ 10;

x1 – 3x2 + 4х3 ≤ 30.
Решение:

Т.к. дана задача на максимизацию целевой функции f, то она сводится к задаче на минимизацию функции –f.

Введем функцию q= –f= –x1– 2x2+3х3

От ограничений неравенств переходим к ограничениям-равенствам, введя новые переменные х4 и х5:
х4 = 2x1 – 3x2 + 3х3 – 10; х5 = –x1 + 3x2 – 4х3 + 30.
Получим следующую основную задачу линейного программирования:




x1+ x2+ х3 = 25

х4 = 2x1 – 3x2 + 3х3 – 10

х5 = –x1 + 3x2 – 4х3 + 30

 q= –x1– 2x2+3х3 → min


Выразим из 1-го уравнения х1 через другие неизвестные и подставим это его выражение в другие уравнения, а также в уравнение для функции q. Получим:
x1= –x2– х3 + 25

х4 = –2x2 – 2x3 + 50 –3х2 + 3х3 – 10

х5 = х2 + x3 – 25 + 3х2 – 4x3 + 30

q= x2+ х3 – 25 + 2х2 + 3x3

x1= –x2– х3 + 25 (1)

х4 = –5x2 + х3 + 40 (2)

х5 = 4х2 – 3x3 + 5 (3)

q= –x2+ 4х3 – 25 (4)
Выразим х2 из второго ограничения и подставим его выражение в первое и третье ограничения, а также в выражение для целевой функции:
5x2= х3 – х4 + 40

х2 = 0,2х3 – 0,2х4 + 8

x1= –0,2x3+ 0,2х4 – 8 –x3 + 25

х2 = 0,2х3 – 0,2х4 + 8

х5 = 0,8х3 – 0,8x4 + 32 –3x3 + 5

q= –0,2x3+ 0,2х4 – 8 + 4х3 – 25

x1= –1,2x3+ 0,2х4 + 17

х2 = 0,2х3 – 0,2х4 + 8

х5 = –2,2х3 – 0,8x4 + 37

q= 3,8x3+ 0,2х4 – 33
В выражении для функции qоба неизвестных входят со знаком «+». Поэтому можно утверждать, что найден оптимальный план: х3 = х4 = 0. Подставив эти значения в последнюю систему ограничений, получим и остальные неизвестные:

х1 = 17; х2 = 8; х5 = 37;

Оптимальное значение функции q= – 33, следовательно

f(x) = 33 млрд.руб.

Ответ: f(x) = 33 млрд.руб.



Задача №4

Метод динамического программирования для выбора оптимального профиля пути.

Задание:

Требуется найти оптимальную трассу участка железнодорожного пути между пунктами А и В, из которых второй лежит к северо-востоку от первого. Местность, по которой пройдет магистраль, является пересеченной и включает лесистые зоны, холмы, болота, реку. Поэтому стоимость строительства равных по длине участков пути может быть различной. Требуется так провести дорогу из А в В, чтобы суммарные затраты на сооружение участка были минимальны.

План прокладки пути разобьем на ряд возможных шагов, на каждом из которых стоимость строительства известна. Каждый шаг строительства является прокладкой пути между двумя рядом расположенными узлами. Все узлы пронумерованы, и в соответствии с номером варианта дана стоимость сооружения элемента пути между узлами.

Исходные данные – (вариант 67).

Решение:

Задачу решаем методом динамического программирования, последовательно двигаясь от конца трассы к ее началу, при этом на каждом шаге процесса выбирая то направление трассы, которое дает меньшую стоимость ее строительства от рассматриваемого пункта до пункта В (рис. 2).




Рис. 2
Ответ: Минимальные затраты на сооружение участка А – В составят W= 131 ден.ед.
Задача №5

Задача оптимального распределения ресурсов.

Задание (вариант 67):

Предприятие имеет свободных К млрд. руб. средств, которые оно может вложить в пять различных производственных программ. При этом прибыль от каждой из программ зависит от объема инвестиций. Эти зависимости fiизвестны и имеют следующий вид:
f(х)= bx – ax2
и конкретно:


f1(х1) = 0,18x1– 0,05x12;

f2(х2) = 0,16x2– 0,04x22;

f3(х3) = 0,14x3– 0,02x32;

f4(х4) = 0,12x4– 0,02x42;

f5(х5) = 0,1x5– 0,01x52млрд.руб.
где х1, х2, х3, х4, х5 – инвестиции в программы, млрд.руб. Их общий объем равен К = 8,5 млрд.руб.

Требуется найти неотрицательные объемы инвестиций х1, х2, х3, х4, х5 соответствующие наибольшей общей прибыли
П = f1(х1) + f2(х2) + f3(х3) + f4(х4) + f5(х5).
Решение:

Возможны следующие варианты:

1)                Все средства передаются первой программе;

2)                Средства распределяются между первой и второй программами;

3)                Средства распределяются между первой, второй и третьей программами;

4)                Средства распределяются между первой, второй, третьей и четвертой программами;

5)                Средства распределяются между первой, второй, третьей, четвертой и пятой программами.

Рассмотрим все 5 вариантов.
1)                К1 = х1 = 8,5
П1 = f1(х1) = 0,18 8,5 – 0,05 8,52 = – 2,08 млрд.руб.


2)                К2 = х1 + х2

П2 = f1(х1) + f2(х2)

0,18 – 2 0,05х1 = 0,16 – 2 0,04х2

х1 + х2 = 8,5

0,1х1 – 0,08х2 = 0,02

х1 = 8,5 – х2

0,1 (8,5 – х2) – 0,08х2 = 0,02

0,85 – 0,1х2 – 0,08х2 = 0,02

0,85 – 0,18х2 = 0,02

0,18х2 = 0,83

х2 = 4,61

х1 = 8,5 – 4,61 = 3,89

П2 = 0,18 · 3,89 – 0,05 3,892 + 0,16 4,61 – 0,04 4,612 = 0,7 – 0,757 + 0,738 – 0,85 = – 0,169 млрд.руб.
3)                К3 = х1 + х2 + х3
П3 = f1(х1) + f2(х2) + f3(х3)

0,18 – 0,1х1 = 0,16 – 0,08х2

0,16 – 0,08х2 = 0,14 – 2 · 0,02х3

х1 + х2 + х3 = 8,5

 0,18 – 0,1х1 = 0,16 – 0,08х2

0,16 – 0,08х2 = 0,14 – 0,04х3

х1 + х2 + х3 = 8,5

0,1х1 – 0,08х2 = 0,18 – 0,16 · 50

0,08х2 – 0,04х3 = 0,16 – 0,14

х1 + х2 + х3 = 8,5

5х1 – 4х2 = 1 (1)

4х2 – 2х3 = 1 (2)

х1 + х2 + х3 = 8,5 (3)


Из 2 – го ур – ия: х3 = 2х2 – 0,5
5х1 – 4х2 = 1

х1 + х2 + 2х2 – 0,5 = 8,5

5х1 – 4х2 = 1 (1)

х1 + 3х2 = 9 (2)
Из 2 – го ур – ия: х1 = 9 – 3х2

5 (9 – 3х2) – 4х2 = 1

45 – 15х2 – 4х2 = 1

19х2 = 44

х1 = 9 – 3 · 2,316 = 2,052

х3 = 2 · 2,316 – 0,5 = 4,132

П3 = 0,18 · 2,052 – 0,05 · 2,0522 + 0,16 · 2,316 – 0,04 · 2,3162 + 0,14 · 4,132 – 0,02 · 4,1322 = 0,369 – 0,21 + 0,37 – 0,215 + 0,578 – 0,34 = 0,552 млрд.руб.
4)                К4 = х1 + х2 + х3 + х4

П4 = f1(х1) + f2(х2) + f3(х3) + f4(х4)

0,18 – 0,1х1 = 0,16 – 0,08х2

0,16 – 0,08х2 = 0,14 – 0,04х3

0,14 – 0,04х3 = 0,12 – 0,04х4

х1 + х2 + х3 + х4 = 8,5

0,1х1 – 0,08х2 = 0,18 – 0,16

0,08х2 – 0,04х3 = 0,16 – 0,14 · 50

0,04х3 – 0,04х4 = 0,14 – 0,12

х1 + х2 + х3 + х4 = 8,5

5х1 – 4х2 = 1 (1)

4х2 – 2х3 = 1 (2)

2х3 – 2х4 = 1 (3)

х1 + х2 + х3 +х4 = 8,5 (4)


Из 3 – го ур – ия: х4 = х3 – 0,5
5х1 – 4х2 = 1

4х2 – 2х3 = 1

х1 + х2 + х3 + х3 – 0,5 = 8,5

5х1 – 4х2 = 1 (1)

4х2 – 2х3 = 1 (2)

х1 + х2 + 2х3 = 9 (3)
Из 2 – го ур – ия: х3 = 2х2 – 1
5х1 – 4х2 = 1

х1 + х2 + 2 (2х2 – 1) = 9

5х1 – 4х2 = 1

х1 + х2 + 4х2 – 2 = 9

5х1 – 4х2 = 1 (1)

х1 + 5х2 = 11 (2)
Из 2 – го ур – ия: х1 = 11 – 5х2

5 (11 – 5х2) – 4х2 = 1

55 – 25х2 – 4х2 =1

29х2 = 54

х2 = 1,862

х1 = 11 – 5 1,862 = 1,69

х3 = 2 · 1,862 – 1 = 2,724

х4 = 2,724 – 0,5 = 2,224

П4 = 0,18 1,69 – 0,05 1,692 + 0,16 1,862 – 0,04 1,8622 + 0,14 2,724 – 0,02·2,7242 + 0,12 2,224 – 0,02 2,2242 = 0,3 – 0,143 + 0,298 – 0,139 + 0,381 – 0,148 + 0,267 – 0,1 = 0,716 млрд.руб.


5)                К5 = х1 + х2 + х3 + х4 +х5

П5 = f1(х1) + f2(х2) + f3(х3) + f4(х4) + f5(х5)

0,18 – 0,1х1 = 0,16 – 0,08х2

0,16 – 0,08х2 = 0,14 – 0,04х3

0,14 – 0,04х3 = 0,12 – 0,04х4

0,12 – 0,04х4 = 0,1 – 0,02х5

х1 + х2 + х3 + х4 + х5 = 8,5

0,1х1 – 0,08х2 = 0,18 – 0,16

0,08х2 – 0,04х3 = 0,16 – 0,14

0,04х3 – 0,04х4 = 0,14 – 0,12

0,04х4 – 0,02х5 = 0,12 – 0,1

х1 + х2 + х3 + х4 + х5 = 8,5

0,1х1 – 0,08х2 = 0,02

0,08х2 – 0,04х3 = 0,02 50

0,04х3 – 0,04х4 = 0,02

0,04х4 – 0,02х5 = 0,02

х1 + х2 + х3 + х4 + х5 = 8,5

5х1 – 4х2 = 1 (1)

4х2 – 2х3 = 1 (2)

2х3 – 2х4 = 1 (3)

2х4 – х5 = 1 (4)

х1 + х2 + х3 +х4 + х5 = 8,5 (5)
Из 4 – го ур – ия: х5 = 2х4 – 1
5х1 – 4х2 = 1

4х2 – 2х3 = 1

2х3 – 2х4 = 1

х1 + х2 + х3 +х4 + 2х4 – 1= 8,5


5х1 – 4х2 = 1 (1)

4х2 – 2х3 = 1 (2)

2х3 – 2х4 = 1 (3)

х1 + х2 + х3 + 3х4 = 9,5 (4)
Из 3 – го ур – ия: х4 = х3 – 0,5
5х1 – 4х2 = 1

4х2 – 2х3 = 1

х1 + х2 + х3 + 3 (х3 – 0,5) = 9,5

5х1 – 4х2 = 1

4х2 – 2х3 = 1

х1 + х2 + 4х3 – 1,5 = 9,5

5х1 – 4х2 = 1 (1)

4х2 – 2х3 = 1 (2)

х1 + х2 + 4х3 = 11 (3)
Из 2 – го ур – ия: х3 = 2х2 – 0,5
5х1 – 4х2 = 1

х1 + х2 + 4 (2х2 – 0,5) = 11

5х1 – 4х2 = 1

х1 + х2 + 8х2 – 2 = 11

5х1 – 4х2 = 1 (1)

х1 + 9х2 = 13 (2)
Из 2 – го ур – ия: х1 = 13 – 9х2

5 (13 – 9х2) – 4х2 = 1

65 – 45х2 – 4х2 = 1

49х2 = 64

х2 = 1,306

х1 = 13 – 9 1,306 = 1,246

х3 = 2 1,306 – 0,5 = 2,112

х4 = 2,112 – 0,5 = 1,612

х5 = 2 · 1,612 – 1 = 2,224

П5 = 0,18 1,246 – 0,05 1,2462 + 0,16 1,306 – 0,04 1,3062 + 0,14 2,112 – 0,02 2,1122 + 0,12 1,612 – 0,02 1,6122 + 0,1 2,224 – 0,01 2,2242 = 0,224 – 0,078 + 0,209 – 0,068 + 0,296 – 0,089 + 0,193 – 0,052 + 0,222 – 0,049 = 0,808 млрд.руб.

Ответ: Максимальное значение прибыли П5 = 0,808 млрд. руб.

Распределение инвестиций: х1 = 1,246 млрд. руб.

х2 = 1,306 млрд. руб.

х3 = 2,112 млрд. руб.

х4 = 1,612 млрд. руб.

х5 = 2,224 млрд. руб.
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Художественное своеобразие пьесы Вишневый сад
Реферат Бренд-менеджмент приедприятия:основные стратегии
Реферат 1. Утвердить Положение о добровольной пожарной охране в сельском поселении Калининский сельсовет муниципального района Бижбулякский район Республики Башкортостан
Реферат История агломерационного производства
Реферат Первоисточник мира. Анаксимандр о воде и не только
Реферат Современные методики творчества
Реферат Диагностика кризисного процесса на различных его стадиях в рамках антикризисного управления организацией
Реферат Особенности мотивации учебной деятельности студентов гуманитарных факультетов
Реферат Черты гоголевской сатиры в произведениях М А Булгакова
Реферат Маргинальность в современной России
Реферат Римский форум
Реферат Проблема адаптации детей дошкольного возраста к ДОУ
Реферат Christian Elements In Beowulf Essay Research Paper
Реферат Reality And Illusion In A Streetcar Named
Реферат И один в поле воин,если он-Чацкий